1
|
Thomas G, Caulfield J, Nikolaeva-Reynolds L, Birkett MA, Vuts J. Solvent Extraction of PDMS Tubing as a New Method for the Capture of Volatile Organic Compounds from Headspace. J Chem Ecol 2024; 50:85-99. [PMID: 38246946 DOI: 10.1007/s10886-024-01469-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/11/2024] [Accepted: 01/13/2024] [Indexed: 01/23/2024]
Abstract
Polydimethylsiloxane (PDMS) tubing is increasingly being used to collect volatile organic compounds (VOCs) from static biological headspace. However, analysis of VOCs collected using PDMS tubing often deploys thermal desorption, where samples are considered as 'one-offs' and cannot be used in multiple experiments. In this study, we developed a static headspace VOC collection method using PDMS tubing which is solvent-based, meaning that VOC extracts can be used multiple times and can be linked to biological activity. Using a synthetic blend containing a range of known semiochemicals (allyl isothiocyanate, (Z)-3-hexen-1-ol, 1-octen-3-one, nonanal, (E)-anethol, (S)-bornyl acetate, (E)-caryophyllene and pentadecane) with differing chemical and physicochemical properties, VOCs were collected in static headspace by exposure to PDMS tubing with differing doses, sampling times and lengths. In a second experiment, VOCs from oranges were collected using PDMS sampling of static headspace versus dynamic headspace collection. VOCs were eluted with diethyl ether and analysed using gas chromatography - flame ionization detector (GC-FID) and coupled GC - mass spectrometry. GC-FID analysis of collected samples showed that longer PDMS tubes captured significantly greater quantities of compounds than shorter tubes, and that sampling duration significantly altered the recovery of all tested compounds. Moreover, greater quantities of compounds were recovered from closed compared to open systems. Finally, analysis of orange headspace VOCs showed no qualitative differences in VOCs recovered compared to dynamic headspace collections, although quantities sampled using PDMS tubing were lower. In summary, extraction of PDMS tubing with diethyl ether solvent captures VOCs from the headspace of synthetic blends and biological samples, and the resulting extracts can be used for multiple experiments linking VOC content to biological activity.
Collapse
Affiliation(s)
- Gareth Thomas
- Protecting Crops and the Environment, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | - John Caulfield
- Protecting Crops and the Environment, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | | | - Michael A Birkett
- Protecting Crops and the Environment, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | - József Vuts
- Protecting Crops and the Environment, Rothamsted Research, Harpenden, AL5 2JQ, UK.
| |
Collapse
|
2
|
Qian Q, Cui J, Miao Y, Xu X, Gao H, Xu H, Lu Z, Zhu P. The Plant Volatile-Sensing Mechanism of Insects and Its Utilization. PLANTS (BASEL, SWITZERLAND) 2024; 13:185. [PMID: 38256738 PMCID: PMC10819770 DOI: 10.3390/plants13020185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/07/2024] [Accepted: 01/07/2024] [Indexed: 01/24/2024]
Abstract
Plants and insects are engaged in a tight relationship, with phytophagous insects often utilizing volatile organic substances released by host plants to find food and egg-laying sites. Using plant volatiles as attractants for integrated pest management is vital due to its high efficacy and low environmental toxicity. Using naturally occurring plant volatiles combined with insect olfactory mechanisms to select volatile molecules for screening has proved an effective method for developing plant volatile-based attractant technologies. However, the widespread adoption of this technique is still limited by the lack of a complete understanding of molecular insect olfactory pathways. This paper first describes the nature of plant volatiles and the mechanisms of plant volatile perception by insects. Then, the attraction mechanism of plant volatiles to insects is introduced with the example of Cnaphalocrocis medinalis. Next, the progress of the development and utilization of plant volatiles to manage pests is presented. Finally, the functions played by the olfactory system of insects in recognizing plant volatiles and the application prospects of utilizing volatiles for green pest control are discussed. Understanding the sensing mechanism of insects to plant volatiles and its utilization will be critical for pest management in agriculture.
Collapse
Affiliation(s)
- Qi Qian
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (Q.Q.); (J.C.); (Y.M.); (H.G.); (Z.L.)
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agriculture Sciences, Hangzhou 310021, China
| | - Jiarong Cui
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (Q.Q.); (J.C.); (Y.M.); (H.G.); (Z.L.)
| | - Yuanyuan Miao
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (Q.Q.); (J.C.); (Y.M.); (H.G.); (Z.L.)
| | - Xiaofang Xu
- Jinhua Agricultural Technology Extension and Seed Administration Center, Jinhua 321017, China;
| | - Huiying Gao
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (Q.Q.); (J.C.); (Y.M.); (H.G.); (Z.L.)
| | - Hongxing Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agriculture Sciences, Hangzhou 310021, China
| | - Zhongxian Lu
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (Q.Q.); (J.C.); (Y.M.); (H.G.); (Z.L.)
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agriculture Sciences, Hangzhou 310021, China
| | - Pingyang Zhu
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (Q.Q.); (J.C.); (Y.M.); (H.G.); (Z.L.)
| |
Collapse
|
3
|
Yuan GG, Zhao LC, Du YW, Yu H, Shi XB, Chen WC, Chen G. Repellence or attraction: secondary metabolites in pepper mediate attraction and defense against Spodoptera litura. PEST MANAGEMENT SCIENCE 2022; 78:4859-4870. [PMID: 36181416 DOI: 10.1002/ps.7107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/28/2022] [Accepted: 07/31/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Resistance to insect pests is an important self-defense characteristic of pepper plants. However, the resistance of different pepper cultivars to Spodoptera litura larvae, one of the main insect pest species on pepper, is not well understood. RESULTS Among seven pepper cultivars evaluated, cayenne pepper 'FXBX' showed the highest repellency to third instar S. litura larvae, Chao tian chili pepper 'BLTY2' showed the lowest repellency. Plant volatiles (1-hexene, hexanal, β-ionone, (E,E)-2,6-nonadienal, and methyl salicylate) affected host selection by S. litura. Among these, 1-hexene, hexanal, and β-ionone at concentrations naturally-released by pepper leaves were found to repel S. litura. Interestingly, S. litura larvae fed on the larva-attracting pepper cultivar, (BLTY2) had an extended developmental period, which was about 13 days longer than larvae fed on FXBX. Besides, the survival rate of larvae fed on BLTY2 was 22.5 ± 0.0%, indicating that the leaves of BLTY2 can kill S. litura larvae. Correlation analysis showed that larval survival rate, emergence rate, female adult longevity, and pupal weight were positively correlated with the vitamin C, amino acids, protein, cellulose, and soluble sugar contents, but were negatively correlated with wax and flavonoids contents. CONCLUSION We identified two different modes of direct defense exhibited by pepper cultivars against S. litura. One involves the release of repellent volatiles to avoid been fed on (FXBX cultivar). The other involves the inhibition of the growth and development or the direct killing of S. litura larvae which feeds on it (BLTY2 cultivar). © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ge-Ge Yuan
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, P. R. China
- College of Plant Protection, Hunan Agricultural University, Changsha, P. R. China
| | - Lin-Chao Zhao
- Economic Crops Extension department, Tanghe County Agriculture and Rural Bureau, Nanyang, P. R. China
| | - Yuan-Wen Du
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, P. R. China
- College of Plant Protection, Hunan Agricultural University, Changsha, P. R. China
| | - Huan Yu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, P. R. China
- College of Plant Protection, Hunan Agricultural University, Changsha, P. R. China
| | - Xiao-Bin Shi
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha, P. R. China
| | - Wen-Chao Chen
- Hunan Vegetable Research Institute, Hunan Academy of Agricultural Sciences, Changsha, P. R. China
| | - Gong Chen
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, P. R. China
- College of Plant Protection, Hunan Agricultural University, Changsha, P. R. China
| |
Collapse
|
4
|
Pitts RJ, Huff RM, Shih SJ, Bohbot JD. Identification and functional characterization of olfactory indolergic receptors in Musca domestica. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 139:103653. [PMID: 34600101 DOI: 10.1016/j.ibmb.2021.103653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 07/06/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
In mosquitoes, indolic compounds are detected by a group of olfactory indolergic Odorant Receptors (indolORs). The ancient origin of indole and 3-methylindole as chemical signals suggest that they may be detected by insects outside the Culicidae clade. To test this hypothesis, we have identified potential indolOR genes in brachyceran flies based on sequence homology. Because of the crucial roles of indolic compounds in oviposition and foraging, we have focused our attention on the housefly Musca domestica. Using a heterologous expression system, we have identified indolOR transcript expression in the female antennae, and have characterized MdomOR30a and MdomOR49b as 3-methylindole and indole receptors, respectively. We have identified a set of 92 putative indolOR genes encoded in the genomes of Culicoidea, Psychodidae and brachycera, described their phylogenetic relationships, and exon/intron structures. Further characterization of indolORs will impact our understanding of insect chemical ecology and will provide targets for the development of novel odor-based tools that can be integrated into existing vector surveillance and control programs.
Collapse
Affiliation(s)
- R Jason Pitts
- Department of Biology, Baylor University, Waco, TX, USA
| | - Robert M Huff
- Department of Biology, Baylor University, Waco, TX, USA
| | - Shan Ju Shih
- Department of Biology, Baylor University, Waco, TX, USA
| | - Jonathan D Bohbot
- Department of Entomology, The Hebrew University of Jerusalem, The Robert H. Smith Faculty of Agriculture, Food and Environment, Rehovot, 76100, Israel.
| |
Collapse
|
5
|
Pineda-Ríos JM, Cibrián-Tovar J, Hernández-Fuentes LM, López-Romero RM, Soto-Rojas L, Romero-Nápoles J, Llanderal-Cázares C, Salomé-Abarca LF. α-Terpineol: An Aggregation Pheromone in Optatus palmaris (Coleoptera: Curculionidae) (Pascoe, 1889) Enhanced by Its Host-Plant Volatiles. Molecules 2021; 26:molecules26102861. [PMID: 34065875 PMCID: PMC8150320 DOI: 10.3390/molecules26102861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/28/2021] [Accepted: 05/06/2021] [Indexed: 12/03/2022] Open
Abstract
The Annonaceae fruits weevil (Optatus palmaris) causes high losses to the soursop production in Mexico. Damage occurs when larvae and adults feed on the fruits; however, there is limited research about control strategies against this pest. However, pheromones provide a high potential management scheme for this curculio. Thus, this research characterized the behavior and volatile production of O. palmaris in response to their feeding habits. Olfactometry assays established preference by weevils to volatiles produced by feeding males and soursop. The behavior observed suggests the presence of an aggregation pheromone and a kairomone. Subsequently, insect volatiles sampled by solid-phase microextraction and dynamic headspace detected a unique compound on feeding males increased especially when feeding. Feeding-starvation experiments showed an averaged fifteen-fold increase in the concentration of a monoterpenoid on males feeding on soursop, and a decrease of the release of this compound males stop feeding. GC-MS analysis of volatiles identified this compound as α-terpineol. Further olfactometry assays using α-terpineol and soursop, demonstrated that this combination is double attractive to Annonaceae weevils than only soursop volatiles. The results showed a complementation effect between α-terpineol and soursop volatiles. Thus, α-terpineol is the aggregation pheromone of O. palmaris, and its concentration is enhanced by host-plant volatiles.
Collapse
Affiliation(s)
- José Manuel Pineda-Ríos
- Postgrado en Fitosanidad, Programa de Entomología y Acarología, Colegio de Postgraduados Campus Montecillo, Km 36.5 Carretera, Texcoco 56230, Mexico; (J.M.P.-R.); (L.S.-R.); (J.R.-N.); (C.L.-C.)
| | - Juan Cibrián-Tovar
- Postgrado en Fitosanidad, Programa de Entomología y Acarología, Colegio de Postgraduados Campus Montecillo, Km 36.5 Carretera, Texcoco 56230, Mexico; (J.M.P.-R.); (L.S.-R.); (J.R.-N.); (C.L.-C.)
- Correspondence: (J.C.-T.); (L.F.S.-A.); Tel.: +52-155-383-54600 (J.C.-T.); +52-175-810-86324 (L.F.S.-A.)
| | - Luis Martín Hernández-Fuentes
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Progreso Número 5, Barrio de Santa Catarina, Delegación Coyoacán, Ciudad de México 04010, Mexico;
| | - Rosa María López-Romero
- Postgrado en Edafología, Colegio de Postgraduados Campus Montecillo, Km 36.5 Carretera, Texcoco 56230, Mexico;
| | - Lauro Soto-Rojas
- Postgrado en Fitosanidad, Programa de Entomología y Acarología, Colegio de Postgraduados Campus Montecillo, Km 36.5 Carretera, Texcoco 56230, Mexico; (J.M.P.-R.); (L.S.-R.); (J.R.-N.); (C.L.-C.)
| | - Jesús Romero-Nápoles
- Postgrado en Fitosanidad, Programa de Entomología y Acarología, Colegio de Postgraduados Campus Montecillo, Km 36.5 Carretera, Texcoco 56230, Mexico; (J.M.P.-R.); (L.S.-R.); (J.R.-N.); (C.L.-C.)
| | - Celina Llanderal-Cázares
- Postgrado en Fitosanidad, Programa de Entomología y Acarología, Colegio de Postgraduados Campus Montecillo, Km 36.5 Carretera, Texcoco 56230, Mexico; (J.M.P.-R.); (L.S.-R.); (J.R.-N.); (C.L.-C.)
| | - Luis F. Salomé-Abarca
- Postgrado en Fitosanidad, Programa de Entomología y Acarología, Colegio de Postgraduados Campus Montecillo, Km 36.5 Carretera, Texcoco 56230, Mexico; (J.M.P.-R.); (L.S.-R.); (J.R.-N.); (C.L.-C.)
- Correspondence: (J.C.-T.); (L.F.S.-A.); Tel.: +52-155-383-54600 (J.C.-T.); +52-175-810-86324 (L.F.S.-A.)
| |
Collapse
|
6
|
Li XW, Zhang ZJ, Hafeez M, Huang J, Zhang JM, Wang LK, Lu YB. Rosmarinus officinialis L. (Lamiales: Lamiaceae), a Promising Repellent Plant for Thrips Management. JOURNAL OF ECONOMIC ENTOMOLOGY 2021; 114:131-141. [PMID: 33346361 DOI: 10.1093/jee/toaa288] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Indexed: 05/14/2023]
Abstract
A number of thrips species are among the most significant agricultural pests globally. Use of repellent intercrop plants is one of the key components in plant-based 'push-pull' strategies to manage pest populations. In this study, the behavioral responses of three thrips species, Frankliniella occidentalis (Pergande), Frankliniella intonsa (Trybom), and Thrips palmi Karny (Thysanoptera: Thripidae) to Rosmarinus officinalis were investigated in Y-tube olfactometer bioassays and cage experiments. In addition, the major volatile compounds from rosemary were identified and the effect of the individual compounds on thrips behavior was evaluated. Females and males of the three thrips species were significantly repelled by the volatiles from cut rosemary leaves. The presence of rosemary plants significantly reduced settlement of females of the three thrips species and eggs laid by F. occidentalis females on target host plants. In total, 47 compounds were identified in the volatiles collected from the cut leaves of rosemary plants. The responses of the three thrips species to 10 major volatile compounds showed significant differences. However, α-pinene, the most abundant volatile, was repellent to F. occidentalis and F. intonsa. Eucalyptol, the second most abundant volatile, showed significant repellent activity to all the three thrips species. Our findings showed that rosemary is a promising repellent plant against the three thrips pests we tested, which could be a good candidate for 'push' plants in plant-based 'push-pull' strategies. The identified volatile compounds that accounted for the repellent activity could be developed as repellents for sustainable thrips management.
Collapse
Affiliation(s)
- Xiao-Wei Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Zhi-Jun Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Muhammad Hafeez
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jun Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jin-Ming Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Li-Kun Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | | |
Collapse
|
7
|
Stappen I, Wanner J, Tabanca N, Bernier UR, Kendra PE. Blue Tansy Essential Oil: Chemical Composition, Repellent Activity Against Aedes aegypti and Attractant Activity for Ceratitis capitata. Nat Prod Commun 2021. [DOI: 10.1177/1934578x21990194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Blue tansy essential oil (BTEO) ( Tanacetum annuum L.) was analyzed by GC-MS and GC-FID using two different capillary column stationary phases. Sabinene (14.0%), camphor (13.6%), myrcene (8.0%), β-pinene (7.7%), and chamazulene (6.9%) were the main components using an SE52 column (non-polar). On a polar CW20M phase column, sabinene (15.1%), camphor (14.4%), α-phellandrene (7.9%), β-pinene (7.7%), and myrcene (6.9%) were the most abundant compounds. To assess the oil for potential applications in integrated pest management strategies, behavioral bioassays were conducted to test for repellency against yellow fever mosquito Aedes aegypti, and for attractant activity for Mediterranean fruit fly Ceratitis capitata. Results showed that BTEO was not effective in repelling Ae. aegypti (minimum effective dosage [MED]: 0.625 ± 0.109 mg/cm2 compared with the standard insect repellent DEET (N,N-diethyl-3-methylbenzamide). In assays with male C. capitata, BTEO displayed mild attraction compared with two positive controls (essential oils from tea tree Melaleuca alternifolia and African ginger bush Tetradenia riparia). Additional studies are needed to identify the specific attractant chemicals in BTEO and to determine if they confer a synergistic effect when combined with other known attractants for C. capitata. To the best of our knowledge, this study represents the first investigation of BTEO for repellency against the mosquito vector Ae. aegypti and for attractancy to C. capitata, a major agricultural pest worldwide.
Collapse
Affiliation(s)
- Iris Stappen
- University of Vienna, Department of Pharmaceutical Chemistry, Vienna, Austria
| | - Juergen Wanner
- Kurt Kitzing GmbH, Hinterm Alten Schloss 21, Wallerstein, Germany
| | - Nurhayat Tabanca
- USDA-ARS, Subtropical Horticulture Research Station, Miami, FL, USA
| | - Ulrich R. Bernier
- USDA-ARS, Center for Medical, Agricultural, and Veterinary Entomology, Gainesville, FL, USA
| | - Paul E. Kendra
- USDA-ARS, Subtropical Horticulture Research Station, Miami, FL, USA
| |
Collapse
|
8
|
Li XW, Lu XX, Zhang ZJ, Huang J, Zhang JM, Wang LK, Hafeez M, Fernández-Grandon GM, Lu YB. Intercropping Rosemary ( Rosmarinus officinalis) with Sweet Pepper ( Capsicum annum) Reduces Major Pest Population Densities without Impacting Natural Enemy Populations. INSECTS 2021; 12:insects12010074. [PMID: 33467491 PMCID: PMC7830198 DOI: 10.3390/insects12010074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/08/2021] [Accepted: 01/13/2021] [Indexed: 11/16/2022]
Abstract
Intercropping of aromatic plants provides an environmentally benign route to reducing pest damage in agroecosystems. However, the effect of intercropping on natural enemies, another element which may be vital to the success of an integrated pest management approach, varies in different intercropping systems. Rosemary, Rosmarinus officinalis L. (Lamiaceae), has been reported to be repellent to many insect species. In this study, the impact of sweet pepper/rosemary intercropping on pest population suppression was evaluated under greenhouse conditions and the effect of rosemary intercropping on natural enemy population dynamics was investigated. The results showed that intercropping rosemary with sweet pepper significantly reduced the population densities of three major pest species on sweet pepper, Frankliniella intonsa, Myzus persicae, and Bemisia tabaci, but did not affect the population densities of their natural enemies, the predatory bug, Orius sauteri, or parasitoid, Encarsia formosa. Significant pest population suppression with no adverse effect on released natural enemy populations in the sweet pepper/rosemary intercropping system suggests this could be an approach for integrated pest management of greenhouse-cultivated sweet pepper. Our results highlight the potential of the integration of alternative pest control strategies to optimize sustainable pest control.
Collapse
Affiliation(s)
- Xiao-wei Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (X.-w.L.); (X.-x.L.); (Z.-j.Z.); (J.H.); (J.-m.Z.); (L.-k.W.); (M.H.)
| | - Xin-xin Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (X.-w.L.); (X.-x.L.); (Z.-j.Z.); (J.H.); (J.-m.Z.); (L.-k.W.); (M.H.)
| | - Zhi-jun Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (X.-w.L.); (X.-x.L.); (Z.-j.Z.); (J.H.); (J.-m.Z.); (L.-k.W.); (M.H.)
| | - Jun Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (X.-w.L.); (X.-x.L.); (Z.-j.Z.); (J.H.); (J.-m.Z.); (L.-k.W.); (M.H.)
| | - Jin-ming Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (X.-w.L.); (X.-x.L.); (Z.-j.Z.); (J.H.); (J.-m.Z.); (L.-k.W.); (M.H.)
| | - Li-kun Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (X.-w.L.); (X.-x.L.); (Z.-j.Z.); (J.H.); (J.-m.Z.); (L.-k.W.); (M.H.)
| | - Muhammad Hafeez
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (X.-w.L.); (X.-x.L.); (Z.-j.Z.); (J.H.); (J.-m.Z.); (L.-k.W.); (M.H.)
| | | | - Yao-bin Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (X.-w.L.); (X.-x.L.); (Z.-j.Z.); (J.H.); (J.-m.Z.); (L.-k.W.); (M.H.)
- Correspondence: ; Tel./Fax: +86-517-8640-4225
| |
Collapse
|
9
|
Zhao J, Jin X, Wang X, Yang C, Piao X, Kaw HY, Li D. A fast and selective gas liquid microextraction of semiochemicals for quantitative analysis in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 298:110576. [PMID: 32771138 DOI: 10.1016/j.plantsci.2020.110576] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 06/16/2020] [Accepted: 06/19/2020] [Indexed: 06/11/2023]
Abstract
A trapping-based gas liquid microextraction (GLME) method coupled with gas chromatography-mass spectrometry (GC-MS) was utilized to qualitatively and quantitatively characterize semiochemicals in plants. The main GLME extraction efficiency associated parameters (heating temperature and extraction time) were optimized. The results obtained from GLME process were compared with those of steam distillation and ultrasonic extraction, and the recovery, peak number and reproducibility were evaluated by using Thuja koraiensis Nakai as a representative plant. Furthermore, the quantitative performances of the GLME in terms of sample amount, recoveries of spiked standards and correlation were systematically evaluated using standard addition method, which gave a good quantitative ability for all the compounds with squares of correlation coefficient (r2) of higher than 0.99. Finally, the contents of α-pinene, camphene, linalool, α-terpinenol, β-caryophyllene, α-caryophyllene, and totarol in Thuja koraiensis Nakai samples were quantified, and their concentrations (SD, n = 3) were; 0.65 (0.06), 0.62 (0.05), 4.12 (0.15), 0.99 (0.08), 1.11 (0.07), 0.63 (0.04), and 21.91 (0.25) μg g-1, respectively. It was demonstrated that GLME is a powerful sample preparation technique for quantitative and qualitative analysis of plant semiochemicals.
Collapse
Affiliation(s)
- Jinhua Zhao
- Department of Chemistry, Key Laboratory of Biological Resources of Changbai Mountain & Functional Molecules (Yanbian University), Ministry of Education, Park Road 977, Yanji City, Jilin Province, 133002, China
| | - Xiangzi Jin
- Department of Chemistry, Key Laboratory of Biological Resources of Changbai Mountain & Functional Molecules (Yanbian University), Ministry of Education, Park Road 977, Yanji City, Jilin Province, 133002, China
| | - Xiaoping Wang
- Department of Chemistry, Key Laboratory of Biological Resources of Changbai Mountain & Functional Molecules (Yanbian University), Ministry of Education, Park Road 977, Yanji City, Jilin Province, 133002, China
| | - Cui Yang
- Department of Chemistry, Changchun Normal University, Changji North Road 677, Changchun City, Jilin Province, 130032, China
| | - Xiangfan Piao
- Department of Chemistry, Key Laboratory of Biological Resources of Changbai Mountain & Functional Molecules (Yanbian University), Ministry of Education, Park Road 977, Yanji City, Jilin Province, 133002, China
| | - Han Yeong Kaw
- Department of Chemistry, Key Laboratory of Biological Resources of Changbai Mountain & Functional Molecules (Yanbian University), Ministry of Education, Park Road 977, Yanji City, Jilin Province, 133002, China
| | - Donghao Li
- Department of Chemistry, Key Laboratory of Biological Resources of Changbai Mountain & Functional Molecules (Yanbian University), Ministry of Education, Park Road 977, Yanji City, Jilin Province, 133002, China.
| |
Collapse
|
10
|
Positive Selection of Squalene Synthase in Cucurbitaceae Plants. Int J Genomics 2019; 2019:5913491. [PMID: 31211131 PMCID: PMC6532303 DOI: 10.1155/2019/5913491] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/08/2019] [Indexed: 11/30/2022] Open
Abstract
Triterpenoid saponins are secondary metabolites synthesized through isoprenoid pathways in plants. Cucurbitaceae represent an important plant family in which many species contain cucurbitacins as secondary metabolites synthesized through isoprenoid and triterpenoid pathways. Squalene synthase (SQS) is required for the biosynthesis of isoprenoids, but the forces driving the evolution of SQS remain undetermined. In this study, 10 SQS cDNA sequences cloned from 10 species of Cucurbitaceae and 49 sequences of SQS downloaded from GenBank and UniProt databases were analyzed in a phylogenetic framework to identify the evolutionary forces for functional divergence. Through phylogenetic construction and positive selection analysis, we found that SQS sequences are under positive selection. The sites of positive selection map to functional and transmembrane domains. 180L, 189S, 194S, 196S, 265I, 289P, 389P, 390T, 407S, 408A, 410R, and 414N were identified as sites of positive selection that are important during terpenoid synthesis and map to transmembrane domains. 196S and 407S are phosphorylated and influence SQS catalysis and triterpenoid accumulation. These results reveal that positive selection is an important evolutionary force for SQS in plants. This provides new information into the molecular evolution of SQS within the Cucurbitaceae family.
Collapse
|
11
|
Beck JJ, Alborn HT, Block AK, Christensen SA, Hunter CT, Rering CC, Seidl-Adams I, Stuhl CJ, Torto B, Tumlinson JH. Interactions Among Plants, Insects, and Microbes: Elucidation of Inter-Organismal Chemical Communications in Agricultural Ecology. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:6663-6674. [PMID: 29895142 DOI: 10.1021/acs.jafc.8b01763] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The last 2 decades have witnessed a sustained increase in the study of plant-emitted volatiles and their role in plant-insect, plant-microbe, and plant-plant interactions. While each of these binary systems involves complex chemical and biochemical processes between two organisms, the progression of increasing complexity of a ternary system (i.e., plant-insect-microbe), and the study of a ternary system requires nontrivial planning. This planning can include an experimental design that factors in potential overarching ecological interactions regarding the binary or ternary system, correctly identifying and understanding unexpected observations that may occur during the experiment and thorough interpretation of the resultant data. This challenge of planning, performing, and interpreting a plant's defensive response to multiple biotic stressors will be even greater when abiotic stressors (i.e., temperature or water) are factored into the system. To fully understand the system, we need to not only continue to investigate and understand the volatile profiles but also include and understand the biochemistry of the plant's response to these stressors. In this review, we provide examples and discuss interaction considerations with respect to how readers and future authors of the Journal of Agricultural and Food Chemistry can contribute their expertise toward the extraction and interpretation of chemical information exchanged between agricultural commodities and their associated pests. This holistic, multidisciplinary, and thoughtful approach to interactions of plants, insects, and microbes, and the resultant response of the plants can lead to a better understanding of agricultural ecology, in turn leading to practical and viable solutions to agricultural problems.
Collapse
Affiliation(s)
- John J Beck
- Chemistry Research Unit, Center for Medical, Agricultural and Veterinary Entomology, Agricultural Research Service , U.S. Department of Agriculture , 1700 SW 23rd Drive , Gainesville , Florida 32608 , United States
| | - Hans T Alborn
- Chemistry Research Unit, Center for Medical, Agricultural and Veterinary Entomology, Agricultural Research Service , U.S. Department of Agriculture , 1700 SW 23rd Drive , Gainesville , Florida 32608 , United States
| | - Anna K Block
- Chemistry Research Unit, Center for Medical, Agricultural and Veterinary Entomology, Agricultural Research Service , U.S. Department of Agriculture , 1700 SW 23rd Drive , Gainesville , Florida 32608 , United States
| | - Shawn A Christensen
- Chemistry Research Unit, Center for Medical, Agricultural and Veterinary Entomology, Agricultural Research Service , U.S. Department of Agriculture , 1700 SW 23rd Drive , Gainesville , Florida 32608 , United States
| | - Charles T Hunter
- Chemistry Research Unit, Center for Medical, Agricultural and Veterinary Entomology, Agricultural Research Service , U.S. Department of Agriculture , 1700 SW 23rd Drive , Gainesville , Florida 32608 , United States
| | - Caitlin C Rering
- Chemistry Research Unit, Center for Medical, Agricultural and Veterinary Entomology, Agricultural Research Service , U.S. Department of Agriculture , 1700 SW 23rd Drive , Gainesville , Florida 32608 , United States
| | - Irmgard Seidl-Adams
- Center for Chemical Ecology , Penn State University , University Park , Pennsylvania 16802 , United States
| | - Charles J Stuhl
- Chemistry Research Unit, Center for Medical, Agricultural and Veterinary Entomology, Agricultural Research Service , U.S. Department of Agriculture , 1700 SW 23rd Drive , Gainesville , Florida 32608 , United States
| | - Baldwyn Torto
- International Centre of Insect Physiology and Ecology (icipe) , 30772-00100 , Nairobi , Kenya
| | - James H Tumlinson
- Center for Chemical Ecology , Penn State University , University Park , Pennsylvania 16802 , United States
| |
Collapse
|