1
|
Arefieva O, Vasilyeva M, Lukiyanchuk I, Korochentsev V, Opra D, Tkachev V, Shlyk D. Development of photoactive ZnS-SiO 2 composites on biogenic silica matrix for organic pollutant degradation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:61612-61628. [PMID: 39433624 DOI: 10.1007/s11356-024-35357-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 10/15/2024] [Indexed: 10/23/2024]
Abstract
Sulfide ZnS-SiO2 composite photocatalysts with biogenic silica matrix were prepared by sol-gel method based on wet gel and xerogel. FT-IR, SEM, XRD, EDXRF, UV-Vis, and XPS methods were systematically used to characterize the obtained materials. The use of support allowed to obtain stable porous (SBET = 79-105 m2 g-1; Vpore = 0.25-0.17 cm3·g-1) ZnS-SiO2 photocatalysts in aqueous solutions. Zn2+ content in methyl orange solution after its degradation was 0.4 MPC. ZnS-SiO2 composites had 3.68-3.70 eV band gap. The obtained materials were photoactive under different irradiation conditions (sunlight, UV-light, Xenon light, visible light) due to effective separation of charge carriers (e- and h+). Methyl orange degradation degree under UV light excitation was 35-88%, under sunlight - 11-30%. ZnS-SiO2 composite synthesized using silica xerogel showed a greater photoactivity due to a presence of cone-shaped or cylindrical pores with one open end in its structure and a higher content of ZnS photoactive component. A comparative study of photocatalytic performance of methyl orange degradation by ZnS-SiO2 under UV irradiation was investigated using radical scavengers. •O2- was main active species during MO degradation under UV irradiation, and electrons played additional role during the photocatalytic process.
Collapse
Affiliation(s)
- Olga Arefieva
- Far Eastern Federal University, 10 Ajax Bay, Russky Island, Vladivostok, 690922, Russian Federation.
- Institute of Chemistry, Far-Eastern Branch, Russian Academy of Sciences, Vladivostok, Russian Federation.
| | - Marina Vasilyeva
- Far Eastern Federal University, 10 Ajax Bay, Russky Island, Vladivostok, 690922, Russian Federation
- Institute of Chemistry, Far-Eastern Branch, Russian Academy of Sciences, Vladivostok, Russian Federation
| | - Irina Lukiyanchuk
- Institute of Chemistry, Far-Eastern Branch, Russian Academy of Sciences, Vladivostok, Russian Federation
| | - Vladimir Korochentsev
- Far Eastern Federal University, 10 Ajax Bay, Russky Island, Vladivostok, 690922, Russian Federation
- Institute of Chemistry, Far-Eastern Branch, Russian Academy of Sciences, Vladivostok, Russian Federation
| | - Denis Opra
- Institute of Chemistry, Far-Eastern Branch, Russian Academy of Sciences, Vladivostok, Russian Federation
| | - Vladimir Tkachev
- Faculty of Material Science, MSU-BIT University, Shenzhen, China
| | - Daria Shlyk
- Institute of Chemistry, Far-Eastern Branch, Russian Academy of Sciences, Vladivostok, Russian Federation
| |
Collapse
|
2
|
September LA, Kheswa N, Seroka NS, Khotseng L. Green synthesis of silica and silicon from agricultural residue sugarcane bagasse ash - a mini review. RSC Adv 2023; 13:1370-1380. [PMID: 36686953 PMCID: PMC9813804 DOI: 10.1039/d2ra07490g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 12/23/2022] [Indexed: 01/06/2023] Open
Abstract
Silicon dioxide (SiO2), also known as silica, has received attention in recent years due to wide range of capable applications including biomedical/pharmaceutical, energy, food, and personal care products. This has accelerated research in the extraction of materials from various agricultural wastes; this review investigates the extraction of silica and silicon nanoparticles from sugarcane bagasse ash with potential applications in electronic devices. Specific properties of silica have attracted the interest of researchers, which include surface area, size, biocompatibility, and high functionality. The production of silica from industrial agricultural waste exhibits sustainability and potential reduction in waste production. Bagasse is sustainable and environmentally friendly; though considered waste, it could be a helpful component for sustainable progress and further technological advancement. The chemical, biogenic and green synthesis are discussed in detail for the production of silica. In green synthesis, notable attempts have been made to replace toxic counterparts and decrease energy usage with the same quantity and quality of silica obtained. Methods of reducing silica to silicon are also discussed with the potential application-specific properties in electronic devices, and modern technological applications, such as batteries, supercapacitors, and solar cells.
Collapse
Affiliation(s)
- Lyle A. September
- Department of Chemistry, University of the Western CapeRobert Sobukwe Rd, Private Bag X17Bellville 7535South Africa
| | - Ntombizonke Kheswa
- Tandetron Laboratory, Research Institute, Ithemba LabsOld Faure Road, Eerste RiverFaure 7131South Africa
| | - Ntalane S. Seroka
- Department of Chemistry, University of the Western CapeRobert Sobukwe Rd, Private Bag X17Bellville 7535South Africa
| | - Lindiwe Khotseng
- Department of Chemistry, University of the Western CapeRobert Sobukwe Rd, Private Bag X17Bellville 7535South Africa
| |
Collapse
|
3
|
Recupido F, Lama GC, Ammendola M, Bossa FDL, Minigher A, Campaner P, Morena AG, Tzanov T, Ornelas M, Barros A, Gomes F, Bouça V, Malgueiro R, Sanchez M, Martinez E, Sorrentino L, Boggioni L, Perucca M, Anegalla S, Marzella R, Moimare P, Verdolotti L. Rigid composite bio-based polyurethane foams: From synthesis to LCA analysis. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
4
|
Gebretatios AG, Kadiri Kanakka Pillantakath AR, Witoon T, Lim JW, Banat F, Cheng CK. Rice husk waste into various template-engineered mesoporous silica materials for different applications: A comprehensive review on recent developments. CHEMOSPHERE 2023; 310:136843. [PMID: 36243081 DOI: 10.1016/j.chemosphere.2022.136843] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/30/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Following the discovery of Stöber silica, the realm of morphology-controlled mesoporous silica nanomaterials like MCM-41, SBA-15, and KCC-1 has been expanded. Due to their high BET surface area, tunable pores, easiness of functionalization, and excellent thermal and chemical stability, these materials take part a vital role in the advancement of techniques and technologies for tackling the world's largest challenges in the area of water and the environment, energy storage, and biotechnology. Synthesizing these materials with excellent physicochemical properties from cost-efficient biomass wastes is a foremost model of sustainability. Particularly, SiO2 with a purity >98% can be obtained from rice husk (RH), one of the most abundant biomass wastes, and can be template engineered into various forms of mesoporous silica materials in an economic and eco-friendly way. Hence, this review initially gives insight into why to valorize RH into value-added silica materials. Then the thermal, chemical, hydrothermal, and biological methods of high-quality silica extraction from RH and the principles of synthesis of mesoporous and fibrous mesoporous silica materials like SBA-15, MCM-41, MSNs, and KCC-1 are comprehensively discussed. The potential applications of rice husk-derived mesoporous silica materials in catalysis, drug delivery, energy, adsorption, and environmental remediation are explored. Finally, the conclusion and the future outlook are briefly highlighted.
Collapse
Affiliation(s)
- Amanuel Gidey Gebretatios
- Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Abdul Rasheed Kadiri Kanakka Pillantakath
- Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Center for Catalysis and Separation (CeCaS), Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Thongthai Witoon
- Department of Chemical Engineering, Faculty of Engineering, Kasetsart University, 50 Ngamwongwan Rd., Ladyao, Jatujak Bangkok, 10900, Thailand
| | - Jun-Wei Lim
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Fawzi Banat
- Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Chin Kui Cheng
- Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Center for Catalysis and Separation (CeCaS), Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
5
|
Green synthesis of porous biochar with interconnected pore architectures from typical silicon-rich rice husk for efficient CO2 capture. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Inphonlek S, Bureewong N, Jarukumjorn K, Chumsamrong P, Ruksakulpiwat C, Ruksakulpiwat Y. Preparation of Poly(acrylic acid- co-acrylamide)- Grafted Deproteinized Natural Rubber and Its Effect on the Properties of Natural Rubber/Silica Composites. Polymers (Basel) 2022; 14:4602. [PMID: 36365597 PMCID: PMC9657069 DOI: 10.3390/polym14214602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/24/2022] [Accepted: 10/28/2022] [Indexed: 12/01/2022] Open
Abstract
This work aims to enhance the polarity of natural rubber by grafting copolymers onto deproteinized natural rubber (DPNR) to improve its compatibility with silica. Poly(acrylic acid-co-acrylamide)-grafted DPNR ((PAA-co-PAM)-DPNR) was successfully prepared by graft copolymerization with acrylic acid and acrylamide in the latex stage, as confirmed by FTIR. The optimum conditions to obtain the highest conversion, grafting efficiency, and grafting percentage were a reaction time of 360 min, a reaction temperature of 50 °C, and an initiator concentration of 1.0 phr. The monomer conversion, grafting efficiency, and grafting percentage were 91.9-94.1, 20.8-38.9, and 2.1-9.9%, respectively, depending on the monomer content. It was shown that the polarity of the natural rubber increased after grafting. The (PAA-co-PAM)-DPNR was then mixed with silica to prepare DPNR/silica composites. The presence of the (PAA-co-PAM)-DPNR and silica in the composites was found to improve the mechanical properties of the DPNR. The incorporation of 10 phr of silica into the (PAA-co-PAM)-DPNR with 10 phr monomer increased its tensile strength by 1.55 times when compared to 10 phr of silica loaded into the DPNR. The silica-filled (PAA-co-PAM)-DPNR provided s higher storage modulus, higher Tg, and a lower tan δ peak, indicating stronger modified DPNR/silica interactions and greater thermal stability when compared to silica-filled DPNR.
Collapse
Affiliation(s)
- Supharat Inphonlek
- School of Polymer Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
- Research Center for Biocomposite Materials for Medical Industry and Agricultural and Food Industry, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Namthip Bureewong
- School of Polymer Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
- Research Center for Biocomposite Materials for Medical Industry and Agricultural and Food Industry, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Kasama Jarukumjorn
- School of Polymer Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
- Research Center for Biocomposite Materials for Medical Industry and Agricultural and Food Industry, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Pranee Chumsamrong
- School of Polymer Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
- Research Center for Biocomposite Materials for Medical Industry and Agricultural and Food Industry, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Chaiwat Ruksakulpiwat
- School of Polymer Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
- Research Center for Biocomposite Materials for Medical Industry and Agricultural and Food Industry, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Yupaporn Ruksakulpiwat
- School of Polymer Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
- Research Center for Biocomposite Materials for Medical Industry and Agricultural and Food Industry, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| |
Collapse
|
7
|
Sun M, Xu Z, Liu K, Yang H, Yang T, Jin C, Wang Z, Jin Y, Chen L. Construction of rice husk-derived SiOx nanoparticles encapsulated with graphene aerogel hybrid for high-performance lithium ion batteries. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140572] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
Shoul B, Marfavi Y, Sadeghi B, Kowsari E, Sadeghi P, Ramakrishna S. Investigating the potential of sustainable use of green silica in the green tire industry: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:51298-51317. [PMID: 35614353 DOI: 10.1007/s11356-022-20894-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Undoubtedly, with the increasing emission of greenhouse gases and non-biodegradable wastes as the consequence of over energy and material consumption, the demands for environmentally friendly products are of significant importance. Green tires, a superb alternative to traditional tires, could play a substantial part in environmental protection owing to lower toxic and harmful substances in their construction and their higher decomposition rate. Furthermore, manufacturing green tires using green silica as reinforcement has a high capacity to save energy and reduce carbon dioxide emissions, pollution, and raw material consumption. Nevertheless, their production costs are expensive in comparison with conventional tires. In this review article, by studying green tires, the improvement of silica-rubber mixing, as well as the production of green silica from agricultural wastes, were investigated. Not only does the consumption of agricultural wastes save resources considerably, but it also could eventually lead to the reduction of silica production expenses. The cost of producing green silica is about 50% lower than producing conventional silica, and since it weighs about 17% of green silica tires, it can reduce the cost of producing green rubber. Accordingly, we claim that green silica has provided acceptable properties of silica in tires. Apart from the technical aspect, environmental and economic challenges are also discussed, which can ultimately be seen as a promising prospect for the use of green silica in the green tire industry.
Collapse
Affiliation(s)
- Behnaz Shoul
- Amirkabir University of Technology, Mahshahr Campus, P.O. BOX, Mahshahr, 63517-13178, Iran
| | - Yousef Marfavi
- Department of Chemistry, Amirkabir University of Technology, No. 424, Hafez Avenue, Tehran, 1591634311, Iran
| | - Banafsheh Sadeghi
- Amirkabir University of Technology, Mahshahr Campus, P.O. BOX, Mahshahr, 63517-13178, Iran
| | - Elaheh Kowsari
- Department of Chemistry, Amirkabir University of Technology, No. 424, Hafez Avenue, Tehran, 1591634311, Iran.
| | - Peyman Sadeghi
- Faculty of Polymer and Chemical Engineering, University of Tehran, P.O. Box, Tehran, 13145-1384, Iran
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, Center for Nanofibers and Nanotechnology, National University of Singapore, Singapore, 119260, Singapore.
| |
Collapse
|
9
|
Ren Z, Liu S, Chen J, Yu Y, Shang Q, Fakudze S, Liu C, Zhou P, Chu Q. One-step synthesis of interface-coupled Si@SiOX@C from whole rice-husks for high-performance lithium storage. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139556] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Bazani HAG, Thomé A, Affeldt RF, Probst LFD. SBA-15 obtained from rice husk ashes wet-impregnated with metals (Al, Co, Ni) as efficient catalysts for 1,4-dihydropyridine three-component reaction. NEW J CHEM 2022. [DOI: 10.1039/d1nj04835j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A fully characterized mesoporous silica prepared from industrial waste was impregnated with metals and applied as a green heterogeneous catalyst.
Collapse
Affiliation(s)
- Heitor A. G. Bazani
- Department of Chemistry, Federal University of Santa Catarina, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - Allison Thomé
- Department of Chemistry, Federal University of Santa Catarina, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - Ricardo F. Affeldt
- Department of Chemistry, Federal University of Santa Catarina, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - Luiz F. D. Probst
- Department of Chemistry, Federal University of Santa Catarina, Florianópolis, Santa Catarina, 88040-900, Brazil
| |
Collapse
|
11
|
AboDalam H, Devra V, Ahmed FK, Li B, Abd-Elsalam KA. Rice wastes for green production and sustainable nanomaterials: An overview. AGRI-WASTE AND MICROBES FOR PRODUCTION OF SUSTAINABLE NANOMATERIALS 2022:707-728. [DOI: 10.1016/b978-0-12-823575-1.00009-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
12
|
Zhang H, Zhang N, Man J, Du Y, Cui J, Sun J. A sustainable approach from rice husks to P,N-dual doping porous C/SiOx composites for high-performance lithium-ion battery anodes. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2021.115939] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
13
|
Sakamoto M, Terada S, Mizutani T, Saitow KI. Large Field Enhancement of Nanocoral Structures on Porous Si Synthesized from Rice Husks. ACS APPLIED MATERIALS & INTERFACES 2021; 13:1105-1113. [PMID: 33332080 DOI: 10.1021/acsami.0c14248] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Silicon (Si) is a highly abundant, environmentally benign, and durable material and is the most popular semiconductor material; and it is used for the field enhancement of dielectric materials. Porous Si (PSi) exhibits high functionality due to its specific structure. However, the field enhancement of PSi has not been clarified sufficiently. Herein, we present the field enhancement of PSi by the fluorescence intensity enhancement of a dye molecule. The raw material used for producing PSi was rice husk, a biomass material. A nanocoral structure, consisting of spheroidal structures on the surface of PSi, was observed when PSi was subjected to chemical processes and pulsed laser melting, and it demonstrated large field enhancement with an enhancement factor (EF) of up to 545. Confocal microscopy was used for EF mapping of samples before and after laser melting, and the maps were superimposed on nanoscale scanning electron microscope images to highlight the EF effect as a function of microstructure. Nanocoral Si with high EF values were also evaluated by analyzing the porosity from gas adsorption measurements. Nanocoral Si was responsible for the high EF, according to thermodynamic calculations and agreement between experimental and calculation results as determined by Mie scattering theory.
Collapse
Affiliation(s)
- Masanori Sakamoto
- Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Shiho Terada
- Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Tomoya Mizutani
- Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Ken-Ichi Saitow
- Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
- Natural Science Center for Basic Research and Development (N-BARD), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
- Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| |
Collapse
|
14
|
Ali SH, Emran MY, Gomaa H. Rice Husk-Derived Nanomaterials for Potential Applications. WASTE RECYCLING TECHNOLOGIES FOR NANOMATERIALS MANUFACTURING 2021:541-588. [DOI: 10.1007/978-3-030-68031-2_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
15
|
Recent Progress on the Development of Engineered Silica Particles Derived from Rice Husk. SUSTAINABILITY 2020. [DOI: 10.3390/su122410683] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The development of engineered silica particles by using low-cost renewable or waste resources is a key example of sustainability. Rice husks have emerged as a renewable resource for the production of engineered silica particles as well as bioenergy. This review presents a state-of-the-art process for the development of engineered silica particles from rice husks via a bottom-up process. The first part of this review focuses on the extraction of Si from rice husks through combustion and chemical reactions. The second part details the technologies for synthesizing engineered silica particles using silicate obtained from rice husks. These include technologies for the precipitation of silica particles, the control of morphological properties, and the synthesis of ordered porous silica particles. Finally, several issues that need to be resolved before this process can be commercialized are addressed for future research.
Collapse
|
16
|
Xu M, Ma J, Niu G, Yang H, Sun M, Zhao X, Yang T, Chen L, Wang C. A Low-Cost and High-Capacity SiO x /C@graphite Hybrid as an Advanced Anode for High-Power Lithium-Ion Batteries. ACS OMEGA 2020; 5:16440-16447. [PMID: 32685807 PMCID: PMC7364548 DOI: 10.1021/acsomega.0c00686] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 06/15/2020] [Indexed: 05/22/2023]
Abstract
Silicon suboxide (SiO x ) is one of the most promising anodes for the next-generation high-power lithium-ion batteries because of its higher lithium storage capacity than current commercial graphite, relatively smaller volume variations than pure silicon, and appropriate working potential. However, the high cost, poor cycling stability, and rate capability hampered its industrial applications due to its complex production process, volume changes during Li+ insertion/extraction, and low conductivity. Herein, a low-cost and high-capacity SiO x /C@graphite (SCG) hybrid was designed and synthesized by a facile one-pot carbonization/hydrogen reduction process of the rice husk and graphite. As an advanced anode for lithium-ion batteries, the SiO x /C@graphite hybrid delivers a high reversible capacity with significantly enhanced cycling stability (842 mAh g-1 after 300 cycles at 0.5 A g-1) and rate capability (562 mAh g-1 after 300 cycles at 1 A g-1). The great improvement in performances could be attributed to the positive synergistic effect of SiO x nanoparticles as lithium storage active materials, the in situ-formed carbon matrix network derived from biomass functioning as an efficient three-dimensional conductive network and spacer to improve the rate capability and buffer the volume changes, and graphite as a conductor to further improve the rate capabilities and cycling stability by increasing the conductivity. The low-cost and high-capacity SCG derived from rice husk synthesized by a facile, scalable synthetic method turns out to be a promising anode for the next-generation high-power lithium-ion batteries.
Collapse
Affiliation(s)
- Minghang Xu
- School
of Environmental & Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, China
- Marine
Equipment and Technology Institute, Jiangsu
University of Science and Technology, Zhenjiang 212003, Jiangsu, China
| | - Jiaojiao Ma
- School
of Environmental & Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, China
- Yunfan
(Zhenjiang) New Energy Materials, Co., Ltd., Zhenjiang 212050, Jiangsu, China
| | - Guiling Niu
- School
of Environmental & Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, China
- Marine
Equipment and Technology Institute, Jiangsu
University of Science and Technology, Zhenjiang 212003, Jiangsu, China
| | - Hongxun Yang
- School
of Environmental & Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, China
- Marine
Equipment and Technology Institute, Jiangsu
University of Science and Technology, Zhenjiang 212003, Jiangsu, China
- Yunfan
(Zhenjiang) New Energy Materials, Co., Ltd., Zhenjiang 212050, Jiangsu, China
| | - Mengfei Sun
- School
of Environmental & Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, China
- Yunfan
(Zhenjiang) New Energy Materials, Co., Ltd., Zhenjiang 212050, Jiangsu, China
| | - Xiangchen Zhao
- School
of Environmental & Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, China
| | - Tongyi Yang
- School
of Environmental & Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, China
| | - Lizhuang Chen
- School
of Environmental & Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, China
| | - Changhua Wang
- Zhenjiang
Dongya Carbon Coke, Co., Ltd., Zhenjiang 212008, Jiangsu, China
| |
Collapse
|
17
|
Preparation, functionalization and characterization of rice husk silica for lipase immobilization via adsorption. Enzyme Microb Technol 2019; 128:9-21. [DOI: 10.1016/j.enzmictec.2019.05.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/18/2019] [Accepted: 05/02/2019] [Indexed: 01/13/2023]
|
18
|
de Cordoba MCF, Matos J, Montaña R, Poon PS, Lanfredi S, Praxedes FR, Hernández-Garrido JC, Calvino JJ, Rodríguez-Aguado E, Rodríguez-Castellón E, Ania CO. Sunlight photoactivity of rice husks-derived biogenic silica. Catal Today 2019. [DOI: 10.1016/j.cattod.2018.12.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
19
|
Generation of High Quality Biogenic Silica by Combustion of Rice Husk and Rice Straw Combined with Pre- and Post-Treatment Strategies—A Review. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9061083] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Utilization of biomass either as a renewable energy source or for the generation of biogenic materials has received considerable interest during the past years. In the case of rice husk (RH) and rice straw (RS) with high silica contents in the fuel ash, these approaches can be combined to produce high-grade biogenic silica with purities >98 wt % from combustion residues. The overall process can be considered nearly neutral in terms of CO2 emission and global warming, but it can also address disposal challenges of rice husk and rice straw. For the resulting biogenic silica, several advanced application opportunities exist, e.g., as adsorbents, catalysts, drug delivery systems, etc. This article provides a comprehensive literature review on rice husk and rice straw combustion as well as applied strategies for raw material pre-treatment and/or post-treatment of resulting ashes to obtain high quality biogenic silica. Purity of up to 97.2 wt % SiO2 can be reached by combustion of untreated material. With appropriate fuel pre-treatment and ash post-treatment, biogenic silica with purity up to 99.7 wt % can be achieved. Studies were performed almost exclusively at a laboratory scale.
Collapse
|
20
|
Zhou Z, Pan L, Liu Y, Zhu X, Xie X. From sand to fast and stable silicon anode: Synthesis of hollow Si@void@C yolk–shell microspheres by aluminothermic reduction for lithium storage. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2018.08.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Kurmanbayeva I, Mentbayeva A, Sadykova A, Adi A, Mansurov Z, Bakenov Z. Silica from Kazakhstan Rice Husk as an Anode Material for LIBs. EURASIAN CHEMICO-TECHNOLOGICAL JOURNAL 2019. [DOI: 10.18321/ectj794] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
This paper reports the synthesis of the silica (SiO2) from Kyzylorda rice husk (RH) and investigation of its electrochemical behaviour as an anode material for the lithium-ion battery. Rice husk, considered as agricultural waste material, contains a substantial amount of amorphous silica, carbon, and minor other mineral composition, which have potential industrial and scientific applications. Due to the high theoretical capacity of silicon (4200 mAh g-1) and silicon dioxide (1965 mAh g-1), Si-containing compounds are considered as a promising candidate for a new generation of anode materials for lithium-ion batteries. In this work, the technology of amorphous SiO2 extraction from Kyzylorda region rice husk is developed. The silica powder was obtained by burning the rice husk and treating the obtained ash with the sodium hydroxide and hydrochloric acid. The extracted SiO2 and intermediate products were studied by the SEM, XRD, XRF, XPS, TGA in comparison with commercial silica. The RH of the Kyzylorda region has 12% of Si. The electrochemical characteristics of assembled coin cell type battery were tested by using cyclic voltammetry and galvanostatic charge/discharge cycling. Results show that silica synthesized from agriculture waste has the same performance as commercial analog. The initial discharge capacity of the battery with synthesized silicon dioxide was 1049 mAhg-1. The reversible discharge capacity in the second and subsequent cycles is about 438 mAhg-1.
Collapse
|
22
|
Liu S, Rao Z, Wu R, Sun Z, Yuan Z, Bai L, Wang W, Yang H, Chen H. Fabrication of Microcapsules by the Combination of Biomass Porous Carbon and Polydopamine for Dual Self-Healing Hydrogels. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:1061-1071. [PMID: 30614698 DOI: 10.1021/acs.jafc.8b06241] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Artificial development of smart materials from agricultural waste or food residues is particularly desirable for green chemistry. In this paper, dual-network self-healing hydrogels were successfully fabricated by using functional microcapsules. These microcapsules were established by biomass porous carbon (PC) after recycling of apple residues. Glutaraldehyde (GA) as the healing agent was embedded in the porous carbon, and the outer surface was coated with polydopamine (PDA). After the microcapsules were added, modifying guar gum-type hydrogels were successfully obtained with dual self-healing performance by the combination of a healing agent and metal-ligand coordination. The self-healing efficiency was about 89.9% from the tension test, and the fracture strength was measured as 7.68 MPa. These results not only highlight a new idea for the utilization of apple residues but also provide a new method for the preparation of excellent self-healing hydrogels.
Collapse
Affiliation(s)
- Shumin Liu
- School of Chemistry and Materials Science , Ludong University , Key Laboratory of High Performance and Functional Polymers in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025 , China
| | - Zhilu Rao
- School of Chemistry and Materials Science , Ludong University , Key Laboratory of High Performance and Functional Polymers in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025 , China
| | - Ruiyue Wu
- School of Chemistry and Materials Science , Ludong University , Key Laboratory of High Performance and Functional Polymers in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025 , China
| | - Zhixiang Sun
- School of Chemistry and Materials Science , Ludong University , Key Laboratory of High Performance and Functional Polymers in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025 , China
| | - Zhiru Yuan
- School of Chemistry and Materials Science , Ludong University , Key Laboratory of High Performance and Functional Polymers in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025 , China
| | - Liangjiu Bai
- School of Chemistry and Materials Science , Ludong University , Key Laboratory of High Performance and Functional Polymers in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025 , China
| | - Wenxiang Wang
- School of Chemistry and Materials Science , Ludong University , Key Laboratory of High Performance and Functional Polymers in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025 , China
| | - Huawei Yang
- School of Chemistry and Materials Science , Ludong University , Key Laboratory of High Performance and Functional Polymers in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025 , China
| | - Hou Chen
- School of Chemistry and Materials Science , Ludong University , Key Laboratory of High Performance and Functional Polymers in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025 , China
| |
Collapse
|
23
|
Liu Z, Yu Q, Zhao Y, He R, Xu M, Feng S, Li S, Zhou L, Mai L. Silicon oxides: a promising family of anode materials for lithium-ion batteries. Chem Soc Rev 2019; 48:285-309. [PMID: 30457132 DOI: 10.1039/c8cs00441b] [Citation(s) in RCA: 251] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Silicon oxides have been recognized as a promising family of anode materials for high-energy lithium-ion batteries (LIBs) owing to their abundant reserve, low cost, environmental friendliness, easy synthesis, and high theoretical capacity. However, the extended application of silicon oxides is severely hampered by the intrinsically low conductivity, large volume change, and low initial coulombic efficiency. Significant efforts have been dedicated to tackling these challenges towards practical applications. This Review focuses on the recent advances in the synthesis and lithium storage properties of silicon oxide-based anode materials. To present the progress in a systematic manner, this review is categorized as follows: (i) SiO-based anode materials, (ii) SiO2-based anode materials, (iii) non-stoichiometric SiOx-based anode materials, and (iv) Si-O-C-based anode materials. Finally, future outlook and our personal perspectives on silicon oxide-based anode materials are presented.
Collapse
Affiliation(s)
- Zhenhui Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Xu C, Nasrollahzadeh M, Selva M, Issaabadi Z, Luque R. Waste-to-wealth: biowaste valorization into valuable bio(nano)materials. Chem Soc Rev 2019; 48:4791-4822. [DOI: 10.1039/c8cs00543e] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The waste-to-wealth concept aims to promote a future sustainable lifestyle where waste valorization is seen not only for its intrinsic benefits to the environment but also to develop new technologies, livelihoods and jobs.
Collapse
Affiliation(s)
- Chunping Xu
- School of Food and Biological Engineering
- Zhengzhou University of Light Industry
- Zhengzhou
- P. R. China
| | | | - Maurizio Selva
- Dipartimento di Scienze Molecolari e Nanosistemi
- Universita Ca Foscari
- Venezia Mestre
- Italy
- Departamento de Quimica Organica
| | - Zahra Issaabadi
- Department of Chemistry
- Faculty of Science
- University of Qom
- Qom 3716146611
- Iran
| | - Rafael Luque
- Departamento de Quimica Organica
- Universidad de Cordoba
- Cordoba
- Spain
- Peoples Friendship University of Russia (RUDN University)
| |
Collapse
|
25
|
Fu Y, Shen Y, Zhang Z, Ge X, Chen M. Activated bio-chars derived from rice husk via one- and two-step KOH-catalyzed pyrolysis for phenol adsorption. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 646:1567-1577. [PMID: 30235641 DOI: 10.1016/j.scitotenv.2018.07.423] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/30/2018] [Accepted: 07/30/2018] [Indexed: 05/12/2023]
Abstract
The activated bio-chars (AB) were successfully synthesized from rice husk by one- and two-step KOH-catalyzed pyrolysis. The two-step pyrolysis can produce the high yields of AB compared to the one-step pyrolysis. Moreover, the yield of AB decreased with the increase of the mass ratio of KOH and char, which had a significant effect on the development of the surface area and porosity of carbon. In particular, the AB derived from the two-step pyrolysis at 750°C (mass ratio of KOH and char was 3) had the highest specific surface area (SBET=2138m2/g) with many micro-porous structures, which was favored for the phenol adsorption. The maximum adsorption capacity of AB2-3-750 reached 201mg/g because of its excellent surface porosity property. The phenol can be efficiently removed from water by only several minutes. The Langmuir model defined well the adsorption isotherm with a high correlation coefficient value, indicating a monolayer adsorption behavior. And the adsorption process defined well with the pseudo-second-order model. The phenol molecules passed into the internal surface via the liquid-film controlled diffusion, so the behavior of phenol adsorption onto the AB was predominantly controlled via the chemisorption. Furthermore, the functional groups on the outer surfaces of AB can attract the phenol molecules onto the internal surfaces via "π-π dispersion interaction" and "donor-acceptor effect".
Collapse
Affiliation(s)
- Yuhong Fu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Yafei Shen
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Zhendong Zhang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Xinlei Ge
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Mindong Chen
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| |
Collapse
|
26
|
Shen Y. Rice Husk-Derived Activated Carbons for Adsorption of Phenolic Compounds in Water. GLOBAL CHALLENGES (HOBOKEN, NJ) 2018; 2:1800043. [PMID: 31565315 PMCID: PMC6607306 DOI: 10.1002/gch2.201800043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 08/24/2018] [Indexed: 06/02/2023]
Abstract
Activated carbons are synthesized from rice husk by one- and two-step pyrolysis. In general, two-step pyrolysis produces a higher yield of activated carbons. The yield of activated carbon decreases with the increase of mass ratio of KOH and biomass, which has a significant impact on the development of surface area and porosity. The maximum S BET (2138 m2 g-1) is achieved with micro- and mesoporous structures, which is favored for the adsorption process. The activated carbons can efficiently remove phenol from water by a few minutes. In particular, the maximum adsorption capacity (201 mg g-1) is achieved due to the excellent surface textural properties. The Langmuir model can better define the adsorption isotherm. The high correlation coefficient value (R 2 = 0.9991) indicates a monolayer adsorption behavior. The adsorption process can be well-fitted by the pseudo-second-order model. Herein, the phenol molecules pass into the internal surface via liquid-film-controlled diffusion, so the behavior of phenol adsorption onto activated carbons is mainly controlled via chemisorption. In addition, the functional groups on the outer surfaces of activated carbons can attract the phenol molecules onto their internal surface via the "π-π dispersion interaction" and "donor-acceptor effect."
Collapse
Affiliation(s)
- Yafei Shen
- School of Environmental Science and EngineeringNanjing University of Information Science and Technology (NUIST)Nanjing210044P. R. China
| |
Collapse
|
27
|
Sultana S, Borah G, Gogoi PK. Ru (III) Schiff-base complex anchored on nanosilica as an efficient and retrievable catalyst for hydration of nitriles. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4595] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Samim Sultana
- Department of Chemistry; Dibrugarh University; Dibrugarh Assam India
| | - Geetika Borah
- Department of Chemistry; Dibrugarh University; Dibrugarh Assam India
| | - Pradip K. Gogoi
- Department of Chemistry; Dibrugarh University; Dibrugarh Assam India
| |
Collapse
|
28
|
Rajan R, Zakaria Y, Shamsuddin S, Hassan NFN. Nanocarbon powder for latent fingermark development: a green chemistry approach. EGYPTIAN JOURNAL OF FORENSIC SCIENCES 2018. [DOI: 10.1186/s41935-018-0091-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
29
|
Extraction and biocompatibility analysis of silica phytoliths from sorghum husk for three-dimensional cell culture. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.04.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
30
|
Feng Q, Chen K, Ma D, Lin H, Liu Z, Qin S, Luo Y. Synthesis of high specific surface area silica aerogel from rice husk ash via ambient pressure drying. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2017.12.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
31
|
Allahbakhsh A, Noei Khodabadi F, Hosseini FS, Haghighi AH. 3-Aminopropyl-triethoxysilane-functionalized rice husk and rice husk ash reinforced polyamide 6/graphene oxide sustainable nanocomposites. Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2017.07.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
32
|
Liu Z, Chang X, Wang T, Li W, Ju H, Zheng X, Wu X, Wang C, Zheng J, Li X. Silica-Derived Hydrophobic Colloidal Nano-Si for Lithium-Ion Batteries. ACS NANO 2017; 11:6065-6073. [PMID: 28570805 DOI: 10.1021/acsnano.7b02021] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Silica can be converted to silicon by magnesium reduction. Here, this classical reaction is renovated for more efficient preparation of silicon nanoparticles (nano-Si). By reducing the particle size of the starting materials, the reaction can be completed within 10 min by mechanical milling at ambient temperature. The obtained nano-Si with high surface reactivity are directly reacted with 1-pentanol to form an alkoxyl-functionalized hydrophobic colloid, which significantly simplifies the separation process and minimizes the loss of small Si particles. Nano-Si in 5 g scale can be obtained in one single batch with laboratory scale setups with very high yield of 89%. Utilizing the excellent dispersion in ethanol of the alkoxyl-functionalized nano-Si, surface carbon coating can be readily achieved by using ethanol soluble oligomeric phenolic resin as the precursor. The nano-Si after carbon coating exhibit excellent lithium storage performance comparable to the state of the art Si-based anode materials, featured for the high reversible capacity of 1756 mAh·g-1 after 500 cycles at a current density of 2.1 A·g-1. The preparation approach will effectively promote the development of nano-Si-based anode materials for lithium-ion batteries.
Collapse
Affiliation(s)
| | | | | | - Wei Li
- BTR New Energy Materials, Inc. , High Tech Industrial Park, Xitian, Gongming Town, Guangming New District, Shenzhen 518106, China
| | - Haidong Ju
- Department of Chemistry, Kunming University , Kunming 650214, China
| | | | | | | | | | | |
Collapse
|
33
|
Hayati-Roodbari N, Berger RJF, Bernardi J, Kinge S, Hüsing N, Elsaesser MS. Monolithic porous magnesium silicide. Dalton Trans 2017; 46:8855-8860. [DOI: 10.1039/c7dt00571g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Macroporous magnesium silicide monoliths were prepared by a two-step magnesiothermic reaction starting from hierarchically structured silica with silicon as an intermediate step.
Collapse
Affiliation(s)
- N. Hayati-Roodbari
- Chemistry and Physics of Materials
- University of Salzburg
- 5020 Salzburg
- Austria
| | - R. J. F. Berger
- Chemistry and Physics of Materials
- University of Salzburg
- 5020 Salzburg
- Austria
| | - J. Bernardi
- USTEM
- Technische Universität Wien
- 1040 Vienna
- Austria
| | - S. Kinge
- Toyota Motors Company Europe
- 2000 Antwerp
- Belgium
| | - N. Hüsing
- Chemistry and Physics of Materials
- University of Salzburg
- 5020 Salzburg
- Austria
| | - M. S. Elsaesser
- Chemistry and Physics of Materials
- University of Salzburg
- 5020 Salzburg
- Austria
| |
Collapse
|