1
|
Kozioł Ł, Knap M, Sutor-Świeży K, Górska R, Dziedzic E, Bieniasz M, Mielczarek P, Popenda Ł, Tyszka-Czochara M, Wybraniec S. Identification and reactivity of pigments in prominent vegetable leaves of Basella alba L. var. 'Rubra' (Malabar spinach). Food Chem 2024; 445:138714. [PMID: 38394904 DOI: 10.1016/j.foodchem.2024.138714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/28/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024]
Abstract
The unique profiles of betacyanins as well as their stability and antioxidant activity in purple leaf extracts of the fast-growing, soft-stemmed vine Basella alba L. var. 'Rubra', known as Malabar spinach, are partly characterized for the first time. The distribution of gomphrenin and its acylated derivatives in the leaves is completely different from the profiles of the pigments in the fruits. The most abundant acylated pigment in leaves (24%) turned out 6'-O-E-sinapoyl-gomphrenin (gandolin), however, the most significant difference in the pigment profiles is a presence of two novel pigments tentatively identified as highly abundant 6'-O-(3,4-dimethoxy-E-cinnamoyl)-gomphrenin and 6'-O-(3,4,5-trimethoxy-E-cinnamoyl)-gomphrenin as well as their isoforms. Significant degradation of the pigments in the fruit extracts under the impact of selected metal cations and UV-Vis irradiation as well as high protective activity of the leaf extract matrix were observed. Partial chromatographic purification of the leaf extract resulted in an increase of the pigment concentration which was correlated positively with the increased antioxidant activity of obtained fractions.
Collapse
Affiliation(s)
- Łukasz Kozioł
- Department C-1, Faculty of Chemical Engineering and Technology, Cracow University of Technology, ul. Warszawska 24, 31-155 Krakow, Poland
| | - Mateusz Knap
- Department C-1, Faculty of Chemical Engineering and Technology, Cracow University of Technology, ul. Warszawska 24, 31-155 Krakow, Poland
| | - Katarzyna Sutor-Świeży
- Department C-1, Faculty of Chemical Engineering and Technology, Cracow University of Technology, ul. Warszawska 24, 31-155 Krakow, Poland
| | - Renata Górska
- Department C-1, Faculty of Chemical Engineering and Technology, Cracow University of Technology, ul. Warszawska 24, 31-155 Krakow, Poland
| | - Ewa Dziedzic
- Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, al. 29 Listopada 54, 31-425 Krakow, Poland
| | - Monika Bieniasz
- Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, al. 29 Listopada 54, 31-425 Krakow, Poland
| | - Przemysław Mielczarek
- Department of Analytical Chemistry and Biochemistry, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, al. Adama Mickiewicza 30, 30-059 Krakow, Poland; Laboratory of Proteomics and Mass Spectrometry, Maj Institute of Pharmacology, Polish Academy of Sciences, ul. Smętna 12, 31-343 Krakow, Poland
| | - Łukasz Popenda
- NanoBioMedical Centre, Adam Mickiewicz University, ul. Wszechnicy Piastowskiej 3, 61-614 Poznan, Poland
| | | | - Sławomir Wybraniec
- Department C-1, Faculty of Chemical Engineering and Technology, Cracow University of Technology, ul. Warszawska 24, 31-155 Krakow, Poland.
| |
Collapse
|
2
|
Sutor-Świeży K, Górska R, Kumorkiewicz-Jamro A, Dziedzic E, Bieniasz M, Mielczarek P, Popenda Ł, Pasternak K, Tyszka-Czochara M, Baj-Krzyworzeka M, Stefańska M, Błyszczuk P, Wybraniec S. Basella alba L. (Malabar Spinach) as an Abundant Source of Betacyanins: Identification, Stability, and Bioactivity Studies on Natural and Processed Fruit Pigments. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2943-2962. [PMID: 38301126 PMCID: PMC10870984 DOI: 10.1021/acs.jafc.3c06225] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 12/01/2023] [Accepted: 12/15/2023] [Indexed: 02/03/2024]
Abstract
The antioxidant and anti-inflammatory activities of acylated and decarboxylated gomphrenins, as well as Basella alba L. fruit extract, were investigated in relation to gomphrenin, known for its high biological potential. The most abundant natural acylated gomphrenins, namely, 6'-O-E-caffeoyl-gomphrenin (malabarin) and 6'-O-E-4-coumaroyl-gomphrenin (globosin), were isolated from B. alba extract for the studies. In addition, controlled thermal decarboxylation of gomphrenin in the purified B. alba extract at 65-75 °C resulted in the formation of the most prevalent decarboxylated products, including 17-decarboxy-gomphrenin and 2,17-bidecarboxy-gomphrenin, along with their isoforms. The structures of the decarboxylated pigments were confirmed by NMR analyses. Exploring the matrix effect on pigment reactivity revealed a tremendous increase in the stability of all betacyanins after the initial stage of extract purification using a cation exchanger under various conditions. This indicates the removal of a substantial portion of the unfavorable matrix from the extract, which presumably contains reactive species that could otherwise degrade the pigments. Furthermore, the high concentration of citrates played a significant role in favoring the formation of 2-decarboxy-gomphrenin to a considerable extent. In vitro screening experiments revealed that the tested compounds demonstrated strong anti-inflammatory properties in lipopolysaccharide (LPS)-activated human macrophages. This effect encompassed the selective inhibition of cytokine and chemokine release from activated macrophages, modulation of the chemotactic activity of immune cells, and the regulation of tissue remodeling mediators' release.
Collapse
Affiliation(s)
- Katarzyna Sutor-Świeży
- Department
C-1, Faculty of Chemical Engineering and Technology, Cracow University of Technology, ul. Warszawska 24, Krakow 31-155, Poland
| | - Renata Górska
- Department
C-1, Faculty of Chemical Engineering and Technology, Cracow University of Technology, ul. Warszawska 24, Krakow 31-155, Poland
| | - Agnieszka Kumorkiewicz-Jamro
- Department
C-1, Faculty of Chemical Engineering and Technology, Cracow University of Technology, ul. Warszawska 24, Krakow 31-155, Poland
- South
Australian Health and Medical Research Institute, Adelaide 5000, SA, Australia
- Faculty
of Health and Medical Sciences, University
of Adelaide, Adelaide 5000, SA, Australia
| | - Ewa Dziedzic
- Faculty
of Biotechnology and Horticulture, University
of Agriculture in Krakow, al. 29 Listopada 54, Krakow 31-425, Poland
| | - Monika Bieniasz
- Faculty
of Biotechnology and Horticulture, University
of Agriculture in Krakow, al. 29 Listopada 54, Krakow 31-425, Poland
| | - Przemysław Mielczarek
- Department
of Analytical Chemistry and Biochemistry, Faculty of Materials Science
and Ceramics, AGH University of Science
and Technology, al. Adama Mickiewicza 30, Krakow 30-059, Poland
- Laboratory
of Proteomics and Mass Spectrometry, Maj Institute of Pharmacology, Polish Academy of Sciences, ul. Smętna 12, Krakow 31-343, Poland
| | - Łukasz Popenda
- NanoBioMedical
Centre, Adam Mickiewicz University, ul. Wszechnicy Piastowskiej 3, Poznan 61-614, Poland
| | - Karol Pasternak
- Institute
of Bioorganic Chemistry, Polish Academy
of Sciences, ul. Noskowskiego
12/14, Poznan 61-704, Poland
| | | | - Monika Baj-Krzyworzeka
- Faculty
of Medicine, Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Kraków 30-688, Poland
| | - Monika Stefańska
- Faculty
of Medicine, Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Kraków 30-688, Poland
| | - Przemysław Błyszczuk
- Faculty
of Medicine, Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Kraków 30-688, Poland
| | - Sławomir Wybraniec
- Department
C-1, Faculty of Chemical Engineering and Technology, Cracow University of Technology, ul. Warszawska 24, Krakow 31-155, Poland
| |
Collapse
|
3
|
Santos GBM, de Abreu FAP, da Silva GS, Guedes JAC, Lira SM, Dionísio AP, Pontes DF, Zocolo GJ. UPLC-QTOF-MS E based metabolomics and chemometrics study of the pitaya processing. Food Res Int 2024; 178:113957. [PMID: 38309877 DOI: 10.1016/j.foodres.2024.113957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/20/2023] [Accepted: 01/02/2024] [Indexed: 02/05/2024]
Abstract
The search for knowledge related to the Pitaya (Hylocereus polyrhizus [F.A.C. Weber] Britton & Rose, family Cactaceae) is commonly due to its beneficial health properties e aesthetic values. But process to obtain pitaya pulp is a first and important step in providing information for the subsequent use of this fruit as colorant, for example. Therefore, the effects of the pulping process on the metabolomic and chemometric profile of non-volatile compounds of pitaya were assessed for the first time. The differences in metabolic fingerprints using UPLC-QTOF-MSE and multivariate modeling (PCA and OPLS-DA) was performed in the following treatments: treatment A, which consists of pelled pitaya and no ascorbic acid addition during pulping; treatment B, use of unpelled pitaya added of ascorbic acid during pulping; and control, unpelled pitaya and no ascorbic acid addition during pulping. For the metabolomic analysis, UPLC-QTOF-MSE shows an efficient method for the simultaneous determination of 35 non-volatile pitaya metabolites, including isorhamnetin glucosyl rhamnosyl isomers, phyllocactin isomers, 2'-O-apiosyl-phylocactin and 4'-O-malonyl-betanin. In addition, the chemometric analysis efficiently distinguished the metabolic compounds of each treatment applied and shows that the use of unpelled pitaya added of ascorbic acid during pulping has an interesting chemical profile due to the preservation or formation of compounds, such as those derived from betalain, and higher yields, which is desirable for the food industry.
Collapse
Affiliation(s)
| | | | | | | | - Sandra Machado Lira
- Department of Nutrition, State University of Ceara, 60714-903 Fortaleza, CE, Brazil
| | - Ana Paula Dionísio
- Embrapa Agroindústria Tropical, Dra Sara Mesquita St., 2270, 60511-110 Fortaleza, CE, Brazil
| | | | - Guilherme Julião Zocolo
- Embrapa Agroindústria Tropical, Dra Sara Mesquita St., 2270, 60511-110 Fortaleza, CE, Brazil.
| |
Collapse
|
4
|
Tang KJ, Zhao Y, Tao X, Li J, Chen Y, Holland DC, Jin TY, Wang AY, Xiang L. Catecholamine Derivatives: Natural Occurrence, Structural Diversity, and Biological Activity. JOURNAL OF NATURAL PRODUCTS 2023; 86:2592-2619. [PMID: 37856864 DOI: 10.1021/acs.jnatprod.3c00465] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Catecholamines (CAs) are aromatic amines containing a 3,4-dihydroxyphenyl nucleus and an amine side chain. Representative CAs included the endogenous neurotransmitters epinephrine, norepinephrine, and dopamine. CAs and their derivatives are good resources for the development of sympathomimetic or central nervous system drugs, while they also provide ligands important for G-protein coupled receptor (GPCR) research. CAs are of broad interest in the fields of chemical, biological, medical, and material sciences due to their high adhesive capacities, chemical reactivities, metal-chelating abilities, redox activities, excellent biocompatibilities, and ease of degradability. Herein, we summarize CAs derivatives isolated and identified from microorganisms, plants, insects, and marine invertebrates in recent decades, alongside their wide range of reported biological activities. The aim of this review is to provide an overview of the structural and biological diversities of CAs, the regularity of their natural occurrences, and insights toward future research and development pertinent to this important class of naturally occurring compounds.
Collapse
Affiliation(s)
- Kai-Jun Tang
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Pharmacognosy, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, People's Republic of China
| | - Yu Zhao
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Pharmacognosy, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, People's Republic of China
| | - Xu Tao
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Pharmacognosy, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, People's Republic of China
| | - Jing Li
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Pharmacognosy, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, People's Republic of China
| | - Yu Chen
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Pharmacognosy, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, People's Republic of China
| | - Darren C Holland
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92037, United States of America
| | - Tian-Yun Jin
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92037, United States of America
| | - Ao-Yun Wang
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Pharmacognosy, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, People's Republic of China
| | - Lan Xiang
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Pharmacognosy, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, People's Republic of China
| |
Collapse
|
5
|
Kumorkiewicz-Jamro A, Górska R, Krok-Borkowicz M, Mielczarek P, Popenda Ł, Lystvan K, Pamuła E, Wybraniec S. Unveiling Alternative Oxidation Pathways and Antioxidant and Cardioprotective Potential of Amaranthin-Type Betacyanins from Spinach-like Atriplex hortensis var. ' Rubra'. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15017-15034. [PMID: 37791532 PMCID: PMC10591473 DOI: 10.1021/acs.jafc.3c03044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/30/2023] [Accepted: 09/13/2023] [Indexed: 10/05/2023]
Abstract
A comprehensive oxidation mechanism was investigated for amaranthin-type betacyanins with a specific glucuronosylglucosyl moiety isolated from Atriplex hortensis 'rubra' using liquid chromatography coupled to diode array detection and electrospray ionization tandem mass spectrometry (LC-DAD-ESI-MS/MS) and LC-Quadrupole-Orbitrap-MS (LC-Q-Orbitrap-MS). By employing one-dimensional (1D) and two-dimensional (2D) NMR, this study elucidates the chemical structures of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS)-oxidized celosianins for the first time. These findings demonstrate alternative oxidation pathways for acylated betacyanins compared to well-known betanidin, betanin, and gomphrenin pigments. Contrary to previous research, we uncover the existence of 17-decarboxy-neo- and 2,17-bidecarboxy-xanneo-derivatives as the initial oxidation products without the expected 2-decarboxy-xan forms. These oxidized compounds demonstrated potent free radical scavenging properties. Celosianin (IC50 = 23 μg/mL) displayed slightly higher antioxidant activity compared to oxidized forms, 17-decarboxy-neocelosianin (IC50 = 34 μg/mL) and 2,17-bidecarboxy-xanneocelosianin (IC50 = 29 μg/mL). The oxidized compounds showed no cytotoxic effects on H9c2 rat cardiomyoblasts (0.1-100 μg/mL). Additionally, treatment of H9c2 cells with the oxidized compounds (0.1-10 μg/mL) elevated glutathione levels and exhibited protective effects against H2O2-induced cell death. These findings have significant implications for understanding the impact of oxidation processes on the structures and biological activities of acylated betalains, providing valuable insights for future studies of the bioavailability and biological mechanism of their action in vivo.
Collapse
Affiliation(s)
- Agnieszka Kumorkiewicz-Jamro
- Department
of Chemical Technology and Environmental Analysis, Faculty of Chemical
Engineering and Technology, Cracow University
of Technology, Warszawska 24, 31-155 Cracow, Poland
- South
Australian Health and Medical Research Institute, Adelaide 5000, SA, Australia
- Faculty
of Health and Medical Sciences, University
of Adelaide, Adelaide 5000, SA, Australia
| | - Renata Górska
- Department
of Chemical Technology and Environmental Analysis, Faculty of Chemical
Engineering and Technology, Cracow University
of Technology, Warszawska 24, 31-155 Cracow, Poland
| | - Małgorzata Krok-Borkowicz
- Department
of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Cracow, Poland
| | - Przemysław Mielczarek
- Department
of Analytical Chemistry and Biochemistry, Faculty of Materials Science
and Ceramics, AGH University of Science
and Technology, Al. Mickiewicza
30, 30059 Cracow, Poland
- Laboratory
of Proteomics and Mass Spectrometry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Cracow, Poland
| | - Łukasz Popenda
- NanoBioMedical
Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznań, Poland
| | - Kateryna Lystvan
- Department
of Genetic Engineering, Institute of Cell
Biology and Genetic Engineering of National Academy of Sciences of
Ukraine (NASU), Academika
Zabolotnoho, 148, 03143 Kyiv, Ukraine
| | - Elżbieta Pamuła
- Department
of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Cracow, Poland
| | - Sławomir Wybraniec
- Department
of Chemical Technology and Environmental Analysis, Faculty of Chemical
Engineering and Technology, Cracow University
of Technology, Warszawska 24, 31-155 Cracow, Poland
| |
Collapse
|
6
|
Kumorkiewicz-Jamro A, Górska R, Krok-Borkowicz M, Reczyńska-Kolman K, Mielczarek P, Popenda Ł, Spórna-Kucab A, Tekieli A, Pamuła E, Wybraniec S. Betalains isolated from underexploited wild plant Atriplex hortensis var. rubra L. exert antioxidant and cardioprotective activity against H9c2 cells. Food Chem 2023; 414:135641. [PMID: 36809729 DOI: 10.1016/j.foodchem.2023.135641] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/11/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023]
Abstract
Atriplex hortensis var. rubra L. extracts prepared from leaves, seeds with sheaths, and stems were characterized for betalainic profiles by spectrophotometry, LC-DAD-ESI-MS/MS and LC-Orbitrap-MS techniques. The presence of 12 betacyanins in the extracts was strongly correlated with high antioxidant activity measured by ABTS, FRAP, and ORAC assays. Comparative assessment between samples indicated the highest potential for celosianin and amaranthin (IC50 21.5 and 32.2 μg/ml, respectively). The chemical structure of celosianin was elucidated for the first time by complete 1D and 2D NMR analysis. Our findings also demonstrate that betalain-rich A. hortensis extracts and purified pigments (amaranthin and celosianin) do not induce cytotoxicity in a wide concentration range in rat cardiomyocytes model (up to 100 μg/ml for extracts and 1 mg/ml for pigments). Furthermore, tested samples effectively protect H9c2 cells from H2O2-induced cell death and prevent from apoptosis induced by Paclitaxel. The effects were observed at sample concentrations between 0.1 and 10 μg/ml.
Collapse
Affiliation(s)
- Agnieszka Kumorkiewicz-Jamro
- Department of Chemical Technology and Environmental Analysis, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland; South Australian Health and Medical Research Institute, Adelaide 5000 SA, Australia; Faculty of Health and Medical Science, University of Adelaide, Adelaide 5005 SA, Australia.
| | - Renata Górska
- Department of Chemical Technology and Environmental Analysis, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland
| | - Małgorzata Krok-Borkowicz
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Cracow, Poland
| | - Katarzyna Reczyńska-Kolman
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Cracow, Poland
| | - Przemysław Mielczarek
- Department of Analytical Chemistry and Biochemistry, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059, Cracow, Poland; Laboratory of Proteomics and Mass Spectrometry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Cracow, Poland
| | - Łukasz Popenda
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznań, Poland
| | - Aneta Spórna-Kucab
- Department of Chemical Technology and Environmental Analysis, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland
| | - Anna Tekieli
- Department of Chemical Technology and Environmental Analysis, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland
| | - Elżbieta Pamuła
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Cracow, Poland
| | - Sławomir Wybraniec
- Department of Chemical Technology and Environmental Analysis, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland
| |
Collapse
|
7
|
Rotich V, Wangila P, Cherutoi J. Method Validation and Characterization of Red Pigment in Beta vulgaris Peels and Pomaces by HPLC-UV and UHPLC-MS/MS. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2022; 2022:2229500. [PMID: 36052342 PMCID: PMC9427305 DOI: 10.1155/2022/2229500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/06/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Color pigments from plant, animal, or mineral sources can be identified, separated, and quantified for various purposes. It is expected that pigments from Beta vulgaris L. peels and pomaces could be used to develop natural dyes that can find applications in areas such as food or textile dyeing industries. This work aimed at identifying and quantifying the pigment in the B. vulgaris L. peels and pomaces extracts as well as validating the method by high-performance liquid chromatography combined with ultraviolet spectroscopy (HPLC-UV) and ultra-high-performance liquid chromatography coupled with triple quadrupole (TSQ) mass spectrometry (UHPLC-MS/MS). Column chromatography was used to isolate compounds after methanolic solvent extraction. Identification and quantification of the pigments in the extract were achieved using reverse-phase HPLC with a UV detector (538 nm). The UHPLC-MS/MS was used for further confirmation of colored compounds in the extract. Method validation included the use of betanin standard (betanidin 5-β-D-glucopyranoside), determination of repeatability (precision), calibration curve linearity, and sensitivity (LOD and LOQ) tests. Betanin was detected in the sample at retention times of 7.699 and 7.71 minutes, respectively, which closely matched the tR (7.60 min) of the standard, according to HPLC-UV and LC-MS/MS data. The average betanin concentration was 3.81 0.31 mg/g of dry weight, according to the HPLC-UV analysis. The LC-MS/MS data revealed the existence of several compounds, including betanin (4.31 ± 2.15 mg/g), isobetanin (1.85 ± 2.20 mg/g), 2, 17-bidecarboxy-neobetanin (0.71 ± 0.02 mg/g), betanidin (0.71 ± 0.03 mg/g), 2-O-glucosyl-betanin (0.40 ± 0.10 mg/g), and isobetanidin (0.36 ± 1.26 mg/g), among other compounds whose yields were too low. In conclusion, the peels and pomaces of B. vulgaris L. can be a useful source for the extraction of a red dye for use in coloring, such as the dyeing of textile substrates.
Collapse
Affiliation(s)
- Vincent Rotich
- Department of Chemistry & Biochemistry, School of Sciences and Aerospace Studies, Moi University, P.O. Box 3900 30100, Eldoret, Kenya
- Africa Centre of Excellence in Phytochemicals, Textile and Renewable Energy (ACEII PTRE), Moi University, P. O. Box 3900 30100, Eldoret, Kenya
| | - Phanice Wangila
- Department of Physical Sciences, School of Science & Technology, University of Kabianga, P.O. Box 2030 20200, Kericho, Kenya
| | - Jackson Cherutoi
- Department of Chemistry & Biochemistry, School of Sciences and Aerospace Studies, Moi University, P.O. Box 3900 30100, Eldoret, Kenya
| |
Collapse
|
8
|
MAI THA, TRAN TTT, LE VVM. Protection of antioxidants in pitaya (Hylocereus undatus) peel: effects of blanching conditions on polyphenoloxidase, peroxidase and antioxidant activities. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.112921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Thi Hai Anh MAI
- Ho Chi Minh City University of Technology, Vietnam; VNU-HCM, Linh Trung Ward, Vietnam; Tay Nguyen University, Vietnam
| | - Thi Thu Tra TRAN
- Ho Chi Minh City University of Technology, Vietnam; VNU-HCM, Linh Trung Ward, Vietnam
| | - Van Viet Man LE
- Ho Chi Minh City University of Technology, Vietnam; VNU-HCM, Linh Trung Ward, Vietnam
| |
Collapse
|
9
|
Spórna-Kucab A, Jerz G, Kumorkiewicz-Jamro A, Tekieli A, Wybraniec S. High-speed countercurrent chromatography for isolation and enrichment of betacyanins from fresh and dried leaves of Atriplex hortensis L. var. "Rubra". J Sep Sci 2021; 44:4222-4236. [PMID: 34586718 DOI: 10.1002/jssc.202100383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/10/2021] [Accepted: 09/21/2021] [Indexed: 11/08/2022]
Abstract
Betacyanins and their decarboxylated derivatives from fresh and dried edible leaves of Atriplex hortensis L. var. "Rubra" were fractionated for the first time by high-speed countercurrent chromatography. Pigments present in fresh leaf extract were separated in systems: ethanol - acetonitrile - n-propanol - ammonium sulphate - water (0.5:0.5:0.5:1.2:1.0, v/v/v/v/v) (tail-to-head mode) and tert-butyl methyl ether - n-butanol - acetonitrile - water with 0.7% heptafluorobutyric acid (2:2:1:5, v/v/v/v) (head-to-tail mode). The mobile phase flow rate was 2 mL/min and the retention of the stationary phase was 79.8 and 75.2%, respectively. Pigments from dried leaves were separated in a similar ion-pair system with heptafluorobutyric acid in different volume proportions 1:3:1:5 (head-to-tail mode) and the flow rate of the mobile phase 3 mL/min. The stationary phase retention was 64.0%. The application of the countercurrent chromatography for the fractionation of betacyanins from leaves of Atriplex hortensis enabled to isolate and pre-concentrate the pigments for further low- and high-resolution liquid chromatographic-tandem mass spectrometric detection. This study revealed the presence of 10 betacyanins in fresh and 16 in dried leaves of Atriplex hortensis. Two compounds were not previously identified in the whole Amaranthaceae family. Additionally, instead of (iso)amaranthin, celosianin and its epimer were dominant betacyanins in the Atriplex hortensis.
Collapse
Affiliation(s)
- Aneta Spórna-Kucab
- Department of Chemical Technology and Environmental Analysis, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Kraków, Poland
| | - Gerold Jerz
- Institute of Food Chemistry, Faculty of Life Sciences, Technische Universität Braunschweig, Braunschweig, Germany
| | - Agnieszka Kumorkiewicz-Jamro
- Department of Chemical Technology and Environmental Analysis, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Kraków, Poland
| | - Anna Tekieli
- Department of Chemical Technology and Environmental Analysis, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Kraków, Poland
| | - Sławomir Wybraniec
- Department of Chemical Technology and Environmental Analysis, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Kraków, Poland
| |
Collapse
|
10
|
Kumorkiewicz-Jamro A, Świergosz T, Sutor K, Spórna-Kucab A, Wybraniec S. Multi-colored shades of betalains: recent advances in betacyanin chemistry. Nat Prod Rep 2021; 38:2315-2346. [PMID: 34515277 DOI: 10.1039/d1np00018g] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Covering: 2001 to 2021Betacyanins cover a class of remarkable natural red-violet plant pigments with prospective chemical and biological properties for wide-ranging applications in food, pharmaceuticals, and the cosmetic industry. Betacyanins, forming the betalain pigment group together with yellow betaxanthins, have gained much attention due to the increasing social awareness of the positive impact of natural products on human health. Betalains are commercially recognized as natural food colorants with preliminarily ascertained, but to be further investigated, health-promoting properties. In addition, they exhibit a remarkable structural diversity based on glycosylated and acylated varieties. The main research directions for natural plant pigments are focused on their structure elucidation, methods of their separation and analysis, biological activities, bioavailability, factors affecting their stability, industrial applications as a plant-based food, natural colorants, drugs, and cosmetics as well as methods for high-yield production and stabilization. This review covers period of the last two decades of betacyanin research. In the first part of the review, we present an updated classification of all known betacyanins and their derivatives identified by chemical means as well as by mass spectrometric and NMR techniques. In the second part, we review the current research reports focused on the chemical properties of the pigments (decarboxylation, oxidation, conjugation, and chlorination reactions as well as the acyl group migration phenomenon) and describe the semi-synthesis of natural and artificial fluorescent betalamic acid conjugates, showing various prospective research directions.
Collapse
Affiliation(s)
- Agnieszka Kumorkiewicz-Jamro
- Department of Chemical Technology and Environmental Analysis, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland.
| | - Tomasz Świergosz
- Department of Chemical Technology and Environmental Analysis, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland.
| | - Katarzyna Sutor
- Department of Chemical Technology and Environmental Analysis, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland.
| | - Aneta Spórna-Kucab
- Department of Chemical Technology and Environmental Analysis, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland.
| | - Sławomir Wybraniec
- Department of Chemical Technology and Environmental Analysis, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland.
| |
Collapse
|
11
|
Phytochemical Molecules from the Decarboxylation of Gomphrenins in Violet Gomphrena globosa L.-Floral Infusions from Functional Food. Int J Mol Sci 2020; 21:ijms21228834. [PMID: 33266455 PMCID: PMC7700562 DOI: 10.3390/ijms21228834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/20/2020] [Accepted: 11/20/2020] [Indexed: 11/25/2022] Open
Abstract
Herein, the generation of decarboxylated derivatives of gomphrenin pigments exhibiting potential health-promoting properties and the kinetics of their extraction during tea brewing from the purple flowers of Gomphrena globosa L. in aqueous and aqueous citric acid solutions were investigated. Time-dependent concentration monitoring of natural gomphrenins and their tentative identification was carried out by LC-DAD-ESI-MS/MS. The high content of acylated gomphrenins and their principal decarboxylation products, 2-, 15-, 17-decarboxy-gomphrenins, along with minor levels of their bidecarboxylated derivatives, were reported in the infusions. The identification was supported by the determination of molecular formulas of the extracted pigments by liquid chromatography coupled with high-resolution mass spectrometry (LCMS-IT-TOF). The influence of plant matrix on gomphrenins’ stability and generation of their derivatives, including the extraction kinetics, was determined by studying the concentration profiles in the primary and diluted infusions. Isolated and purified acylated gomphrenins from the same plant material were used for the preliminary determination of their decarboxylated derivatives. The acylated gomphrenins were found to be more stable than nonacylated ones. Citric acid addition had a degradative influence on natural gomphrenins mainly during the longer tea brewing process (above 15 min); however, the presence of plant matrix significantly increased the stability for betacyanins’ identification.
Collapse
|
12
|
Zhao HS, Ma Z, Jing P. Interaction of soy protein isolate fibrils with betalain from red beetroots: Morphology, spectroscopic characteristics and thermal stability. Food Res Int 2020; 135:109289. [DOI: 10.1016/j.foodres.2020.109289] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 12/11/2022]
|
13
|
Kumorkiewicz-Jamro A, Popenda L, Wybraniec S. Identification of Novel Low-Weight Sulfhydryl Conjugates of Oxidized 5- O- and 6- O-Substituted Betanidin Pigments. ACS OMEGA 2020; 5:14955-14967. [PMID: 32637769 PMCID: PMC7330895 DOI: 10.1021/acsomega.0c00378] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 05/22/2020] [Indexed: 05/08/2023]
Abstract
The formation of conjugates of oxidized betacyanin pigments with selected low-weight sulfhydryl scavengers was studied. Short-lived quinonoids, quinone methides, and aminochromes derived from oxidized betacyanins are able to form adducts with different efficiencies. In this report, mass spectrometric and NMR identifications of CS-linked conjugates of cysteine, cysteamine, N-acetylcysteine, and dl-dithiolthreitol with quinonoid forms generated through oxidation of betanidin, betanin, and gomphrenin is presented. An adduct that formed between cysteine and quinonoid generated from betanin by its oxidation and decarboxylation (2-decarboxy-xanbetanin) was detected and reported for the first time. The most stable gomphrenin CS-conjugate, N-acetylcysteinylated gomphrenin, was isolated by semipreparative chromatography and its structure was established by NMR analysis. This enabled to confirm the conjugation position at carbon C-4 and to indicate the presence of a dopachromic intermediate during oxidation of gomphrenin. Conjugation of betacyanins with thiol-bearing moieties may generate new molecules with modified chemical and biological properties. Obtained results confirm that gomphrenin is capable of forming CS-conjugates with higher efficiency than betanin.
Collapse
Affiliation(s)
- Agnieszka Kumorkiewicz-Jamro
- Department
of Analytical Chemistry, Institute C-1, Faculty of Chemical Engineering
and Technology, Cracow University of Technology, ul. Warszawska 24, Cracow 31-155, Poland
| | - L̷ukasz Popenda
- NanoBioMedical
Centre, Adam Mickiewicz University in Poznań, Wszechnicy Piastowskiej 3, 61-614 Poznań, Poland
| | - Sl̷awomir Wybraniec
- Department
of Analytical Chemistry, Institute C-1, Faculty of Chemical Engineering
and Technology, Cracow University of Technology, ul. Warszawska 24, Cracow 31-155, Poland
- ; . Tel.: +48-12-628-3074. Fax: +48-12-628-2036
| |
Collapse
|
14
|
Otalora C, Bonifazi E, Fissore E, Basanta F, Gerschenson L. Thermal Stability of Betalains in By-Products of the Blanching and Cutting of Beta vulgaris L. var conditiva. POL J FOOD NUTR SCI 2020. [DOI: 10.31883/pjfns/116415] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
15
|
Kumorkiewicz A, Sutor K, Nemzer B, Pietrzkowski Z, Wybraniec S. Thermal Decarboxylation of Betacyanins in Red Beet Betalain-Rich Extract. POL J FOOD NUTR SCI 2020. [DOI: 10.31883/pjfns/114897] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
16
|
Lira SM, Dionísio AP, Holanda MO, Marques CG, Silva GSD, Correa LC, Santos GBM, de Abreu FAP, Magalhães FEA, Rebouças EDL, Guedes JAC, Oliveira DFD, Guedes MIF, Zocolo GJ. Metabolic profile of pitaya (Hylocereus polyrhizus (F.A.C. Weber) Britton & Rose) by UPLC-QTOF-MS E and assessment of its toxicity and anxiolytic-like effect in adult zebrafish. Food Res Int 2019; 127:108701. [PMID: 31882110 DOI: 10.1016/j.foodres.2019.108701] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/04/2019] [Accepted: 09/21/2019] [Indexed: 01/12/2023]
Abstract
Pitaya is a Cactacea with potential for economic exploitation, due to its high commercial value and its functional components - such betalains, oligosaccharides and phenolic compounds. Although the biological activities of pitaya have been studied using in vivo and in vitro models (anti-inflammatory and antiproliferative activities, as example), its anxiolytic-like effect is still unexplored. Therefore, the aim of this work was to perform a characterization of pulp and peel of pitaya (Hylocereus polyrhizus (F.A.C. Weber) Britton & Rose) using UPLC-QTOF-MSE, and to assess its toxicity and anxiolytic-like effect in adult zebrafish (Danio rerio). The results showed 16 and 15 compounds (in pulp and peel, respectively), including maltotriose, quercetin-3-O-hexoside, and betalains, putatively identified by UPLC-QTOF-MSE. Thus, pitaya pulp and peel showed no toxicity in both models tested (Vero cell lines and zebrafish model, LC50 ˃ 1 mg/mL); and a significant anxiolytic activity, since the treated fish reduced the permanence in the clear zone (Light & Dark Test) compared to that in the control, exhibiting anxiolytic-simile effect of diazepam. However, these effects were reduced by pre-treatment with the flumazenil suggesting that the pulp and peel of pitaya are anxiolytics agents mediated via the GABAergic system. These findings suggested that H. polyrizhus has the potential of developing an alternative plant-derived anxiolytic therapy. In addition, pitaya peel (which is a waste in the food industry) should be regarded as a valuable product, which has the potential as an economic value-added ingredient for anxiety disorders.
Collapse
Affiliation(s)
- Sandra Machado Lira
- State University of Ceara, Department of Nutrition, 60714-903 Fortaleza, CE, Brazil
| | - Ana Paula Dionísio
- Embrapa Agroindústria Tropical, Dra Sara Mesquita Street, 2270, 60511-110 Fortaleza, CE, Brazil.
| | | | | | | | - Lia Coêlho Correa
- State University of Ceara, Department of Nutrition, 60714-903 Fortaleza, CE, Brazil
| | | | | | | | | | | | | | | | - Guilherme Julião Zocolo
- Embrapa Agroindústria Tropical, Dra Sara Mesquita Street, 2270, 60511-110 Fortaleza, CE, Brazil
| |
Collapse
|
17
|
Analysis of the degradation of betanin obtained from beetroot using Fourier transform infrared spectroscopy. Journal of Food Science and Technology 2019; 56:3677-3686. [PMID: 31413395 DOI: 10.1007/s13197-019-03826-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 04/16/2019] [Accepted: 05/08/2019] [Indexed: 10/26/2022]
Abstract
Betalains are vacuolar pigments present in tubers, flowers or fruits. Their use in the food industry is significant because they are considered bioactive completely safe to consume. However, betalains are susceptible to temperature which affects their stability. The most of the available methods that determine stability involve high costs, are destructive and generate waste. In this work was evaluated the thermal degradation of betalain at 75 °C for several intervals of time, by using different techniques. Colorimetry showed a change in the tone angle (h°) from 359.76° to 20.54° after the heat-treatment, suggesting thermal degradation by changing the color from violet to red-orange. High-pressure liquid chromatography, shows the decrease of the concentration of betanin in addition to the formation of neobetanin, the main degradation product in betalains. UV-visible spectrophotometry suggest also thermal degradation of betanin, by the decrease of the absorption at 538 nm caused by the heat treatment. Finally, Fourier transform infrared spectroscopy (FTIR) showed a decrease in the intensity of two absorption bands at 1243 and 879 cm-1, corresponding to the C-O and C-C vibrations of the carboxylic acid respectively after heat treatment. These results suggest that the main route of degradation corresponds to decarboxylation. We propose the use of FTIR spectroscopy as a practical alternative for the analysis of the degradation of natural dyes during storage, making evident the possible use of this methodology for industrial applications.
Collapse
|
18
|
Kumorkiewicz A, Szneler E, Wybraniec S. Conjugation of Oxidized Betanidin and Gomphrenin Pigments from Basella alba L. Fruits with Glutathione. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:12815-12826. [PMID: 30415538 DOI: 10.1021/acs.jafc.8b04941] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Formation of glutathionic conjugates with quinonoid forms generated through oxidation of betanidin and gomphrenin obtained from fruits of Basella alba L. was studied by high-performance liquid chromatography coupled with triple quadrupole tandem mass spectrometry (HPLC-DAD-ESI-MS/MS) and ion-trap time-of-flight high-resolution mass spectrometry (LCMS-IT-TOF). The conjugates were studied for the aim of trapping the formed quinonoids by glutathione which would indicate a presence of specific quinonoid structures in reaction products of the pigments with 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) cation radicals. The structure of betanidin conjugate, which was formed with high efficiency, was established by NMR analysis. In the case of gomphrenin conjugate, its structure was tentatively indicated as analogous to betanidin conjugate by MS n fragmentation paths. In contrast, no detectable glutathionic conjugate of betanin quinonoid (quinone methide) was present in similar betanin reaction mixtures. As a result of additional experiments performed during oxidation of gomphrenin by ABTS cation radicals in the absence of glutathione, except for decarboxylated and dehydrogenated gomphrenin derivatives, generation of betanidin and its derivatives was observed which indicated that the subsequent dopachromic intermediate rearrangement affected hydrolysis of the glucosidic bond. This is in contrast to betanin which is not deglucosylated in the same conditions during the oxidation. The obtained results shed some light on the oxidation pathways of various glycosylated betacyanins with gomphrenin being presumably the most potent antioxidant ascertained in this group of pigments.
Collapse
Affiliation(s)
- Agnieszka Kumorkiewicz
- Department of Analytical Chemistry, Faculty of Chemical Engineering and Technology, Institute C-1 , Cracow University of Technology , ul. Warszawska 24 , Cracow 31-155 , Poland
| | - Edward Szneler
- Department of Chemistry, NMR Division , Jagiellonian University , ul. Ingardena 3 , 31-007 Cracow , Poland
| | - Sławomir Wybraniec
- Department of Analytical Chemistry, Faculty of Chemical Engineering and Technology, Institute C-1 , Cracow University of Technology , ul. Warszawska 24 , Cracow 31-155 , Poland
| |
Collapse
|
19
|
Spórna-Kucab A, Bernaś K, Grzegorczyk A, Malm A, Skalicka-Woźniak K, Wybraniec S. Liquid chromatographic techniques in betacyanin isomers separation from Gomphrena globosa L. flowers for the determination of their antimicrobial activities. J Pharm Biomed Anal 2018; 161:83-93. [DOI: 10.1016/j.jpba.2018.08.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 08/10/2018] [Accepted: 08/10/2018] [Indexed: 12/25/2022]
|
20
|
Rodriguez-Amaya DB. Update on natural food pigments - A mini-review on carotenoids, anthocyanins, and betalains. Food Res Int 2018; 124:200-205. [PMID: 31466641 DOI: 10.1016/j.foodres.2018.05.028] [Citation(s) in RCA: 190] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/10/2018] [Accepted: 05/14/2018] [Indexed: 12/20/2022]
Abstract
Extensive structure elucidation has revealed a remarkable diversity of structures for carotenoids, anthocyanins, and betalains, the major natural pigments in plant-derived foods. Composition, stability, influencing factors, processing effects have been widely investigated. Carotenoids isomerize and oxidize while anthocyanins undergo hydrolysis, nucleophilic attack of water, ring fission, and polymerization during thermal processing. Betacyanins suffer deglycosylation, isomerization, dehydrogenation, hydrolysis, and decarboxylation. Biotechnological production dominates research on carotenoids as food colorants while the search for plant sources continues with anthocyanins and betalains. Stabilization studies presently focus on microencapsulation and nanoencapsulation. For anthocyanins, co-pigmentation has also been intensely researched. Carotenoids have been the most studied in terms of health effects, involving epidemiological, cell, animal, and human intervention studies, yet some inconsistencies in the results persist. A wide range of biological activities have been attributed to anthocyanins and betalains, based mainly on cell and animal studies; human clinical studies are lacking.
Collapse
Affiliation(s)
- Delia B Rodriguez-Amaya
- Faculty of Food Engineering, University of Campinas, 13083-862 Campinas, SP, Brazil; Universidade Federal da Fronteira Sul, Campus Laranjeiras do Sul, Rhodovia BR 158 - Km 405, 85301-970 Laranjeiras do Sul, PR, Brazil.
| |
Collapse
|
21
|
Lystvan K, Kumorkiewicz A, Szneler E, Wybraniec S. Study on Betalains in Celosia cristata Linn. Callus Culture and Identification of New Malonylated Amaranthins. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:3870-3879. [PMID: 29597342 DOI: 10.1021/acs.jafc.8b01014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Betacyanins and betaxanthins were characterized and determined in an intensely pigmented red-colored callus culture of Celosia cristata L. (Amaranthaceae). A new malonyl derivative, 6'- O-malonyl-amaranthin (celoscristatin) was isolated and identified by spectroscopic and mass spectrometric techniques. Its stereoisomer, 4'- O-malonyl-amaranthin (celoscristatin acyl-migrated), as well as its 15 R diastereomer were also detected in the callus as a result of the malonyl group migration in celoscristatin/isoceloscristatin, respectively. Amaranthin occurs in the callus as the major betacyanin, followed by celoscristatin, betanin, phyllocactin, and other minor betacyanins. The effect of different carbon sources on the growth rates of the Celosia callus as well as on betalains profiles in the callus cultures was studied. High dopamine content in the callus culture was determined and compared with the content in C. cristata inflorescences. The dopamine-based betalain (miraxanthin V) was detected as the main betaxanthin in the callus, however, at a concentration level much lower than that of the identified betacyanins. The studied callus culture of C. cristata can accumulate betalains in amounts which approach the quantities produced by most known high-yielding plant species.
Collapse
Affiliation(s)
- Kateryna Lystvan
- Department of Genetic Engineering , Institute of Cell Biology and Genetic Engineering of National Academy of Sciences of Ukraine (NASU) , Academika Zabolotnoho, 148 , 03143 Kyiv , Ukraine
| | - Agnieszka Kumorkiewicz
- Department of Analytical Chemistry, Institute C-1, Faculty of Chemical Engineering and Technology , Cracow University of Technology , ul. Warszawska 24 , Cracow 31-155 , Poland
| | - Edward Szneler
- Department of Chemistry, NMR Div , Jagiellonian University , ul. Ingardena 3 , 31-007 Cracow , Poland
| | - Sławomir Wybraniec
- Department of Analytical Chemistry, Institute C-1, Faculty of Chemical Engineering and Technology , Cracow University of Technology , ul. Warszawska 24 , Cracow 31-155 , Poland
| |
Collapse
|