1
|
Smith BL, Carlson AB, Fallers MN, Crumplar SS, Zimmermann CS, Mathesius CA, Mukerji P, McNaughton JL, Herman RA. Rodent and broiler feeding studies with maize containing genetically modified event DP-915635-4 show no adverse effects on health or performance. Food Chem Toxicol 2024; 189:114716. [PMID: 38735358 DOI: 10.1016/j.fct.2024.114716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/14/2024]
Abstract
Several regulatory agencies continue to require animal feeding studies to approve new genetically modified crops despite such studies providing little value in the safety assessment. Feeding studies with maize grain containing event DP-915635-4 (DP915635), a new corn rootworm management trait, were conducted to fulfill that requirement. Diets fed to Crl:CD®(SD) rats for 90 days contained up to 50% ground maize grain from DP915635, non-transgenic control, or non-transgenic reference hybrids (P1197, 6158, and 6365). Ross 708 broilers received phase diets containing up to 67% maize grain from each source for 42 days. Growth performance was compared between animals fed DP915635 and control diets; rats were further evaluated for clinical and neurobehavioral measures, ophthalmology, clinical pathology, organ weights, and gross and microscopic pathology, whereas carcass parts and select organ yields were determined for broilers. Reference group inclusion assisted in determining natural variation influence on observed significant differences between DP915635 and control groups. DP915635 maize grain diet consumption did not affect any measure evaluated in either feeding study. Results demonstrated DP-915635-4 maize grain safety and nutritional equivalency when fed in nutritionally adequate diets, adding to the existing literature confirming the lack of significant effects of feeding grain from genetically modified plants.
Collapse
|
2
|
Myths and Realities about Genetically Modified Food: A Risk-Benefit Analysis. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12062861] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The development and consumption of genetically modified (GM) crops are surrounded by controversy. According to proponents, only molecular biology approaches and genetic engineering tools are realistic food shortage solutions for the world’s ever-growing population. The main purpose of this study is to review the impact of GM products on human, animal, and environmental health. People still reject GM crops not only because of safety concerns, but also for moral reasons. Toxicity, allergies, and possible horizontal gene transfer (HGT) to the environment or to other species have been associated with the marketing of GM products. Moreover, the scarce data available about the long-term implications of using GM crops is another opponent concern. Nevertheless, science has evidenced no harm from GM crops use to date but has, instead, reported several benefits that result from their commercialization, such as economic, environmental, and health benefits for the general public. Legislation and policies about GM product labeling standards are being discussed. To overcome emerging food security challenges, considering quality scientific information is essential rather than leaving the issue and merely moving toward moral discussion. Hence, a risk–benefit analysis is necessary.
Collapse
|
3
|
Smith BL, Zimmermann CS, Carlson AB, Mathesius CA, Mukerji P, McNaughton JL, Walker CA, Roper JM. Evaluation of the safety and nutritional equivalency of maize grain with genetically modified event DP-Ø23211-2. GM CROPS & FOOD 2021; 12:396-408. [PMID: 34459369 PMCID: PMC8409786 DOI: 10.1080/21645698.2021.1963614] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 12/01/2022]
Abstract
Feeding studies were conducted with rats and broiler chickens to assess the safety and nutrition of maize grain containing event DP-Ø23211-2 (DP23211), a newly developed trait-pyramid product for corn rootworm management. Diets containing 50% ground maize grain from DP23211, non-transgenic control, or non-transgenic reference hybrids (P0928, P0993, and P1105) were fed to Crl:CD®(SD) rats for 90 days. Ross 708 broilers were fed phase diets containing up to 67% maize grain from each source for 42 days. Body weight, gain, and feed conversion were determined for comparisons between animals fed DP23211 and control diets in each study. Additional measures included clinical and neurobehavioral evaluations, ophthalmology, clinical pathology, organ weights, and gross and microscopic pathology for rats, and carcass parts and select organ yields for broilers. Reference groups were included to determine if any observed significant differences between DP23211 and control groups were likely due to natural variation. No diet-related effects on mortality or evaluation measures were observed between animal fed diets produced with DP23211 maize grain and animal fed diets produced with control maize grain. These studies show that maize grain containing event DP-Ø23211-2 is as safe and nutritious as non-transgenic maize grains when fed in nutritionally adequate diets. The results are consistent with previously published studies, providing further demonstration of the absence of hazards from edible-fraction consumption of genetically modified plants.
Collapse
Affiliation(s)
- Brenda L. Smith
- Regulatory & Stewardship, Corteva Agriscience, Johnston, IA, USA
| | | | - Anne B. Carlson
- Regulatory & Stewardship, Corteva Agriscience, Johnston, IA, USA
| | | | - Pushkor Mukerji
- Regulatory & Stewardship, Corteva Agriscience, Newark, DE, USA
| | | | - Carl A. Walker
- Regulatory & Stewardship, Corteva Agriscience, Johnston, IA, USA
| | - Jason M. Roper
- Regulatory & Stewardship, Corteva Agriscience, Newark, DE, USA
| |
Collapse
|
4
|
Zhong R, Zhang L, Chen L, Yang X, Zhang H. Modulation of cecal microbiota in laying hens via intake of genetically modified corn with the maroACC or mCry1Ac genes. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:5450-5457. [PMID: 32562272 DOI: 10.1002/jsfa.10596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/24/2020] [Accepted: 06/20/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The present study investigated the chronic effect on the composition and proportions of the cecal microbiota of laying hens for 12 weeks after consuming two genetically modified (GM) corns containing the maroACC gene from the Agrobacterium tumefaciens strain (CC) and the mCry1Ac gene from the Bacillus thuringiensis strain (BT) in comparison with the isogenic corn (CT). RESULTS In total, 72 hens were randomly assigned to the CT corn-based diet, CC corn-based diet and BT corn-based diet. The absolute weights of abdominal fat, breast, thigh meat and organ weight were not affected by the dietary treatment. High-throughput 16S rRNA gene sequencing revealed a few differences in the composition of cecal microbiota among the treatments. The only difference with respect to bacterial family was that the cecal abundance of Porphyromonadaceae (3.46 versus 2.11%; P = 0.073) tended to be higher for birds consuming the CC diet than those birds consuming the CT diet. Birds fed the BT diet tended to have a higher abundance of Barnesiella (0.62 versus 0.13%; P = 0.057) and a lower abundance of unclassified Ruminococcaceae (0.64 versus 1.19%; P = 0.097) than those fed the CT diet. Considering beneficial intestinal Barnesiella, this decreases and ultimately clears the colonization of vancomycin-resistant Enterococcus. The unclassified Ruminococcaceae was a low-frequency and low-abundance bacterial taxa and was not associated with intestinal pathology. CONCLUSION These results indicate a similar modulation of cecal microbiota in laying hens by long-term feeding among transgenic CC corn, BT corn and non-transgenic corn and provide data for biosafety evaluation of the transgenic corn. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ruqing Zhong
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lilan Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liang Chen
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoguang Yang
- National Institute of Nutrition and Food Safety, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
5
|
Carlson AB, Mukerji P, Mathesius CA, Huang E, Herman RA, Hoban D, Thurman JD, Roper JM. DP-2Ø2216-6 maize does not adversely affect rats in a 90-day feeding study. Regul Toxicol Pharmacol 2020; 117:104779. [PMID: 32888975 DOI: 10.1016/j.yrtph.2020.104779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/27/2020] [Accepted: 08/30/2020] [Indexed: 10/23/2022]
Abstract
Maize plants containing event DP-2Ø2216-6 (DP202216), which confers herbicide tolerance through expression of phosphinothricin acetyltransferase and enhanced grain yield potential via temporal modulation of the native ZMM28 protein, were developed for commercialization. To address current regulatory expectations, a mandatory 90-day rodent feeding study was conducted to support the safety assessment. Diets containing 50% by weight of ground maize grain from DP202216, non-transgenic control, and 3 non-transgenic reference varieties, were fully characterized, along with the grain, and diets were fed to Crl:CD®(SD) rats for at least 90 days. As anticipated, no biologically-relevant effects or toxicologically-significant differences were observed on survival, body weight/gain, food consumption/efficiency, clinical and neurobehavioral evaluations, ophthalmology, clinical pathology (hematology, coagulation, clinical chemistry, urinalysis), organ weights, or gross and microscopic pathology parameters in rats fed a diet containing up to 50% DP202216 maize grain when compared with rats fed diets containing control or reference maize grains. The results of this study support the conclusion that maize grain from plants containing event DP-2Ø2216-6 is as safe and nutritious as maize grain not containing the event and add to the significant existing database of rodent subchronic studies demonstrating the absence of hazards from consumption of edible fractions of genetically modified plants.
Collapse
Affiliation(s)
- Anne B Carlson
- Corteva Agriscience, 8325 NW 62nd Avenue, Johnston, IA, 50131, USA
| | - Pushkor Mukerji
- Corteva Agriscience, Haskell R&D Center, P.O. Box 20, Newark, DE, 19714, USA
| | | | - Emily Huang
- Corteva Agriscience, 8325 NW 62nd Avenue, Johnston, IA, 50131, USA
| | - Rod A Herman
- Corteva Agriscience, 9330 Zionsville Road, Indianapolis, IN, 46268, USA
| | - Denise Hoban
- Corteva Agriscience, Haskell R&D Center, P.O. Box 20, Newark, DE, 19714, USA
| | - J Dale Thurman
- Corteva Agriscience, Haskell R&D Center, P.O. Box 20, Newark, DE, 19714, USA
| | - Jason M Roper
- Corteva Agriscience, Haskell R&D Center, P.O. Box 20, Newark, DE, 19714, USA.
| |
Collapse
|
6
|
McNaughton J, Roberts M, Smith B, Carlson A, Mathesius C, Roper J, Zimmermann C, Walker C, Huang E, Herman R. Evaluation of broiler performance and carcass yields when fed diets containing maize grain from transgenic product DP-2Ø2216-6. J APPL POULTRY RES 2020. [DOI: 10.1016/j.japr.2020.05.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
7
|
Giraldo PA, Shinozuka H, Spangenberg GC, Cogan NO, Smith KF. Safety Assessment of Genetically Modified Feed: Is There Any Difference From Food? FRONTIERS IN PLANT SCIENCE 2019; 10:1592. [PMID: 31921242 PMCID: PMC6918800 DOI: 10.3389/fpls.2019.01592] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/13/2019] [Indexed: 06/10/2023]
Abstract
Food security is one of major concerns for the growing global population. Modern agricultural biotechnologies, such as genetic modification, are a possible solution through enabling an increase of production, more efficient use of natural resources, and reduced environmental impacts. However, new crop varieties with altered genetic materials may be subjected to safety assessments to fulfil the regulatory requirements, prior to marketing. The aim of the assessment is to evaluate the impact of products from the new crop variety on human, animal, and the environmental health. Although, many studies on the risk assessment of genetically modified (GM) food have been published, little consideration to GM feedstuff has been given, despite that between 70 to 90% of all GM crops and their biomass are used as animal feed. In addition, in some GM plants such as forages that are only used for animal feeds, the assessment of the genetic modification may be of relevance only to livestock feeding. In this article, the regulatory framework of GM crops intended for animal feed is reviewed using the available information on GM food as the baseline. Although, the majority of techniques used for the safety assessment of GM food can be used in GM feed, many plant parts used for livestock feeding are inedible to humans. Therefore, the concentration of novel proteins in different plant tissues and level of exposure to GM feedstuff in the diet of target animals should be considered. A further development of specific methodologies for the assessment of GM crops intended for animal consumption is required, in order to provide a more accurate and standardized assessment to the GM feed safety.
Collapse
Affiliation(s)
- Paula A. Giraldo
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Melbourne, VIC, Australia
- Agriculture Victoria Research, AgriBio, The Centre for AgriBiosciences, Melbourne, VIC, Australia
| | - Hiroshi Shinozuka
- Agriculture Victoria Research, AgriBio, The Centre for AgriBiosciences, Melbourne, VIC, Australia
| | - German C. Spangenberg
- Agriculture Victoria Research, AgriBio, The Centre for AgriBiosciences, Melbourne, VIC, Australia
- School of Applied Systems Biology, La Trobe University, AgriBio, The Centre for AgriBiosciences, Melbourne, VIC, Australia
| | - Noel O.I. Cogan
- Agriculture Victoria Research, AgriBio, The Centre for AgriBiosciences, Melbourne, VIC, Australia
- School of Applied Systems Biology, La Trobe University, AgriBio, The Centre for AgriBiosciences, Melbourne, VIC, Australia
| | - Kevin F. Smith
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Melbourne, VIC, Australia
- Agriculture Victoria Research, Hamilton, VIC, Australia
| |
Collapse
|
8
|
Optimizing the Use of Zebrafish Feeding Trials for the Safety Evaluation of Genetically Modified Crops. Int J Mol Sci 2019; 20:ijms20061472. [PMID: 30909578 PMCID: PMC6471220 DOI: 10.3390/ijms20061472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/23/2019] [Accepted: 03/18/2019] [Indexed: 12/17/2022] Open
Abstract
In Europe, the toxicological safety of genetically modified (GM) crops is routinely evaluated using rodent feeding trials, originally designed for testing oral toxicity of chemical compounds. We aimed to develop and optimize methods for advancing the use of zebrafish feeding trials for the safety evaluation of GM crops, using maize as a case study. In a first step, we evaluated the effect of different maize substitution levels. Our results demonstrate the need for preliminary testing to assess potential feed component-related effects on the overall nutritional balance. Next, since a potential effect of a GM crop should ideally be interpreted relative to the natural response variation (i.e., the range of biological values that is considered normal for a particular endpoint) in order to assess the toxicological relevance, we established natural response variation datasets for various zebrafish endpoints. We applied equivalence testing to calculate threshold equivalence limits (ELs) based on the natural response variation as a method for quantifying the range within which a GM crop and its control are considered equivalent. Finally, our results illustrate that the use of commercial control diets (CCDs) and null segregant (NS) controls (helpful for assessing potential effects of the transformation process) would be valuable additions to GM safety assessment strategies.
Collapse
|
9
|
van der Voet H, Goedhart PW, García-Ruiz E, Escorial C, Tulinská J. Equivalence limit scaled differences for untargeted safety assessments: Comparative analyses to guard against unintended effects on the environment or human health of genetically modified maize. Food Chem Toxicol 2019; 125:540-548. [PMID: 30735753 DOI: 10.1016/j.fct.2019.02.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/01/2019] [Accepted: 02/04/2019] [Indexed: 12/22/2022]
Abstract
Safety assessments guard against unintended effects for human health and the environment. When new products are compared with accepted reference products by broad arrays of measurements, statistical analyses are usually summarised by significance tests or confidence intervals per endpoint. The traditional approach is to test for statistical significance of differences. However, absence or presence of significant differences is not a statement about safety. Equivalence limits are essential for safety assessment. We propose graphs to present the results of equivalence tests over the array of endpoints. It is argued that plots of the equivalence limit scaled difference (ELSD) are preferable over plots of the standardised effect size (SES) used previously for similar assessments. The ELSD method can be used either with externally specified equivalence limits or with equivalence limits estimated from (historical) data. The method is illustrated with two examples: first, environmental safety of MON810 Bt maize was assessed using field trial count data of arthropods; second, human safety of herbicide tolerant NK603 maize was assessed using haematological, biochemical and organ weight data from a 90-day rat feeding study. All assessed endpoints were classified in EFSA equivalence categories I or II, implying full equivalence or equivalence more likely than not.
Collapse
Affiliation(s)
- Hilko van der Voet
- Wageningen University & Research (WUR), Biometris, Droevendaalsesteeg 1, 6708PB, Wageningen, Netherlands.
| | - Paul W Goedhart
- Wageningen University & Research (WUR), Biometris, Droevendaalsesteeg 1, 6708PB, Wageningen, Netherlands
| | - Esteban García-Ruiz
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Plant Protection Department, Ctra. La Coruña Km. 7,5, 28040, Madrid, Spain
| | - Concepción Escorial
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Plant Protection Department, Ctra. La Coruña Km. 7,5, 28040, Madrid, Spain
| | - Jana Tulinská
- Slovak Medical University (SZU), Faculty of Medicine, Limbová 12, 83303, Bratislava, Slovakia
| |
Collapse
|
10
|
Papineni S, Passage JK, Ekmay RD, Thomas J. Evaluation of 30% DAS-444Ø6-6 soybean meal in a subchronic rat toxicity study. Regul Toxicol Pharmacol 2018; 94:57-69. [PMID: 29317244 DOI: 10.1016/j.yrtph.2018.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/18/2017] [Accepted: 01/05/2018] [Indexed: 11/23/2022]
Abstract
Event DAS-444Ø6-6 soybean is genetically modified (GM) to provide tolerance to 2,4-diclorophenoxyacetic acid (2,4-D), glyphosate, and glufosinate herbicides through expression of the AAD-12, 2mEPSPS, and PAT proteins, respectively. DAS-444Ø6-6 soybeans were evaluated for safety in subchronic rat feeding studies. The results from two previous subchronic rat feeding studies evaluating diets formulated with 20% inclusion of DAS-444Ø6-6 soybean meal (the latter also containing DAS-444Ø6-6 derived hulls and oil) did not show any treatment-related adverse effects. In 2017, to comply with recent guidance from EFSA, a third 90-day rat feeding study was conducted with Sprague-Dawley rats (16/sex/group) with diets formulated either with 15% or 30% w/w of toasted DAS-444Ø6-6 soybean meal. DAS-444Ø6-6 soybean hulls and oil were also added to the transgenic test diets at 1% or 2% w/w and 1.35% or 2.7%, respectively, for the low- and high-dose groups. No toxicologically significant effects were observed under the conditions of this study.
Collapse
Affiliation(s)
| | - Julie K Passage
- Toxicology and Environmental Research and Consulting, The Dow Chemical Company, Midland, MI, 48674, USA
| | | | - Johnson Thomas
- Toxicology and Environmental Research and Consulting, The Dow Chemical Company, Midland, MI, 48674, USA
| |
Collapse
|
11
|
van der Voet H. Safety Assessments and Multiplicity Adjustment: Comments on a Recent Paper. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:2194-2195. [PMID: 29455520 PMCID: PMC5843949 DOI: 10.1021/acs.jafc.7b03686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Indexed: 06/08/2023]
|
12
|
Qian Z, Bultman J, Papineni S, He N, Lanigan L, Herman RA, Hard GC. Safety evaluation of DAS-44406-6 soybeans in Wistar rats. Regul Toxicol Pharmacol 2018; 92:152-164. [PMID: 29199065 DOI: 10.1016/j.yrtph.2017.11.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 11/22/2017] [Accepted: 11/27/2017] [Indexed: 12/13/2022]
Abstract
A 90-day in-country feeding trial in Wistar rats was conducted at Tianjin Laboratory in China to assess toxicity of diets containing DAS-44406-6 soybean meal. There were no treatment-related changes observed when compared with the non-GM isoline control groups but histopathologically, 2 of 10 high-dose females were reported to show kidney lesions. However, these findings contrasted with the absence of any treatment-related kidney lesions in 3 separate 90-day toxicity studies previously conducted in Sprague Dawley rats. Strain difference is not expected in the kidney response, and based on the low incidence and contrary evidence from previous studies, it is likely that these lesions were of spontaneous origin, or artefactual. To determine that the lesions observed were not treatment-related in Wistar rats, a specific follow-up confirmatory study was conducted under Good Laboratory Practices (GLP) in the Wistar strain of rats following an identical study design to the Tianjin study. To increase the power of detecting effects, twice the number of animals per group (20/sex/group) were used, and no treatment-related kidney histopathological changes were observed. Based on these results and entire weight of evidence evaluation, it is concluded that the histopathological changes previously noted in the 2 female Wistar rats of Tianjin study were not treatment-related and that DAS-44406-6 soybeans are as safe as conventional non-GM soybeans.
Collapse
Affiliation(s)
- Zhiyong Qian
- Tianjin Centers for Disease Control and Prevention, Tianjin, China
| | - JoAnna Bultman
- Charles River Laboratories International, Inc, United States
| | | | - Ning He
- Tianjin Centers for Disease Control and Prevention, Tianjin, China
| | - Lisa Lanigan
- Charles River Laboratories International, Inc, United States
| | - Rod A Herman
- Dow AgroSciences LLC, Indianapolis, IN 46268, United States
| | | |
Collapse
|
13
|
Li P, Yang C, Yue R, Zhen Y, Zhuo Q, Piao J, Yang X, Xiao R. Modulation of the Fecal Microbiota in Sprague-Dawley Rats Using Genetically Modified and Isogenic Corn Lines. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:551-561. [PMID: 29264925 DOI: 10.1021/acs.jafc.7b05285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This study investigated the composition and proportions of fecal microbiota in Sprague-Dawley rats after consuming two genetically modified (GM) corn lines in comparison with the isogenic corn and the AIN93G standard feed for 10 weeks using bar-coded 16S rRNA gene sequencing. As a result, GM corn did not significantly alter the overall health and alpha-diversity of fecal microbiota. Fecal microbiota structures could be separated into noncorn and corn but not non-GM and GM corn subgroups. Both non-GM and GM corn caused the increase in bacterial populations related to carbohydrates utilization, such as Lactobacillus, Barnesiella, and Bifidobacterium, and the reduction in potentially pathogenic populations, such as Tannerella and Moraxellaceae. In conclusion, similar effects on the fecal microbiota were observed after consuming a GM- and non-GM-corn-based diet for long periods. Further studies are warranted to elucidate the functional relevance of the changes in the proportions of bacterial populations in these diets.
Collapse
Affiliation(s)
- Penggao Li
- School of Public Health, Capital Medical University , Beijing 100069, People's Republic of China
- Beijing Key Laboratory of Environmental Toxicology , Beijing 100069, People's Republic of China
| | - Chun Yang
- School of Public Health, Capital Medical University , Beijing 100069, People's Republic of China
- Beijing Key Laboratory of Environmental Toxicology , Beijing 100069, People's Republic of China
| | - Rong Yue
- Yuncheng Central Hospital, Yuncheng , Shanxi 044000, People's Republic of China
| | - Yaping Zhen
- Youanmen Clinical Detection Center, Capital Medical University , Beijing 100069, People's Republic of China
| | - Qin Zhuo
- Key Laboratory of Trace Element Nutrition NHFPC, Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention , Beijing 100050, People's Republic of China
| | - Jianhua Piao
- Key Laboratory of Trace Element Nutrition NHFPC, Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention , Beijing 100050, People's Republic of China
| | - Xiaoguang Yang
- Key Laboratory of Trace Element Nutrition NHFPC, Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention , Beijing 100050, People's Republic of China
| | - Rong Xiao
- School of Public Health, Capital Medical University , Beijing 100069, People's Republic of China
- Beijing Key Laboratory of Environmental Toxicology , Beijing 100069, People's Republic of China
| |
Collapse
|
14
|
Li L, Chen S, Li X, Wan D, Liu G, Liu Y, Kong X, Xiong X, Wu X, Kim SW, Yin Y. Intestinal microbiota in growing pigs: effects of stocking density. FOOD AGR IMMUNOL 2017. [DOI: 10.1080/09540105.2017.1409195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Lan Li
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Shuai Chen
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Xue Li
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, People’s Republic of China
| | - Dan Wan
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, People’s Republic of China
| | - Gang Liu
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
- Taoyuan Agro-ecosystem Research Station, Soil Molecular Ecology Section, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, People’s Republic of China
| | - Yi Liu
- Taoyuan Agro-ecosystem Research Station, Soil Molecular Ecology Section, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, People’s Republic of China
| | - Xiangfeng Kong
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Xia Xiong
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, People’s Republic of China
| | - Xin Wu
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, People’s Republic of China
| | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, USA
| | - Yulong Yin
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, People’s Republic of China
| |
Collapse
|
15
|
Papineni S, Murray JA, Ricardo E, Dunville CM, Sura RK, Thomas J. Evaluation of the safety of a genetically modified DAS-444Ø6-6 soybean meal and hulls in a 90-day dietary toxicity study in rats. Food Chem Toxicol 2017; 109:245-252. [PMID: 28870685 DOI: 10.1016/j.fct.2017.08.048] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 08/27/2017] [Accepted: 08/30/2017] [Indexed: 01/26/2023]
Abstract
A 90-day sub chronic toxicity study was conducted in rats to evaluate the safety of genetically modified DAS-444Ø6-6 soybeans expressing herbicide tolerant proteins when compared with its conventional comparators (non-transgenic near isoline control soybean and three commercially available non-transgenic line control soybeans). Rats were given diets formulated with either 10% or 20% w/w of soybean meal and 1% or 2% hulls of DAS-444Ø6-6 soybean with an equivalent amount of hulls from an isoline non-transgenic control soybean for at least 90 days. In addition, three separate 20% w/w non-transgenic commercially available soybean varieties were also given to groups of rats to serve as reference controls. Animals were evaluated by cage-side and hand-held detailed clinical observations, ophthalmic examinations, body weights/body weight gains, feed consumption, hematology, prothrombin time, urinalysis, clinical chemistry, selected organ weights, and gross and histopathologic examinations. Under the conditions of this study, the genetically modified DAS-444Ø6-6 diets did not cause any treatment-related effects in rats following 90 days of dietary administration as compared with rats fed diets with soybean of isoline control or commercial reference controls and are considered equivalent to the diets prepared from conventional comparators.
Collapse
Affiliation(s)
| | - Jennifer A Murray
- Toxicology and Environmental Research and Consulting, The Dow Chemical Company, Midland, MI 48674, USA
| | | | | | - Radha Krishna Sura
- Toxicology and Environmental Research and Consulting, The Dow Chemical Company, Midland, MI 48674, USA
| | - Johnson Thomas
- Toxicology and Environmental Research and Consulting, The Dow Chemical Company, Midland, MI 48674, USA
| |
Collapse
|