1
|
Jiang YX, Zhao YN, Yu XL, Yin LM. Ginsenoside Rd Induces Differentiation of Myeloid Leukemia Cells via Regulating ERK/GSK-3β Signaling Pathway. Chin J Integr Med 2024; 30:588-599. [PMID: 38085388 DOI: 10.1007/s11655-023-3561-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2023] [Indexed: 06/28/2024]
Abstract
OBJECTIVE To investigate the role of ginsenoside Rd (GRd) in acute myeloid leukemia (AML) cell differentiation. METHODS AML cells were treated with GRd (25, 50, 100 and 200 µg/mL), retinoic acid (RA, 0.1g/L) and PD98059 (20 mg/mL) for 72 h, cell survival was detected by methylthiazolyldiphenyl-tetrazolium bromide and colony formation assays, and cell cycle was detected by flow cytometry. Cell morphology and differentiation were observed by Wright-Giemsa staining, peroxidase chemical staining and cellular immunochemistry assay, respectively. The protein expression levels of GATA binding protein 1 (GATA-1), purine rich Box-1 (PU.1), phosphorylated-extracellular signal-related kinase (p-ERK), ERK, phosphorylated-glycogen synthase kinase-3β (p-GSK3β), GSK3β and signal transducer and activator of transcription 1 (STAT1) were detected by Western blot. Thirty-six mice were randomly divided into 3 groups using a random number table: model control group (non-treated), GRd group [treated with 200 mg/(kg·d) GRd] and homoharringtonine (HTT) group [treated with 1 mg/(kg·d) HTT]. A tumor-bearing nude mouse model was established, and tumor weight and volume were recorded. Changes of subcutaneous tumor tissue were observed after hematoxylin and eosin staining. WT1 and GATA-1 expressions were detected by immunohistochemical staining. RESULTS The cell survival was inhibited by GRd in a dose-dependent manner and GRd caused G0/G1 cell arrest (p<0.05). GRd treatment induced leukemia cell differentiation, showing increased expressions of peroxidase and specific proteins concerning erythrogenic or granulocytic differentiation (p<0.05). GRd treatment elicited upregulation of p-ERK, p-GSK-3β and STAT1 expressions in cells, and reversed the effects of PD98059 on inhibiting the expressions of peroxidase, GATA-1 and PU.1 (P<0.05). After GRd treatment, tumor weight and volume of mice were decreased, and tumor cells underwent massive apoptosis and necrosis (P<0.05). WT1 level was decreased, and GATA-1 level was significantly increased in subcutaneous tumor tissues (P<0.05 or P<0.01). CONCLUSION GRd might induce the differentiation of AML cells via regulating the ERK/GSK-3β signaling pathway.
Collapse
Affiliation(s)
- Yu-Xia Jiang
- Department of Hematology, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, China
| | - Yan-Na Zhao
- Institute of Hematology Research, the First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310006, China
| | - Xiao-Ling Yu
- Institute of Hematology Research, the First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310006, China
| | - Li-Ming Yin
- Institute of Hematology Research, the First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310006, China.
| |
Collapse
|
2
|
Alghareeb SA, Alsughayyir J, Alfhili MA. Ginsenoside Rh2 Regulates the Calcium/ROS/CK1α/MLKL Pathway to Promote Premature Eryptosis and Hemolysis in Red Blood Cells. Toxicol Pathol 2024; 52:284-294. [PMID: 39148410 DOI: 10.1177/01926233241268846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Ginsenoside Rh2 (GRh2) exhibits significant potential as an anticancer agent; however, progress in developing chemotherapeutic drugs is impeded by their toxicity toward off-target tissues. Specifically, anemia caused by chemotherapy is a debilitating side effect and can be caused by red blood cell (RBC) hemolysis and eryptosis. Cells were exposed to GRh2 in the antitumor range and hemolytic and eryptotic markers were examined under different experimental conditions using photometric and cytofluorimetric methods. GRh2 caused Ca2+-independent, concentration-responsive hemolysis in addition to disrupted ion trafficking with K+ and Cl- leakage. Significant increases in cells positive for annexin-V-fluorescein isothiocyanate, Fluo4, and 2,7-dichlorofluorescein were noted upon GRh2 treatment coupled with a decrease in forward scatter and acetylcholinesterase activity. Importantly, the cytotoxic effects of GRh2 were mitigated by ascorbic acid and by blocking casein kinase 1α (CK1α) and mixed lineage kinase domain-like (MLKL) signaling. In contrast, Ca2+ omission, inhibition of KCl efflux, and isosmotic sucrose aggravated GRh2-induced RBC death. In whole blood, GRh2 selectively targeted reticulocytes and lymphocytes. Altogether, this study identified novel mechanisms underlying GRh2-induced RBC death involving Ca2+ buildup, loss of membrane phospholipid asymmetry and cellular volume, anticholinesterase activity, and oxidative stress. These findings shed light on the hematologic toxicity of GRh2 which is crucial for optimizing its utilization in cancer treatment.
Collapse
Affiliation(s)
- Sumiah A Alghareeb
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Jawaher Alsughayyir
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad A Alfhili
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Dana SMMA, Meghdadi M, Kakhki SK, Khademi R. Anti-leukemia effects of ginsenoside monomer: A narrative review of pharmacodynamics study. CURRENT THERAPEUTIC RESEARCH 2024; 100:100739. [PMID: 38706463 PMCID: PMC11066596 DOI: 10.1016/j.curtheres.2024.100739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 02/12/2024] [Indexed: 05/07/2024]
Abstract
Background Leukemia is a prevalent disease with high mortality and morbidity rates. Current therapeutic approaches are expensive and have side effects. Objective In this investigation, we reviewed studies that investigated the anticancer effects of ginsenoside derivatives against leukemia and also explained the three main Ginsenoside derivatives (ginsenoside Rg3, Rh2, and Rg1) separately. Methods An extensive search was conducted in Pubmed, Web of Science, and Google Scholar and relevant studies that investigated anticancer effects of ginsenoside derivatives against leukemia cancer were extracted and reviewed. Results Preclinical studies reported that ginsenoside derivatives can induce apoptosis, suppress the proliferation of cancer cells, and induce differentiation and cell cycle arrest in leukemia cells. in addition, it can suppress the chemokine activity and extramedullary infiltration of leukemia cells from bone marrow. using herbal medicine and its derivatives is a promising approach to current health problems. Conclusion This review shows that ginsenoside derivatives can potentially suppress the growth of leukemia cells via various pathways and can be applied as a new natural medicine for future clinical research.
Collapse
Affiliation(s)
| | - Mohammadreza Meghdadi
- Department of Hematology and Blood Banking, Faculty of Medical Science, Mashhad University of Medical Science, Mashhad, Iran
| | - Saeed Khayat Kakhki
- Department of Gerontological Nursing, School of Nursing, Social Development and Health Promotion Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Reza Khademi
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Manickasamy MK, Sajeev A, BharathwajChetty B, Alqahtani MS, Abbas M, Hegde M, Aswani BS, Shakibaei M, Sethi G, Kunnumakkara AB. Exploring the nexus of nuclear receptors in hematological malignancies. Cell Mol Life Sci 2024; 81:78. [PMID: 38334807 PMCID: PMC10858172 DOI: 10.1007/s00018-023-05085-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/16/2023] [Accepted: 12/03/2023] [Indexed: 02/10/2024]
Abstract
Hematological malignancies (HM) represent a subset of neoplasms affecting the blood, bone marrow, and lymphatic systems, categorized primarily into leukemia, lymphoma, and multiple myeloma. Their prognosis varies considerably, with a frequent risk of relapse despite ongoing treatments. While contemporary therapeutic strategies have extended overall patient survival, they do not offer cures for advanced stages and often lead to challenges such as acquisition of drug resistance, recurrence, and severe side effects. The need for innovative therapeutic targets is vital to elevate both survival rates and patients' quality of life. Recent research has pivoted towards nuclear receptors (NRs) due to their role in modulating tumor cell characteristics including uncontrolled proliferation, differentiation, apoptosis evasion, invasion and migration. Existing evidence emphasizes NRs' critical role in HM. The regulation of NR expression through agonists, antagonists, or selective modulators, contingent upon their levels, offers promising clinical implications in HM management. Moreover, several anticancer agents targeting NRs have been approved by the Food and Drug Administration (FDA). This review highlights the integral function of NRs in HM's pathophysiology and the potential benefits of therapeutically targeting these receptors, suggesting a prospective avenue for more efficient therapeutic interventions against HM.
Collapse
Affiliation(s)
- Mukesh Kumar Manickasamy
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, 781039, India
| | - Anjana Sajeev
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, 781039, India
| | - Bandari BharathwajChetty
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, 781039, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, 61421, Abha, Saudi Arabia
- BioImaging Unit, Space Research Centre, University of Leicester, Michael Atiyah Building, Leicester, LE1 7RH, UK
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, 61421, Abha, Saudi Arabia
| | - Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, 781039, India
| | - Babu Santha Aswani
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, 781039, India
| | - Mehdi Shakibaei
- Chair of Vegetative Anatomy, Department of Human-Anatomy, Musculoskeletal Research Group and Tumor Biology, Institute of Anatomy, Ludwig-Maximilian-University, 80336, Munich, Germany
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, 781039, India.
| |
Collapse
|
5
|
Meng Z, Tan Y, Duan YL, Li M. Monaspin B, a Novel Cyclohexyl-furan from Cocultivation of Monascus purpureus and Aspergillus oryzae, Exhibits Potent Antileukemic Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1114-1123. [PMID: 38166364 DOI: 10.1021/acs.jafc.3c08187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Natural products are a rich resource for the discovery of innovative drugs. Microbial cocultivation enables discovery of novel natural products through tandem enzymatic catalysis between different fungi. In this study, Monascus purpureus, as a food fermentation strain capable of producing abundant natural products, was chosen as an example of a cocultivation pair strain. Cocultivation screening revealed that M. purpureus and Aspergillus oryzae led to the production of two novel cyclohexyl-furans, Monaspins A and B. Optimization of the cocultivation mode and media enhanced the production of Monaspins A and B to 1.2 and 0.8 mg/L, respectively. Monaspins A and B were structurally elucidated by HR-ESI-MS and NMR. Furthermore, Monaspin B displayed potent antiproliferative activity against the leukemic HL-60 cell line by inducing apoptosis, with a half-maximal inhibitory concentration (IC50) of 160 nM. Moreover, in a mouse leukemia model, Monaspin B exhibited a promising in vivo antileukemic effect by reducing white blood cell, lymphocyte, and neutrophil counts. Collectively, these results indicate that Monaspin B is a promising candidate agent for leukemia therapy.
Collapse
Affiliation(s)
- Zitong Meng
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China
| | - Yingao Tan
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Ya-Li Duan
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Mu Li
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| |
Collapse
|
6
|
Liang J, Tang X, Wan S, Guo J, Zhao P, Lu L. Structure Modification of Ginsenoside Rh 2 and Cytostatic Activity on Cancer Cells. ACS OMEGA 2023; 8:17245-17253. [PMID: 37214689 PMCID: PMC10193561 DOI: 10.1021/acsomega.3c01665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 04/18/2023] [Indexed: 05/24/2023]
Abstract
Ginsenoside Rh2 (Rh2) is one of the most effective anticancer components extracted from red ginseng, but the poor solubility limits its clinical application. In this paper, ginsenoside Rh2 was modified with maleimidocaproic acid or maleimidoundecanoic acid with functional groups at both ends. The structures of derivatives were determined by analysis of 1D and 2D nuclear magnetic resonance, Fourier transform infrared, and high-resolution mass spectrometry. Antiproliferative cell experiments showed that Rh2 modified with maleimidocaproic acid (C-Rh2) displayed higher cytostatic activity against different tumor cells compared with Rh2, while Rh2 modified with maleimidoundecanoic acid (U-Rh2) did not exhibit obvious cytotoxicity. The results suggest that the length of the spacer arm may play an important role in the cytostatic activity of the Rh2 derivatives.
Collapse
|
7
|
Tao T, Zhang P, Zeng Z, Wang M. Advances in autophagy modulation of natural products in cervical cancer. JOURNAL OF ETHNOPHARMACOLOGY 2023; 314:116575. [PMID: 37142142 DOI: 10.1016/j.jep.2023.116575] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/23/2023] [Accepted: 05/01/2023] [Indexed: 05/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Natural products play a critical role in drug development and is emerging as a potential source of biologically active metabolites for therapeutic intervention, especially in cancer therapy. In recent years, there is increasing evidence that many natural products may modulate autophagy through various signaling pathways in cervical cancer. Understanding the mechanisms of these natural products helps to develop medications for cervical cancer treatments. AIM OF THE STUDY In recent years, there is increasing evidence that many natural products may modulate autophagy through various signaling pathways in cervical cancer. In this review, we briefly introduce autophagy and systematically describe several classes of natural products implicated in autophagy modulation in cervical cancer, hoping to provide valuable information for the development of cervical cancer treatments based on autophagy. MATERIALS AND METHODS We searched for studies on natural products and autophagy in cervical cancer on the online database and summarized the relationship between natural products and autophagy modulation in cervical cancer. RESULTS Autophagy is a lysosome-mediated catabolic process in eukaryotic cells that plays an important role in a variety of physiological and pathological processes, including cervical cancer. Abnormal expression of cellular autophagy and autophagy-related proteins has been implicated in cervical carcinogenesis, and human papillomavirus infection can affect autophagic activity. Flavonoids, alkaloids, polyphenols, terpenoids, quinones, and other compounds are important sources of natural products that act as anticancer agents. In cervical cancer, natural products exert the anticancer function mainly through the induction of protective autophagy. CONCLUSIONS The regulation of cervical cancer autophagy by natural products has significant advantages in inducing apoptosis, inhibiting proliferation, and reducing drug resistance in cervical cancer.
Collapse
Affiliation(s)
- Tao Tao
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Ping Zhang
- Department of Obstetrics and Gynecology, Shenyang Women's and Children's Hospital, Shenyang, Liaoning Province, China
| | - Zhi Zeng
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Min Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China.
| |
Collapse
|
8
|
Dual role of NR4A1 in porcine ovarian granulosa cell differentiation and granulosa-lutein cell regression in vitro. Theriogenology 2023; 198:292-304. [PMID: 36634443 DOI: 10.1016/j.theriogenology.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 12/31/2022] [Accepted: 01/02/2023] [Indexed: 01/05/2023]
Abstract
This study aimed to investigate the role of NR4A1 in forskolin (FSK)-induced granulosa cell (GC) differentiation and PGF2α-induced granulosa-lutein cell (GLC) regression. For experiment 1, primary porcine GCs were pre-cultured for 6 d before induced-differentiation by FSK with or without siNR4A1, and changes in GC proliferation, lipid droplets (LDs), and P4 level were detected. For experiment 2, the GLC model was established by FSK as in experiment 1, and then PGF2α was utilized to induce GLC regression with or without siNR4A1, changes in P4 secretion, apoptosis proteins, and associated signaling pathway members were detected. Results showed that in experiment 1, FSK up-regulated NR4A1 expression during GC differentiation and decreased GC proliferation activity, which was reversed by siNR4A1. siNR4A1 inhibited the FSK-induced decreases in Cyclin B1/D1 and CDK1/2 mRNA abundances, and increases in P21/P27 mRNA abundances, and FSK-induced LD accumulation. FSK up-regulated P4 secretion and StAR, CYP11A1 and HSD3B expression, decreased CYP19A1 expression, which were reversed by siNR4A1 except for StAR expression. In experiment 2, PGF2α induced NR4A1 expression and reduced GLC viability, which were reversed by siNR4A1. Compared with PGF2α group, the levels of P4 secretion and StAR expression were higher in PGF2α+siNR4A1 group, while CYP11A1 and HSD3B expressions held at low levels. siNR4A1 inhibited PGF2α-induced expression of apoptosis proteins (caspase3, Bax, Fas, TNFa), ATF3, and phosphorylated MAPKs (ERK1/2, P38, JNK). In summary, NR4A1 is involved in regulating porcine GC differentiation and GLC regression as well as the changes in cell proliferation, apoptosis, steroidogenesis, and MAPK pathways, which provide a theoretical basis for further understanding of the mechanism of porcine luteal formation and regression.
Collapse
|
9
|
The ways for ginsenoside Rh2 to fight against cancer: the molecular evidences in vitro and in vivo. J Ginseng Res 2023; 47:173-182. [PMID: 36926617 PMCID: PMC10014223 DOI: 10.1016/j.jgr.2022.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/30/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022] Open
Abstract
Cancer is a global public health issue that becomes the second primary cause of death globally. Considering the side effects of radio- or chemo-therapy, natural phytochemicals are promising alternatives for therapeutic interventions to alleviate the side effects and complications. Ginsenoside Rh2 (GRh2) is the main phytochemical extracted from Panax ginseng C.A. Meyer with anticancer activity. GRh2 could induce apoptosis and autophagy of cancer cells and inhibit proliferation, metastasis, invasion, and angiogenesis in vitro and in vivo. In addition, GRh2 could be used as an adjuvant to chemotherapeutics to enhance the anticancer effect and reverse the adverse effects. Here we summarized the understanding of the molecular mechanisms underlying the anticancer effects of GRh2 and proposed future directions to promote the development and application of GRh2.
Collapse
|
10
|
Abstract
As a steroid skeleton-based saponin, ginsenoside Rh2 (G-Rh2) is one of the major bioactive ginsenosides from the plants of genus Panax L. Many studies have reported the notable pharmacological activities of G-Rh2 such as anticancer, antiinflammatory, antiviral, antiallergic, antidiabetic, and anti-Alzheimer's activities. Numerous preclinical studies have demonstrated the great potential of G-Rh2 in the treatment of a wide range of carcinomatous diseases in vitro and in vivo. G-Rh2 is able to inhibit proliferation, induce apoptosis and cell cycle arrest, retard metastasis, promote differentiation, enhance chemotherapy and reverse multi-drug resistance against multiple tumor cells. The present review mainly summarizes the anticancer effects and related mechanisms of G-Rh2 in various models as well as the recent advances in G-Rh2 delivery systems and structural modification to ameliorate its anticancer activity and pharmacokinetics characteristics.
Collapse
|
11
|
Alizadeh Zeinabad H, Szegezdi E. TRAIL in the Treatment of Cancer: From Soluble Cytokine to Nanosystems. Cancers (Basel) 2022; 14:5125. [PMID: 36291908 PMCID: PMC9600485 DOI: 10.3390/cancers14205125] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/14/2022] [Accepted: 10/15/2022] [Indexed: 11/23/2022] Open
Abstract
The death ligand tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), a member of the TNF cytokine superfamily, has long been recognized for its potential as a cancer therapeutic due to its low toxicity against normal cells. However, its translation into a therapeutic molecule has not been successful to date, due to its short in vivo half-life associated with insufficient tumor accumulation and resistance of tumor cells to TRAIL-induced killing. Nanotechnology has the capacity to offer solutions to these limitations. This review provides a perspective and a critical assessment of the most promising approaches to realize TRAIL's potential as an anticancer therapeutic, including the development of fusion constructs, encapsulation, nanoparticle functionalization and tumor-targeting, and discusses the current challenges and future perspectives.
Collapse
Affiliation(s)
- Hojjat Alizadeh Zeinabad
- Apoptosis Research Centre, Biomedical Sciences Building, School of Biological and Chemical Sciences, University of Galway, H91 W2TY Galway, Ireland
| | - Eva Szegezdi
- Apoptosis Research Centre, Biomedical Sciences Building, School of Biological and Chemical Sciences, University of Galway, H91 W2TY Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, University of Galway, H91 W2TY Galway, Ireland
| |
Collapse
|
12
|
SAR study of oxidative DIMs analogs targeting the Nur77-mediated apoptotic pathway of cancer cells. Bioorg Chem 2022; 129:106156. [PMID: 36179441 DOI: 10.1016/j.bioorg.2022.106156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/21/2022] [Accepted: 09/12/2022] [Indexed: 11/21/2022]
Abstract
Nur77, an orphan nuclear receptor, is implicated in regulating diverse cellular biological processes including apoptosis and inflammation. We previously identified BI1071 (DIM-C-pPhCF3+MeSO3-), an oxidized methanesulfonate salt of (4-CF3-Ph-C-DIM), was a direct ligand of Nur77, which could activate the Nur77-Bcl-2 apoptotic pathway. To obtain more effective compounds targeting the Nur77-mediated apoptotic pathway, we designed and synthesized a series of BI1071 analogs by introducing various substituent groups in the indolyl-rings of BI1071. Structure-activity relationship study identified A11, B5 and B15 as improved analogs with stronger binding affinity to Nur77 and enhanced apoptotic activity compared to BI1071. Nur77-binding studies demonstrated that A11, B5 and B15 bind to Nur77 with a Kd of 34 nM, 19 nM and 16 nM, respectively. Furthermore, mechanism studies showed that A11, B5 and B15 induced apoptosis through utilizing the Nur77-Bcl-2 pathway.
Collapse
|
13
|
Li Y, Liu J, Wu Y, Li Y, Guo F. Guaiane-type sesquiterpenes from Curcumawenyujin. PHYTOCHEMISTRY 2022; 198:113164. [PMID: 35306002 DOI: 10.1016/j.phytochem.2022.113164] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
Eight undescribed sesquiterpenes including seven guaianes and one pseudoguaiane which were named as wenyujinols A-H, along with ten known guaianes, were isolated from rhizomes of Curcuma wenyujin Y. H. Chen et C. Ling. The structures of wenyujinols A-H were elucidated by 1D and 2D nuclear magnetic resonance (NMR) data, high resolution mass spectrum (HRMS), electronic circular dichroism (ECD) spectra, and X-ray single crystallographic analysis. All of the isolated compounds were evaluated for antioxidant activity via activation of the Nrf2-ARE pathway in human embryonic kidney (HEK) 293 cells, for inhibitory effects on NO production in RAW 264.7 cells, and for cytotoxicity against three human cancer cell lines A549, HL60, and MCF7 in vitro. The results indicated that procurcumenol (50-200 μM) and 9-oxo-neoprocurcumenol (25-200 μM) exhibited antioxidant activity via activation of the Nrf2-ARE pathway in a dose-dependent manner.
Collapse
Affiliation(s)
- Yahui Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China
| | - Jingwen Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China
| | - Yingchun Wu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China
| | - Yiming Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China.
| | - Fujiang Guo
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China.
| |
Collapse
|
14
|
He X, Liao Y, Liu J, Sun S. Research Progress of Natural Small-Molecule Compounds Related to Tumor Differentiation. Molecules 2022; 27:2128. [PMID: 35408534 PMCID: PMC9000768 DOI: 10.3390/molecules27072128] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 11/25/2022] Open
Abstract
Tumor differentiation is a therapeutic strategy aimed at reactivating the endogenous differentiation program of cancer cells and inducing cancer cells to mature and differentiate into other types of cells. It has been found that a variety of natural small-molecule drugs can induce tumor cell differentiation both in vitro and in vivo. Relevant molecules involved in the differentiation process may be potential therapeutic targets for tumor cells. Compared with synthetic drugs, natural small-molecule antitumor compounds have the characteristics of wide sources, structural diversity and low toxicity. In addition, natural drugs with structural modification and transformation have relatively concentrated targets and enhanced efficacy. Therefore, using natural small-molecule compounds to induce malignant cell differentiation represents a more targeted and potential low-toxicity means of tumor treatment. In this review, we focus on natural small-molecule compounds that induce differentiation of myeloid leukemia cells, osteoblasts and other malignant cells into functional cells by regulating signaling pathways and the expression of specific genes. We provide a reference for the subsequent development of natural small molecules for antitumor applications and promote the development of differentiation therapy.
Collapse
Affiliation(s)
- Xiaoli He
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha 410078, China; (X.H.); (Y.L.)
- Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha 410078, China
| | - Yongkang Liao
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha 410078, China; (X.H.); (Y.L.)
- Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha 410078, China
| | - Jing Liu
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha 410078, China; (X.H.); (Y.L.)
- Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha 410078, China
| | - Shuming Sun
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha 410078, China; (X.H.); (Y.L.)
- Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha 410078, China
| |
Collapse
|
15
|
Hu H, Huang J, Cao Y, Zhang Z, He F, Lin X, Wu Q, Zhao S. Synthesis and Biological Evaluation of 1-(2-(6-Methoxynaphthalen-2-yl)-6-methylnicotinoyl)-4-Substituted Semicarbazides/Thiosemicarbazides as Anti-Tumor Nur77 Modulators. Molecules 2022; 27:1698. [PMID: 35268797 PMCID: PMC8911927 DOI: 10.3390/molecules27051698] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/23/2022] [Accepted: 03/01/2022] [Indexed: 11/17/2022] Open
Abstract
Nur77 is an orphan nuclear receptor that participates in the occurrence and development of a variety of tumors. Many agonists of Nur77 have been reported to have significant anticancer effects. Our previous studies have found that the introduction of bicyclic aromatic rings, such as naphthalyl and quinoline groups, into the N'-methylene position of indoles' Nur77 modulators can effectively improve the anti-tumor activity of the target compounds. Following our previous studies, a series of novel 1-(2-(6-methoxynaphthalen-2-yl)-6-methylnicotinoyl)-4-substituted semicarbazide/thiosemicarbazide derivatives 9a-9w were designed and synthesized in four steps from 6-methoxy-2-acetonaphthone and N-dimethylformamide dimethylacetal. All compounds were characterized by 1H-NMR, 13C-NMR and HRMS, and their anti-tumor activity on various cancer cell lines such as A549, HepG2, HGC-27, MCF-7 and HeLa are also evaluated. From the series of compounds, 9h exhibited the most potent anti-proliferative activity against several cancer cells. Colony formation and cell cycle experiments showed that compound 9h inhibited cell growth and arrested the cell cycle. Additionally, 9h leads to the cleavage of PARP. We initially explored the mechanism of 9h-induced apoptosis and found that compound 9h can upregulate Nur77 expression and triggered Nur77 nuclear export, indicating the occurrence of Nur77-mediated apoptosis. These results suggested that 9h may be a promising anti-tumor leading compound for the further research.
Collapse
Affiliation(s)
- Hongyu Hu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China; (H.H.); (X.L.)
- College of Science and Technology, Ningbo University, Cixi 315302, China
- School of Pharmaceutical Sciences, Xiamen University, South Xiang-An Road, Xiamen 361102, China; (J.H.); (Y.C.); (F.H.)
- Xingzhi College, Zhejiang Normal University, Lanxi 321004, China;
- Zhejiang Apeloa Kangyu Pharmaceutical Co., Ltd., Dongyang 322118, China
| | - Jiangang Huang
- School of Pharmaceutical Sciences, Xiamen University, South Xiang-An Road, Xiamen 361102, China; (J.H.); (Y.C.); (F.H.)
| | - Yin Cao
- School of Pharmaceutical Sciences, Xiamen University, South Xiang-An Road, Xiamen 361102, China; (J.H.); (Y.C.); (F.H.)
| | - Zhaolin Zhang
- Xingzhi College, Zhejiang Normal University, Lanxi 321004, China;
| | - Fengming He
- School of Pharmaceutical Sciences, Xiamen University, South Xiang-An Road, Xiamen 361102, China; (J.H.); (Y.C.); (F.H.)
| | - Xianfu Lin
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China; (H.H.); (X.L.)
| | - Qi Wu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China; (H.H.); (X.L.)
| | - Shengxian Zhao
- College of Science and Technology, Ningbo University, Cixi 315302, China
- Zhejiang Apeloa Kangyu Pharmaceutical Co., Ltd., Dongyang 322118, China
| |
Collapse
|
16
|
Li Y, Wang H, Wang H, Wu Y, Li Y, Guo F. Nine new sesquiterpenes from Curcuma wenyujin rhizomes. Fitoterapia 2022; 158:105167. [DOI: 10.1016/j.fitote.2022.105167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 11/04/2022]
|
17
|
He H, Wang C, Liu G, Ma H, Jiang M, Li P, Lu Q, Li L, Qi H. Isobavachalcone inhibits acute myeloid leukemia: Potential role for ROS-dependent mitochondrial apoptosis and differentiation. Phytother Res 2021; 35:3337-3350. [PMID: 33624885 DOI: 10.1002/ptr.7054] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 01/19/2021] [Accepted: 02/05/2021] [Indexed: 12/29/2022]
Abstract
Isobavachalcone (IBC) has been shown to induce apoptosis and differentiation of acute myeloid leukemia (AML) cells. However, the underlying molecular mechanisms are not fully understood. Herein, IBC exhibited significant inhibition on the cell viability, proliferation, and the colony formation ability of AML cells. Moreover, IBC induced mitochondrial apoptosis evidenced by reduced mitochondrial membrane potential, increased Bax level, decreased Bcl-2, Bcl-xL, and Mcl-1 levels, elevated cytochrome c level in the cytosol and increased cleavage of caspase-9, caspase-3, and PARP. Furthermore, IBC obviously promoted the differentiation of AML cells, accompanied by the increase of the phosphorylation of MEK and ERK and the C/EBPα expression as well as the C/EBPβ LAP/LIP isoform ratio, which was significantly reversed by U0126, a specific inhibitor of MEK. Notably, IBC enhanced the intracellular ROS level. More importantly, IBC-induced apoptosis and differentiation of HL-60 cells were significantly mitigated by NAC. In addition, IBC also exhibited an obvious anti-AML effect in NOD/SCID mice with the engraftment of HL-60 cells. Together, our study suggests that the ROS-medicated signaling pathway is highly involved in IBC-induced apoptosis and differentiation of AML cells.
Collapse
Affiliation(s)
- Hui He
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Chengqiang Wang
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Gen Liu
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Haoyue Ma
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Mingdong Jiang
- Radiotherapy Department, Chongqing Ninth People's Hospital, Chongqing, China
| | - Pan Li
- Radiotherapy Department, Chongqing Ninth People's Hospital, Chongqing, China
| | - Qianwei Lu
- Radiotherapy Department, Chongqing Ninth People's Hospital, Chongqing, China
| | - Li Li
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Hongyi Qi
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| |
Collapse
|
18
|
Wang C, Liu G, Dou G, Yang Y, Chen L, Ma H, Jiang Z, Ma H, Li C, Li L, Jiang M, Lu Q, Li P, Qi H. Z-Ligustilide Selectively Targets AML by Restoring Nuclear Receptors Nur77 and NOR-1-mediated Apoptosis and Differentiation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 82:153448. [PMID: 33421904 DOI: 10.1016/j.phymed.2020.153448] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 11/12/2020] [Accepted: 12/22/2020] [Indexed: 05/27/2023]
Abstract
BACKGROUND Acute myeloid leukemia (AML) is a devastating hematologic malignancy with a high mortality. The nuclear receptors Nur77 and NOR-1 are commonly downregulated in human AML blasts and have emerged as key therapeutic targets for AML. METHODS This study aimed to identify Z-ligustilide (Z-LIG), the main phthalide of Rhizoma Chuanxiong, as a potential agent that can selectively target AML. The anti-AML activity of Z-LIG was evaluated in vitro and in vivo, and the effect and underlying mechanisms of Z-LIG on the restoration of Nur77 and NOR-1 was determined. Moreover, the role of Nur77 and NOR-1 in the regulation of Z-LIG-induced apoptosis and differentiation of AML cells was explored. RESULTS Z-LIG preferentially inhibited the viability of human AML cells, as well as suppressed the proliferation and colony formation ability. Notably, a concentration-dependent dual effect of Z-LIG was observed in AML cells: inducing apoptosis at relatively high concentrations (25 μM to 100 μM) and promoting differentiation at relatively low concentrations (10 μM and 25 μM). Importantly, Z-LIG restored Nur77 and NOR-1 expression in AML cells by increasing Ace-H3 (lys9/14) enrichment in their promoters. Meanwhile, Z-LIG enhanced the recruitment of p300 and reduced the recruitment of HDAC1, HDAC4/5/7, and MTA1 in the Nur77 promoter and enhanced the recruitment of p-CREB and reduced HDAC1 and HDAC3 in the NOR-1 promoter. Furthermore, Z-LIG-induced apoptosis was shown to be correlated with the mitochondria localization of Nur77/NOR-1 and subsequent Bcl-2 conformational change, converting Bcl-2 from a cyto-protective phenotype into a cyto-destructive phenotype. Z-LIG-promoted differentiation was found to be related to Nur77/NOR-1-mediated myeloid differentiation-associated transcription factors Jun B, c-Jun, and C/EBPβ. Finally, silencing of Nur77 and NOR-1 attenuated anti-AML activity of Z-LIG in NOD/SCID mice. CONCLUSIONS Our study suggests that Z-LIG may serve as a novel bifunctional agent for AML by restoring Nur77/NOR-1-mediated apoptosis and differentiation.
Collapse
Affiliation(s)
- Chengqiang Wang
- College of Pharmaceutical Sciences & College of Chinese Medicine, Southwest University, Chongqing 400715, China
| | - Gen Liu
- College of Pharmaceutical Sciences & College of Chinese Medicine, Southwest University, Chongqing 400715, China
| | - Guojun Dou
- College of Pharmaceutical Sciences & College of Chinese Medicine, Southwest University, Chongqing 400715, China
| | - Yi Yang
- College of Pharmaceutical Sciences & College of Chinese Medicine, Southwest University, Chongqing 400715, China
| | - Lu Chen
- College of Pharmaceutical Sciences & College of Chinese Medicine, Southwest University, Chongqing 400715, China
| | - Hui Ma
- College of Pharmaceutical Sciences & College of Chinese Medicine, Southwest University, Chongqing 400715, China
| | - Zhuyun Jiang
- College of Pharmaceutical Sciences & College of Chinese Medicine, Southwest University, Chongqing 400715, China
| | - Haoyue Ma
- College of Pharmaceutical Sciences & College of Chinese Medicine, Southwest University, Chongqing 400715, China
| | - Chenglong Li
- Department of Hematology, Sichuan Provincial People's Hospital, Chengdu 610212, Sichuan, China
| | - Li Li
- College of Pharmaceutical Sciences & College of Chinese Medicine, Southwest University, Chongqing 400715, China
| | - Mingdong Jiang
- Department of Oncology and Hematology, Chongqing Ninth People's Hospital, Jialing Village 69, Beibei District, Chongqing 400700, China
| | - Qianwei Lu
- Department of Oncology and Hematology, Chongqing Ninth People's Hospital, Jialing Village 69, Beibei District, Chongqing 400700, China
| | - Pan Li
- Department of Oncology and Hematology, Chongqing Ninth People's Hospital, Jialing Village 69, Beibei District, Chongqing 400700, China
| | - Hongyi Qi
- College of Pharmaceutical Sciences & College of Chinese Medicine, Southwest University, Chongqing 400715, China.
| |
Collapse
|
19
|
Wang J, Bian S, Wang S, Yang S, Zhang W, Zhao D, Liu M, Bai X. Ginsenoside Rh2 represses autophagy to promote cervical cancer cell apoptosis during starvation. Chin Med 2020; 15:118. [PMID: 33292331 PMCID: PMC7661217 DOI: 10.1186/s13020-020-00396-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 10/19/2020] [Indexed: 12/18/2022] Open
Abstract
Background Cancer cells through autophagy-mediated recycling to meet the metabolic demands of growth and proliferation. The steroidal saponin 20(S)-ginsenoside Rh2 effectively inhibits the growth and survival of a variety of tumor cell lines and animal models, but the effects of Rh2 on autophagy remain elusive. Methods Cell viability was measured by CCK-8 (cell counting kit-8) assays. Apoptosis, ROS generation and mitochondrial membrane potential were analyzed by flow cytometry. Western blot analyses were used to determine changes in protein levels. Morphology of apoptotic cells and autophagosome accumulation were analyzed by DAPI staining and transmission electron microscopy. Autophagy induction was monitored by acidic vesicular organelle staining, EGFP-LC3 and mRFP-GFP-LC3 transfection. Atg7 siRNA and autophagy regulator was used to assess the effect of autophagy on apoptosis induced by G-Rh2. Results In this study, we found that low concentration G-Rh2 attenuated cancer cell growth and induced apoptosis upon serum-free starvation. Caspase 3 inhibitors failed to block apoptosis in G-Rh2-treated cells, indicating a caspase-independent mechanism. G-Rh2-treated cells in serum-deprived conditions showed impaired mitochondrial function, increased release and nuclear translocation of apoptosis-inducing factor, but little changes in the mitochondrial and cytoplasmic distributions of cytochrome C. Annexin A2 overexpression in 293T cells inhibited G-Rh2-induced apoptosis under serum-starved conditions. Meanwhile, G-Rh2 reduced lysosomal activity and inhibited the fusion of autophagosome and lysosome, leading to a block of autophagic flux. Knockdown Atg7 significantly inhibited autophagy and triggered AIF-induced apoptosis in serm free condition. The autophagy inducer significantly decreased the apoptosis levels of G-Rh2-treated cells in serum-free conditions. Conclusions Under nutrient deficient conditions, G-Rh2 represses autophagy in cervical cancer cells and enhanced apoptosis through an apoptosis-inducing factor mediated pathway.
Collapse
Affiliation(s)
- Jiawen Wang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Boshuo Road 1035, Changchun, 130117, Jilin, People's Republic of China
| | - Shuai Bian
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Boshuo Road 1035, Changchun, 130117, Jilin, People's Republic of China
| | - Siming Wang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Boshuo Road 1035, Changchun, 130117, Jilin, People's Republic of China
| | - Song Yang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Boshuo Road 1035, Changchun, 130117, Jilin, People's Republic of China
| | - Wanying Zhang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Boshuo Road 1035, Changchun, 130117, Jilin, People's Republic of China
| | - Daqing Zhao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Boshuo Road 1035, Changchun, 130117, Jilin, People's Republic of China
| | - Meichen Liu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Boshuo Road 1035, Changchun, 130117, Jilin, People's Republic of China.
| | - Xueyuan Bai
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Boshuo Road 1035, Changchun, 130117, Jilin, People's Republic of China.
| |
Collapse
|
20
|
Yu Z, Li L, Wang C, He H, Liu G, Ma H, Pang L, Jiang M, Lu Q, Li P, Qi H. Cantharidin Induces Apoptosis and Promotes Differentiation of AML Cells Through Nuclear Receptor Nur77-Mediated Signaling Pathway. Front Pharmacol 2020; 11:1321. [PMID: 32982739 PMCID: PMC7485522 DOI: 10.3389/fphar.2020.01321] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 08/07/2020] [Indexed: 01/24/2023] Open
Abstract
Background Acute myeloid leukemia (AML) is a hematopoietic malignancy characterized by uncontrolled proliferation and accumulation of myeloblasts in the bone marrow (BM), blood, and other organs. The nuclear receptors Nur77 is a common feature in leukemic blasts and has emerged as a key therapeutic target for AML. Cantharidin (CTD), a main medicinal component of Mylabris (blister beetle), exerts an anticancer effect in multiple types of cancer cells. Purpose This study aims to characterize the anti-AML activity of CTD in vitro and in vivo and explore the potential role of Nur77 signaling pathway. Study Design/Methods The inhibition of CTD on cell viability was performed in different AML cells, and then the inhibition of CTD on proliferation and colony formation was detected in HL-60 cells. Induction of apoptosis and promotion of differentiation by CTD were further determined. Then, the potential role of Nur77 signaling pathway was assessed. Finally, anti-AML activity was evaluated in NOD/SCID mice. Results In our study, CTD exhibited potent inhibition on cell viability and colony formation ability of AML cells. Moreover, CTD significantly induced the apoptosis, which was partially reversed by Z-VAD-FMK. Meanwhile, CTD promoted the cleavage of caspases 8, 3 and PARP in HL-60 cells. Furthermore, CTD obviously suppressed the proliferation and induced the cell cycle arrest of HL-60 cells at G2/M phase. Meanwhile, CTD effectively promoted the differentiation of HL-60 cells. Notably, CTD transiently induced the expression of Nur77 protein. Interestingly, CTD promoted Nur77 translocation from the nucleus to the mitochondria and enhanced the interaction between Nur77 and Bcl-2, resulting in the exposure of the BH3 domain of Bcl-2, which is critical for the conversion of Bcl-2 from an antiapoptotic to a proapoptotic protein. Importantly, silencing of Nur77 attenuated CTD-induced apoptosis, reversed CTD-mediated cell cycle arrest and differentiation of HL-60 cells. Additionally, CTD also exhibited an antileukemic effect in NOD/SCID mice with the injection of HL-60 cells into the tail vein. Conclusions Our studies suggest that Nur77-mediated signaling pathway may play a critical role in the induction of apoptosis and promotion of differentiation by CTD on AML cells.
Collapse
Affiliation(s)
- Zanyang Yu
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Li Li
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Chengqiang Wang
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Hui He
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Gen Liu
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Haoyue Ma
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Lei Pang
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Mingdong Jiang
- Radiotherapy Department, Chongqing Ninth People's Hospital, Chongqing, China
| | - Qianwei Lu
- Radiotherapy Department, Chongqing Ninth People's Hospital, Chongqing, China
| | - Pan Li
- Radiotherapy Department, Chongqing Ninth People's Hospital, Chongqing, China
| | - Hongyi Qi
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| |
Collapse
|
21
|
Li X, Chu S, Lin M, Gao Y, Liu Y, Yang S, Zhou X, Zhang Y, Hu Y, Wang H, Chen N. Anticancer property of ginsenoside Rh2 from ginseng. Eur J Med Chem 2020; 203:112627. [PMID: 32702586 DOI: 10.1016/j.ejmech.2020.112627] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/26/2020] [Accepted: 06/26/2020] [Indexed: 12/20/2022]
Abstract
Ginseng has been used as a well-known traditional Chinese medicine since ancient times. Ginsenosides as its main active constituents possess a broad scope of pharmacological properties including stimulating immune function, enhancing cardiovascular health, increasing resistance to stress, improving memory and learning, developing social functioning and mental health in normal persons, and chemotherapy. Ginsenoside Rh2 (Rh2) is one of the major bioactive ginsenosides from Panax ginseng. When applied to cancer treatment, Rh2 not only exhibits the anti-proliferation, anti-invasion, anti-metastasis, induction of cell cycle arrest, promotion of differentiation, and reversal of multi-drug resistance activities against multiple tumor cells, but also alleviates the side effects after chemotherapy or radiotherapy. In the past decades, nearly 200 studies on Rh2 in the treatment of cancer have been published, however no specific reviews have been conducted by now. So the purpose of this review is to provide a systematic summary and analysis of the anticancer effects and the potential mechanisms of Rh2 extracted from Ginseng then give a future prospects about it. In the end of this paper the metabolism and derivatives of Rh2 also have been documented.
Collapse
Affiliation(s)
- Xun Li
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, PR China; Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, 410208, PR China; Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, PR China
| | - Shifeng Chu
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, PR China
| | - Meiyu Lin
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, PR China
| | - Yan Gao
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, PR China
| | - Yingjiao Liu
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, PR China
| | - Songwei Yang
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, PR China
| | - Xin Zhou
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, PR China
| | - Yani Zhang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, PR China; Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510405, PR China
| | - Yaomei Hu
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, PR China
| | - Huiqin Wang
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, PR China
| | - Naihong Chen
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, PR China; Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, 410208, PR China; Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, PR China; Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, PR China; Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510405, PR China.
| |
Collapse
|
22
|
Zhu S, Liu X, Xue M, Li Y, Cai D, Wang S, Zhang L. 20( S)-ginsenoside Rh2 induces caspase-dependent promyelocytic leukemia-retinoic acid receptor A degradation in NB4 cells via Akt/Bax/caspase9 and TNF-α/caspase8 signaling cascades. J Ginseng Res 2020; 45:295-304. [PMID: 33841010 PMCID: PMC8020289 DOI: 10.1016/j.jgr.2020.05.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 03/20/2020] [Accepted: 05/07/2020] [Indexed: 12/03/2022] Open
Abstract
Background Acute promyelocytic leukemia (APL) is a hematopoietic malignancy driven by promyelocytic leukemia–retinoic acid receptor A (PML-RARA) fusion gene. The therapeutic drugs currently used to treat APL have adverse effects. 20(S)-ginsenoside Rh2 (GRh2) is an anticancer medicine with high effectiveness and low toxicity. However, the underlying anticancer mechanisms of GRh2-induced PML-RARA degradation and apoptosis in human APL cell line (NB4 cells) remain unclear. Methods Apoptosis-related indicators and PML-RARA expression were determined to investigate the effect of GRh2 on NB4 cells. Z-VAD-FMK, LY294002, and C 87, as inhibitors of caspase, and the phosphatidylinositol 3-kinase (PI3K) and tumor necrosis factor-α (TNF-α ) pathways were used to clarify the relationship between GRh2-induced apoptosis and PML-RARA degradation. Results GRh2 dose- and time-dependently decreased NB4 cell viability. GRh2-induced apoptosis, cell cycle arrest, and caspase3, caspase8, and caspase9 activation in NB4 cells after a 12-hour treatment. GRh2-induced apoptosis in NB4 cells was accompanied by massive production of reactive oxygen species, mitochondrial damage and upregulated Bax/Bcl-2 expression. GRh2 also induced PML/PML-RARA degradation, PML nuclear bodies formation, and activation of the downstream p53 pathway in NB4 cells. Z-VAD-FMK inhibited caspase activation and significantly reversed GRh2-induced apoptosis and PML-RARA degradation. GRh2 also upregulated TNF-α expression and inhibited Akt phosphorylation. LY294002, an inhibitor of the PI3K pathway, enhanced the antitumor effects of GRh2, and C 87, an inhibitor of the TNF-α pathway, reversed NB4 cell viability, and GRh2-mediated apoptosis in a caspase-8-dependent manner. Conclusion GRh2 induced caspase-dependent PML-RARA degradation and apoptosis in NB4 cells via the Akt/Bax/caspase9 and TNF-α/caspase8 pathways.
Collapse
Affiliation(s)
- Sirui Zhu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, PR China
| | - Xiaoli Liu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, PR China
| | - Mei Xue
- College of Basic Medical Sciences, Institute of TCM-related Comorbid Depression, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, PR China
| | - Yu Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, PR China
| | - Danhong Cai
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, PR China
| | - Shijun Wang
- Shandong co-innovation center of TCM formula, College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250035, PR China
| | - Liang Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, PR China
- Corresponding author. Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, PR China.
| |
Collapse
|
23
|
DT-13 induced apoptosis and promoted differentiation of acute myeloid leukemia cells by activating AMPK-KLF2 pathway. Pharmacol Res 2020; 158:104864. [PMID: 32416217 DOI: 10.1016/j.phrs.2020.104864] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/08/2020] [Accepted: 04/24/2020] [Indexed: 02/08/2023]
Abstract
Acute myeloid leukemia (AML) is a malignant disease originating from hematopoietic stem cells (HSC). Chemotherapy and/or HSC transplantation is unsatisfactory due to serious side effects, multidrug resistance, and high relapse rate. Thus, alternative strategies are urgently needed to develop more effective therapies. Liriope muscari baily saponins C (DT-13) is a novel compound isolated from Liriope muscari (Decne.) Baily, and exhibited a potent cytotoxicity against several solid tumors. However, the anti-AML activity of DT-13 and the potential mechanisms are still unknown. This study is the first to demonstrate that DT-13 had preferential cytotoxicity against AML cells, and remarkably inhibited proliferation and colony forming ability. Moreover, DT-13 induced the death receptor pathway-dependent apoptosis of HL-60 and Kasumi-1 cells by up-regulating Fas, FasL, DR5 and TRAIL as well as promoted the cleavage of caspase 8, caspase 3 and PARP. Meanwhile, DT-13 induced the differentiation with morphological change related to myeloid differentiation, elevated NBT and α-NAE positive cell rates, differentiation markers CD11b and CD14 as well as level of transcription factors C/EBPα and C/EBPβ. RNA-sequencing analysis revealed that KLF2 may be one of the potential targets regulated by DT-13. Further studies indicated that KLF2 played a critical role in DT-13-induced apoptosis and differentiation. Moreover, activation of AMPK-FOXO was proved to be the upstream of KLF2 pathway that contributed to the induction of apoptosis and differentiation by DT-13. Additionally, restoration of KLF2 by DT-13 was highly correlated with the AMPK-related histone acetylation mechanisms. Finally, DT-13 exhibited an obvious anti-AML effect in NOD/SCID mice with the engraftment of HL-60 cells. Our study suggests that DT-13 may serve as a novel agent for AML by AMPL-KLF2-mediated apoptosis and differentiation.
Collapse
|
24
|
Wang Z, Liu W, Wang L, Gao P, Li Z, Wu J, Zhang H, Wu H, Kong W, Yu B, Yu X. Enhancing the antitumor activity of an engineered TRAIL-coated oncolytic adenovirus for treating acute myeloid leukemia. Signal Transduct Target Ther 2020; 5:40. [PMID: 32327638 PMCID: PMC7181830 DOI: 10.1038/s41392-020-0135-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 02/10/2020] [Accepted: 02/15/2020] [Indexed: 12/12/2022] Open
Abstract
The use of oncolytic viruses has emerged as a promising therapeutic approach due to the features of these viruses, which selectively replicate and destroy tumor cells while sparing normal cells. Although numerous oncolytic viruses have been developed for testing in solid tumors, only a few have been reported to target acute myeloid leukemia (AML) and overall patient survival has remained low. We previously developed the oncolytic adenovirus rAd5pz-zTRAIL-RFP-SΔ24E1a (A4), which carries the viral capsid protein IX linked to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and results in increased infection of cancer cells and improved tumor targeting. To further improve the therapeutic potential of A4 by enhancing the engagement of virus and leukemia cells, we generated a new version of A4, zA4, by coating A4 with additional soluble TRAIL that is fused with a leucine zipper-like dimerization domain (zipper). ZA4 resulted in enhanced infectivity and significant inhibition of the proliferation of AML cells from cell lines and primary patient samples that expressed moderate levels of TRAIL-related receptors. ZA4 also elicited enhanced anti-AML activity in vivo compared with A4 and an unmodified oncolytic adenoviral vector. In addition, we found that the ginsenoside Rh2 upregulated the expression of TRAIL receptors and consequently enhanced the antitumor activity of zA4. Our results indicate that the oncolytic virus zA4 might be a promising new agent for treating hematopoietic malignancies such as AML.
Collapse
Affiliation(s)
- Zixuan Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Wenmo Liu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Lizheng Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Peng Gao
- Department of Hematology, Jilin Province People's Hospital, Changchun, 130021, China
| | - Zhe Li
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Jiaxin Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Haihong Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Hui Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Wei Kong
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China.,Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Bin Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China.
| | - Xianghui Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China. .,Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China.
| |
Collapse
|
25
|
Ma HY, Wang CQ, He H, Yu ZY, Tong Y, Liu G, Yang YQ, Li L, Pang L, Qi HY. Ethyl acetate extract of Caesalpinia sappan L. inhibited acute myeloid leukemia via ROS-mediated apoptosis and differentiation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 68:153142. [PMID: 32045840 DOI: 10.1016/j.phymed.2019.153142] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 12/01/2019] [Accepted: 12/03/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND The dried heartwood of Caesalpinia sappan L. is traditionally prescribed in the formula of traditional Chinese medicine (TCM) for the treatment of acute myeloid leukemia (AML), while nothing is yet known of the active fractions and the underlying mechanisms. PURPOSE This study aims to investigate the effect of the ethyl acetate extract of the dried heartwood of Caesalpinia sappan L. (C-A-E) on induction of apoptosis and promotion of differentiation in vitro and anti-AML activity in vivo. STUDY DESIGN/METHODS The aqueous extract was sequentially separated with solvents of increasing polarity and the active fraction was determined through the inhibition potency. The inhibition of the active fraction on cell viability, proliferation and colony formation was performed in different AML cells. Induction of apoptosis and the promotion of differentiation were further determined. Then, the level of the reactive oxygen species (ROS) and its potential role were assessed. Finally, anti-AML activity was evaluated in NOD/SCID mice. RESULTS C-A-E exhibited the highest inhibition on the cell viability of HL-60 cells. Meanwhile, C-A-E significantly suppressed the proliferation and the colony formation ability of HL-60 and Kasumi-1 cells. Moreover, C-A-E significantly induced the apoptosis, which was partially reversed by Z-VAD-FMK. C-A-E also reduced the level of mitochondrial membrane potential, promoted the release of cytochrome C, decreased the Bcl-2/Bax ratio, and promoted the cleavage of caspase-9 and -3. In addition, Mdivi-1 (mitochondrial fission blocker) remarkably reduced the apoptosis caused by C-A-E. Meanwhile, C-A-E also induced the expression of Mff and Fis1 and increased the location of Drp1 in mitochondria. Furthermore, C-A-E obviously promoted the differentiation of AML cells characterized by the typic morphological changes, the increased NBT positive cells, as well as the increased CD11b and CD14 levels. Notably, C-A-E significantly enhanced the intracellular ROS level. Moreimportantly, C-A-E-mediated apoptosis and differentiation of HL-60 cells was significantly mitigated by NAC. Additionally, C-A-E also exhibited an obvious anti-AML effect in NOD/SCID mice with the injection of HL-60 cells. CONCLUSIONS C-A-E exhibited an inhibitory effect on AML cells by inducing mitochondrial apoptosis and promoting differentiation, both of which were highly correlated to the activation of ROS.
Collapse
MESH Headings
- Acetates/chemistry
- Animals
- Antineoplastic Agents, Phytogenic/chemistry
- Antineoplastic Agents, Phytogenic/pharmacology
- Apoptosis/drug effects
- CD11b Antigen/metabolism
- Caesalpinia/chemistry
- Cell Differentiation/drug effects
- HL-60 Cells
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Lipopolysaccharide Receptors/metabolism
- Membrane Potential, Mitochondrial/drug effects
- Mice, Inbred NOD
- Mice, SCID
- Plant Extracts/pharmacology
- Reactive Oxygen Species/metabolism
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Hao-Yue Ma
- College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Road, Beibei District, Chongqing 400716, China
| | - Cheng-Qiang Wang
- College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Road, Beibei District, Chongqing 400716, China
| | - Hui He
- College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Road, Beibei District, Chongqing 400716, China
| | - Zan-Yang Yu
- College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Road, Beibei District, Chongqing 400716, China
| | - Yao Tong
- College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Road, Beibei District, Chongqing 400716, China
| | - Gen Liu
- College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Road, Beibei District, Chongqing 400716, China
| | - Yu-Qi Yang
- College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Road, Beibei District, Chongqing 400716, China
| | - Li Li
- College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Road, Beibei District, Chongqing 400716, China
| | - Lei Pang
- College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Road, Beibei District, Chongqing 400716, China
| | - Hong-Yi Qi
- College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Road, Beibei District, Chongqing 400716, China.
| |
Collapse
|
26
|
Zhuang J, Yin J, Xu C, Jiang M, Lv S. Diverse autophagy and apoptosis in myeloid leukemia cells induced by 20(s)-GRh2 and blue LED irradiation. RSC Adv 2019; 9:39124-39132. [PMID: 35540666 PMCID: PMC9075934 DOI: 10.1039/c9ra08049j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 11/12/2019] [Indexed: 11/21/2022] Open
Abstract
Autophagy is an important mechanism for cell death regulation. To improve the anticancer effect during the treatment of leukemia and promote the apoptosis of leukemic cells, it is important to define the relationship between autophagy and apoptosis. A key bioactive compound in traditional Chinese medicine, 20(s)-Ginsenoside (GRh2), demonstrated an advancement in leukemia treatment. Blue LED therapy (BL) is a physical treatment method that can induce leukemic cell death. In this study, we tested the effect of 20(s)-GRh2, BL, and their combination (BL-GRh2) on the activation of leukemic cell apoptosis and autophagy. Both treatments, whether used individually or simultaneously, induce apoptosis through the induction of reactive oxygen species (ROS), disrupted mitochondrial membrane potential (MMP) and regulated the expression of apoptosis-related genes and proteins. Furthermore, using western blotting to analyze the autophagy markers LC3B and P62, we detected the activation of autophagy. In cells treated with autophagy inhibitor 3-MA, both autophagy and apoptosis were inhibited, either by BL alone or by BL-GRh2. However, apoptosis in 20(s)-GRh2-treated cells was enhanced. In cells treated with apoptosis suppressor Z-VAD-FMK, autophagy was inhibited in the BL and BL-GRh2-treated cells, although it was enhanced in cells treated with 20(s)-GRh2 alone. Moreover, we observed a stronger induction of apoptosis by BL-GRh2 in myeloid leukemia cells. Our data indicate that autophagy induced by different factors can play diverse roles on the same cells. Our results also indicate that the combination of traditional Chinese medicine with physical therapy may be a new strategy for anti-cancer therapy.
Collapse
Affiliation(s)
- Jianjian Zhuang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Science, Jilin University Changchun 130000 China
| | - Juxin Yin
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Science, Jilin University Changchun 130000 China
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University Hangzhou Zhejiang Province 310058 P. R. China
| | - Chaojian Xu
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Science, Jilin University Changchun 130000 China
| | - Mengmeng Jiang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Science, Jilin University Changchun 130000 China
| | - Shaowu Lv
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Science, Jilin University Changchun 130000 China
| |
Collapse
|
27
|
Huang Q, Wang L, Ran Q, Wang J, Wang C, He H, Li L, Qi H. Notopterol-induced apoptosis and differentiation in human acute myeloid leukemia HL-60 cells. Drug Des Devel Ther 2019; 13:1927-1940. [PMID: 31239643 PMCID: PMC6560190 DOI: 10.2147/dddt.s189969] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 04/04/2019] [Indexed: 12/04/2022] Open
Abstract
Purpose: This study aims to observe the effects of notopterol on the apoptosis and differentiation of HL-60 cells and to explore the underlying molecular mechanisms. Methods: Cell viability was assessed using sulforhodamine B assay. Cell proliferation was determined by the trypan blue dye exclusion test. Colony-forming units were assayed in methylcellulose. Apoptosis assays were carried out by annexin V-fluorescein isothiocyanate(FITC)/propidium iodide (PI) double staining, Hoechst 33342 staining, mitochondrial membrane potential, and Western blot. Wright–Giemsa staining, nitroblue tetrazolium (NBT) reduction assay, CD11b and CD14 and Western blot were detected for induction of differentiation. In addition, cell-cycle phase distribution was analyzed by flow cytometry and Western blot. The combination therapy of notopterol and all-trans retinoic acid (ATRA) on HL-60 cells was examined. Results: Notopterol obviously inhibited the growth of HL-60 cells with an IC50 value of 40.32 μM and remarkably reduced the number of colonies by 10, 20, and 40 µM. In addtion, notopterol induced the percentage of apoptotic HL-60 cells, reduced the mitochondrial membrane potential, decreased the protein expresstion of Bcl-2 and Mcl-1, and increased the expression of Bax, cleavage of caspase 9, caspase 3, and PARP. As for cell differentiation, notopterol clearly induced chromatin condensation; increased the nucleocytoplasmic ratio, nitroblue tetrazolium-positive cells, expression of CD14 and CD11b, and protein expression of c-Jun and Jun B, and decreased c-myc. Furthermore, notopterol induced the G0/G1 cell-cycle arrest as determined using flow cytometry, which may be related to the regulation of cell-cycle-related proteins p53, CDK2, CDK4, Cyclin D1, Cyclin E, and survivin. The combined use of notopterol and ATRA did not enhance the apoptotic effect as evidenced by cell viability test and Hoechst 33342. However, the combination of notopterol and ATRA enhanced the effect of inducing differentiation when compared with using either notopterol or ATRA alone, which can be evidenced by the increased nucleocytoplasmic ratio, NBT positive cells, and expression of CD14. Conclusion: This is the first time it has been demonstrated that notopterol could induce apoptosis, differentiation, and G0/G1 arrest in human AML HL-60 cells, suggesting that notopterol has potential therapeutic effects on AML. The combination application of notopterol (20 and 40 μM) and ATRA (2 μM) could augment differentiation of HL-60 cells.
Collapse
Affiliation(s)
- Qinwan Huang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Lin Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Qian Ran
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Jin Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Chengqiang Wang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, People's Republic of China
| | - Hui He
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, People's Republic of China
| | - Li Li
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, People's Republic of China
| | - Hongyi Qi
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, People's Republic of China
| |
Collapse
|
28
|
Vinh LB, Park JU, Duy LX, Nguyet NTM, Yang SY, Kim YR, Kim YH. Ginsenosides from Korean red ginseng modulate T cell function via the regulation of NF-AT-mediated IL-2 production. Food Sci Biotechnol 2018; 28:237-242. [PMID: 30815315 DOI: 10.1007/s10068-018-0428-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 06/11/2018] [Accepted: 07/01/2018] [Indexed: 01/14/2023] Open
Abstract
Korean red ginseng is a traditional health food frequently used to prevent or treat various diseases worldwide. In this study, we evaluated the immunomodulatory activities of eleven compounds (1-11) isolated from Korean red ginseng, focusing on T cell function. First, the effects of the eleven compounds were studied on the regulation of IL-2, a potent T cell growth factor. Compounds 5, 7, and 9 significantly increased IL-2 secretion in phorbol 12-myristate 13-acetate (PMA)/ionomycin (Io)-induced EL-4 T cells. Next, we examined the effects of compounds 5, 7, and 9 on the regulation of transcription factors related to IL-2 production in T cells. Compound 9 significantly increased the PMA/Io-induced promoter activity of nuclear factor of activated T cells (NF-AT) in EL-4 T cells, but did not have any significant effects on the promoters of NF- κB. These results suggest that compound 9 activates T cell function via the regulation of NF-AT-mediated IL-2 production.
Collapse
Affiliation(s)
- Le Ba Vinh
- 1College of Pharmacy, Chungnam National University, Daejeon, 34134 Republic of Korea.,2Institute of Marine Biochemistry (IMBC), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Caugiay, Hanoi, Vietnam
| | - Jung Up Park
- 3College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju, 500-757 Republic of Korea
| | - Le Xuan Duy
- 1College of Pharmacy, Chungnam National University, Daejeon, 34134 Republic of Korea.,4Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Caugiay, Hanoi, Vietnam
| | | | - Seo Young Yang
- 1College of Pharmacy, Chungnam National University, Daejeon, 34134 Republic of Korea
| | - Young Ran Kim
- 3College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju, 500-757 Republic of Korea
| | - Young Ho Kim
- 1College of Pharmacy, Chungnam National University, Daejeon, 34134 Republic of Korea
| |
Collapse
|
29
|
Chen T, Li B, Qiu Y, Qiu Z, Qu P. Functional mechanism of Ginsenosides on tumor growth and metastasis. Saudi J Biol Sci 2018; 25:917-922. [PMID: 30108441 PMCID: PMC6087812 DOI: 10.1016/j.sjbs.2018.01.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 01/18/2018] [Indexed: 01/09/2023] Open
Abstract
Ginsengs, has long been used as one medicinal herb in China for more than two thousand years. Many studies have shown that ginsengs have preventive and therapeutic roles for cancer, and play a good complementary role in cancer treatment. Ginsenosides, as most important constituents of ginseng, have been extensively investigated and emphasized in cancer chemoprevention and therapeutics. However, the functional mechanism of Ginsenosides on cancer is not well known. This review will focus on introducing the functional mechanisms of ginsenosides and their metabolites, which regulate signaling pathways related with tumor growth and metastasis. Ginsenosides inhibit tumor growth via upregulating tumor apoptosis, inducing tumor cell differentiation and targeting cancer stem cells. In addition, Ginsenosides regulate tumor microenvironment via suppressing tumor angiogenesis-related proteins and pathways. Structural modification of ginsenosides and their administration alone or combinations with other Chinese medicines or chemical medicines have recently been developed to be a new therapeutic strategy for cancer.
Collapse
Affiliation(s)
- Tianli Chen
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin, PR China
| | - Bowen Li
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin, PR China
| | - Ye Qiu
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin, PR China
| | - Zhidong Qiu
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin, PR China
| | - Peng Qu
- National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| |
Collapse
|
30
|
Dai L, Liu C, Li J, Dong C, Yang J, Dai Z, Zhang X, Sun Y. One-Pot Synthesis of Ginsenoside Rh2 and Bioactive Unnatural Ginsenoside by Coupling Promiscuous Glycosyltransferase from Bacillus subtilis 168 to Sucrose Synthase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:2830-2837. [PMID: 29484884 DOI: 10.1021/acs.jafc.8b00597] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Ginsenosides, the major effective ingredients of Panax ginseng, exhibit various biological properties. UDP-glycosyltransferase (UGT)-mediated glycosylation is the last biosynthetic step of ginsenosides and contributes to their immense structural and functional diversity. In this study, UGT Bs-YjiC from Bacillus subtilis 168 was demonstrated to transfer a glucosyl moiety to the free C3-OH and C12-OH of protopanaxadiol (PPD) and PPD-type ginsenosides to synthesize natural and unnatural ginsenosides. In vitro assays showed that unnatural ginsenoside F12 (3- O-β-d-glucopyranosyl-12- O-β-d-glucopyranosyl-20( S)-protopanaxadiol) exhibited remarkable activity against diverse human cancer cell lines. A one-pot reaction by coupling Bs-YjiC to sucrose synthase (SuSy) was performed to regenerate UDP-glucose from sucrose and UDP. With PPD as the aglycon, an unprecedented high yield of ginsenosides F12 (3.98 g L-1) and Rh2 (0.20 g L-1) was obtained by optimizing the conversion conditions. This study provides an efficient approach for the biosynthesis of ginsenosides using a UGT-SuSy cascade reaction.
Collapse
Affiliation(s)
- Longhai Dai
- National Engineering Laboratory for Industrial Enzymes , Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences , Tianjin 300308 , China
| | - Can Liu
- Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture , Beijing University of Agriculture , Beijing , China
| | - Jiao Li
- National Engineering Laboratory for Industrial Enzymes , Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences , Tianjin 300308 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Caixia Dong
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnosis, School of Pharmacy , Tianjin Medical University , Tianjin 300070 , China
| | - Jiangang Yang
- National Engineering Laboratory for Industrial Enzymes , Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences , Tianjin 300308 , China
| | - Zhubo Dai
- National Engineering Laboratory for Industrial Enzymes , Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences , Tianjin 300308 , China
| | - Xueli Zhang
- National Engineering Laboratory for Industrial Enzymes , Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences , Tianjin 300308 , China
| | - Yuanxia Sun
- National Engineering Laboratory for Industrial Enzymes , Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences , Tianjin 300308 , China
| |
Collapse
|
31
|
Abstract
Acute myeloid leukemia (AML) and Chronic myelogenous leukemia (CML) are common leukemia in adults. 20(S)-GRh2 is an important bioactive substance that is present in Panax ginseng. However, there are no investigations that deal with the comparison of apoptosis, the occurrence of autophagy, and the relationship between apoptosis and autophagy after being treated with 20(S)-GRh2 in AML and CML. In this study, we explored the effect of 20(S)-GRh2 on the AML and CML (U937 and K562). Fluorescence microscopy, CCK-8, Quantitative realtime PCR, Western blot, transmission electron microscopy (TEM), and flow cytometric analysis were used to detect the occurrence of cell proliferation inhibition, apoptosis, and autophagy. By using the above methods, it was determined that apoptosis induced by 20(S)-GRh2 was more obvious in K562 than U937 cells and 20(S)-GRh2 could generate autophagy in K562 and U937 cells. When pretreated by a specific inhibitor of autophagy, (3-methyladenine), the 20(S)-GRh2-induced apoptosis was enhanced, which indicated that 20(S)-GRh2-induced autophagy may protect U937 and K562 cells from undergoing apoptotic cell death. On the other hand, pretreated by an apoptosis suppressor (Z-VAD-FMK), it greatly induced the autophagy and partially prevented 20(S)-GRh2 induced apoptosis. This phenomenon indicated that 20(S)-GRh2-induced autophagy may serve as a survival mechanism and apoptosis and autophagy could act as partners to induce cell death in a cooperative manner. These findings may provide a rationale for future clinical application by using 20(S)-GRh2 combined autophagy inhibitors for AML and CML.
Collapse
|