1
|
Qin X, Xu J, An X, Yang J, Wang Y, Dou M, Wang M, Huang J, Fu Y. Insight of endophytic fungi promoting the growth and development of woody plants. Crit Rev Biotechnol 2024; 44:78-99. [PMID: 36592988 DOI: 10.1080/07388551.2022.2129579] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/04/2022] [Accepted: 04/16/2022] [Indexed: 01/04/2023]
Abstract
Microorganisms play an important role in plant growth and development. In particular, endophytic fungi is one of the important kinds of microorganisms and has a mutually beneficial symbiotic relationship with host plants. Endophytic fungi have many substantial benefits to host plants, especially for woody plants, such as accelerating plant growth, enhancing stress resistance, promoting nutrient absorption, resisting pathogens and etc. However, the effects of endophytic fungi on the growth and development of woody plants have not been systematically summarized. In this review, the functions of endophytic fungi for the growth and development of woody plants have been mainly reviewed, including regulating plant growth (e.g., flowering, root elongation, etc.) by producing nutrients and plant hormones, and improving plant disease, insect resistance and heavy metal resistance by producing secondary metabolites. In addition, the diversity of endophytic fungi could improve the ability of woody plants to adapt to adverse environment. The components produced by endophytic fungi have excellent potential for the growth and development of woody plants. This review has systematically discussed the potential regulation mechanism of endophytic fungi regulating the growth and development of woody plants, it would be of great significance for the development and utilization of endophytic fungi resource from woody plants for the protection of forest resources.
Collapse
Affiliation(s)
- Xiangyu Qin
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, PR China
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, PR China
| | - Jian Xu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, PR China
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, PR China
| | - Xiaoli An
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, PR China
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, PR China
| | - Jie Yang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, PR China
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, PR China
| | - Yao Wang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, PR China
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, PR China
| | - Meijia Dou
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, PR China
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, PR China
| | - Minggang Wang
- The College of Forestry, Beijing Forestry University, Beijing, PR China
| | - Jin Huang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, PR China
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, PR China
| | - Yujie Fu
- The College of Forestry, Beijing Forestry University, Beijing, PR China
| |
Collapse
|
2
|
Seo JW, Ham DY, Lee JG, Kim MJ, Yu CY, Seong ES. The effect of different LED wavelengths on the components and biosynthesis of isoflavonoid in sprout Astragalus membranaceus. PROTOPLASMA 2024; 261:103-110. [PMID: 37524894 DOI: 10.1007/s00709-023-01883-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/14/2023] [Indexed: 08/02/2023]
Abstract
An artificial light source is the optimal element for studying the usability of the medicinal plant Astragalus membranaceus as a sprout vegetable. Based on artificial light source conditions, formononetin (FO) level was the highest (2.6 mg/L) in A. membranaceus exposed to white light emitting diode (LED) light, and calycosin (CA) level was the highest (3.09 mg/L) in the plant exposed to red LED light. According to the publicly available transcriptome data of LED-exposed sprout A. membranaceus LED, reference genes related to the content enhancement of FO, an isoflavone compound, and those related to the content enhancement of CA were selected. The expression patterns of these genes were assayed using qPCR. Among the genes related to FO enhancement, Gene-225190T showed the highest mRNA levels in cells of LED-white light-exposed sprout A. membranaceus; among the genes related to CA enhancement, Gene_042770T showed the highest expression under red LED light. Most genes related to the overall biosynthesis regulation of flavonoids of the upper concept of isoflavone were highly expressed in response to red LED light, and the transcriptional level of 4CL in response to red LED light was the highest. Based on these results, the artificial light sources that regulated the FO and CA contents in sprouts A. membranaceus were white and red LED lights, and the selected reference genes were capable of regulating isoflavone biosynthesis.
Collapse
Affiliation(s)
- Ji Won Seo
- Interdisciplinary Program in Smart Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Da Ye Ham
- Interdisciplinary Program in Smart Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Jae Geun Lee
- Research Institute of Biotechnology, Hwajinbiocosmetic, Chuncheon, 24232, Republic of Korea
| | - Myong Jo Kim
- Division of Bioresource Sciences, Department of Applied Plant Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Chang Yeon Yu
- Division of Bioresource Sciences, Department of Applied Plant Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Eun Soo Seong
- Division of Bioresource Sciences, Department of Applied Plant Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
3
|
Zeng Z, Jin S, Xiang X, Yuan H, Jin Y, Shi Q, Zhang Y, Yang M, Zhang L, Huang R, Song C. Dynamical changes of tea metabolites fermented by Aspergillus cristatus, Aspergillus neoniger and mixed fungi: A temporal clustering strategy for untargeted metabolomics. Food Res Int 2023; 170:112992. [PMID: 37316065 DOI: 10.1016/j.foodres.2023.112992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 06/16/2023]
Abstract
Dark tea fermentation involves various fungi, but studies focusing on the mixed fermentation in tea remain limited. This study investigated the influences of single and mixed fermentation on the dynamical alterations of tea metabolites. The differential metabolites between unfermented and fermented teas were determined using untargeted metabolomics. Dynamical changes in metabolites were explored by temporal clustering analysis. Results indicated that Aspergillus cristatus (AC) at 15 days, Aspergillus neoniger (AN) at 15 days, and mixed fungi (MF) at 15 days had respectively 68, 128 and 135 differential metabolites, compared with unfermentation (UF) at 15 days. Most of metabolites in the AN or MF group showed a down-regulated trend in cluster 1 and 2, whereas most of metabolites in the AC group showed an up-regulated trend in cluster 3 to 6. The three key metabolic pathways mainly composed of flavonoids and lipids included flavone and flavonol biosynthesis, glycerophospholipid metabolism and flavonoid biosynthesis. Based on the dynamical changes and metabolic pathways of the differential metabolites, AN showed a predominant status in MF compared with AC. Together, this study will advance the understanding of dynamic changes in tea fermentation and provide valuable insights into the processing and quality control of dark tea.
Collapse
Affiliation(s)
- Zhaoxiang Zeng
- College of Pharmacy, Hubei University of Chinese Medicine, 16 Huangjiahu West Road, Hongshan District, 430065 Wuhan, Hubei, China
| | - Shuna Jin
- College of Basic Medicine, Hubei University of Chinese Medicine, 16 Huangjiahu West Road, Hongshan District, 430065 Wuhan, Hubei, China
| | - Xingliang Xiang
- School of Life Sciences, Hainan University, 58 Renmin Avenue, Meilan District, 570228 Haikou, Hainan, China
| | - Hao Yuan
- College of Pharmacy, Hubei University of Chinese Medicine, 16 Huangjiahu West Road, Hongshan District, 430065 Wuhan, Hubei, China
| | - Yuehui Jin
- College of Pharmacy, Hubei University of Chinese Medicine, 16 Huangjiahu West Road, Hongshan District, 430065 Wuhan, Hubei, China
| | - Qingxin Shi
- College of Pharmacy, Hubei University of Chinese Medicine, 16 Huangjiahu West Road, Hongshan District, 430065 Wuhan, Hubei, China
| | - Yanmei Zhang
- College of Basic Medicine, Hubei University of Chinese Medicine, 16 Huangjiahu West Road, Hongshan District, 430065 Wuhan, Hubei, China
| | - Min Yang
- College of Basic Medicine, Hubei University of Chinese Medicine, 16 Huangjiahu West Road, Hongshan District, 430065 Wuhan, Hubei, China
| | - Lijun Zhang
- College of Basic Medicine, Hubei University of Chinese Medicine, 16 Huangjiahu West Road, Hongshan District, 430065 Wuhan, Hubei, China
| | - Rongzeng Huang
- College of Pharmacy, Hubei University of Chinese Medicine, 16 Huangjiahu West Road, Hongshan District, 430065 Wuhan, Hubei, China.
| | - Chengwu Song
- College of Pharmacy, Hubei University of Chinese Medicine, 16 Huangjiahu West Road, Hongshan District, 430065 Wuhan, Hubei, China.
| |
Collapse
|
4
|
Ji B, Xuan L, Zhang Y, Zhang G, Meng J, Mu W, Liu J, Paek KY, Park SY, Wang J, Gao W. Advances in Biotechnological Production and Metabolic Regulation of Astragalus membranaceus. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091858. [PMID: 37176916 PMCID: PMC10180874 DOI: 10.3390/plants12091858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/13/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023]
Abstract
Legume medicinal plants Astragalus membranaceus are widely used in the world and have very important economic value, ecological value, medicinal value, and ornamental value. The bioengineering technology of medicinal plants is used in the protection of endangered species, the rapid propagation of important resources, detoxification, and the improvement of degraded germplasm. Using bioengineering technology can effectively increase the content of secondary metabolites in A. membranaceus and improve the probability of solving the problem of medicinal plant resource shortage. In this review, we focused on biotechnological research into A. membranaceus, such as the latest advances in tissue culture, including callus, adventitious roots, hairy roots, suspension cells, etc., the metabolic regulation of chemical compounds in A. membranaceus, and the research progress on the synthetic biology of astragalosides, including the biosynthesis pathway of astragalosides, microbial transformation of astragalosides, and metabolic engineering of astragalosides. The review also looks forward to the new development trend of medicinal plant biotechnology, hoping to provide a broader development prospect for the in-depth study of medicinal plants.
Collapse
Affiliation(s)
- Baoyu Ji
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Liangshuang Xuan
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yunxiang Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Guoqi Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Jie Meng
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Wenrong Mu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Jingjing Liu
- School of Graduate, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Kee-Yoeup Paek
- Department of Horticultural Science, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - So-Young Park
- Department of Horticultural Science, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Juan Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Wenyuan Gao
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
5
|
Gai QY, Feng X, Jiao J, Xu XJ, Fu JX, He XJ, Fu YJ. Blue LED light promoting the growth, accumulation of high-value isoflavonoids and astragalosides, antioxidant response, and biosynthesis gene expression in Astragalus membranaceus (Fisch.) Bunge hairy root cultures. PLANT CELL, TISSUE AND ORGAN CULTURE 2023; 153:511-523. [PMID: 37197002 PMCID: PMC10042671 DOI: 10.1007/s11240-023-02486-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/07/2023] [Indexed: 05/19/2023]
Abstract
The root of Astragalus membranaceus (Fisch.) Bunge is one of the most frequently used herbs in traditional Chinese medicine (TCM) formulae for fighting COVID-19 infections, due to the presence of isoflavonoids and astragalosides associated with antiviral and immune-enhancing activities. For the first time, the exposure of A. membranaceus hairy root cultures (AMHRCs) to different colors of LED lights i.e., red, green, blue, red/green/blue (1/1/1, RGB), and white, was conducted to promote the root growth and accumulation of isoflavonoids and astragalosides. LED light treatment regardless of colors was found beneficial for root growth, which might be a result of the formation of more root hairs upon light stimulation. Blue LED light was found most effective for enhancing phytochemical accumulation. Results showed that the productivity of root biomass in blue-light grown AMHRCs with an initial inoculum size of 0.6% for 55 days was 1.40-fold higher than that in dark (control), and yields of high-value isoflavonoids and astragalosides including calycosin, formononetin, astragaloside IV, and astragaloside I increased by 3.17-fold, 2.66-fold, 1.78-fold, and 1.52-fold relative to control, respectively. Moreover, the photooxidative stress together with transcriptional activation of biosynthesis genes might contribute to the enhanced accumulation of isoflavonoids and astragalosides in blue-light grown AMHRCs. Overall, this work offered a feasible approach for obtaining higher yields of root biomass and medicinally important compounds in AMHRCs via the simple supplementation of blue LED light, which made blue-light grown AMHRCs industrially attractive as plant factory in controlled growing systems. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s11240-023-02486-7.
Collapse
Affiliation(s)
- Qing-Yan Gai
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040 People’s Republic of China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040 People’s Republic of China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, 150040 People’s Republic of China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Northeast Forestry University, Harbin, 150040 People’s Republic of China
| | - Xue Feng
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040 People’s Republic of China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040 People’s Republic of China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, 150040 People’s Republic of China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Northeast Forestry University, Harbin, 150040 People’s Republic of China
| | - Jiao Jiao
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040 People’s Republic of China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040 People’s Republic of China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, 150040 People’s Republic of China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Northeast Forestry University, Harbin, 150040 People’s Republic of China
| | - Xiao-Jie Xu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040 People’s Republic of China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040 People’s Republic of China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, 150040 People’s Republic of China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Northeast Forestry University, Harbin, 150040 People’s Republic of China
| | - Jin-Xian Fu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040 People’s Republic of China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040 People’s Republic of China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, 150040 People’s Republic of China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Northeast Forestry University, Harbin, 150040 People’s Republic of China
| | - Xiao-Jia He
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040 People’s Republic of China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040 People’s Republic of China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, 150040 People’s Republic of China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Northeast Forestry University, Harbin, 150040 People’s Republic of China
| | - Yu-Jie Fu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040 People’s Republic of China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040 People’s Republic of China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, 150040 People’s Republic of China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Northeast Forestry University, Harbin, 150040 People’s Republic of China
| |
Collapse
|
6
|
Jiao J, Yao L, Fu JX, Lu Y, Gai QY, Feng X, He XJ, Cao RZ, Fu YJ. Cocultivation of pigeon pea hairy root cultures and Aspergillus for the enhanced production of cajaninstilbene acid. Appl Microbiol Biotechnol 2023; 107:1931-1946. [PMID: 36800029 DOI: 10.1007/s00253-023-12437-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/23/2023] [Accepted: 02/04/2023] [Indexed: 02/18/2023]
Abstract
Pigeon pea hairy root cultures (PPHRCs) have been proven to be a promising alternative for the production of health-beneficial phenolic compounds, such as the most important health-promoting compound, i.e., cajaninstilbene acid (CSA). In this study, PPHRCs were cocultured with live Aspergillus fungi for further improving phenolic productivity via biological elicitation. Aspergillus oryzae CGMCC 3.951 (AO 3.951) was found to be the optimal fungus that could achieve the maximum increment of CSA (10.73-fold increase) in 42-day-old PPHRCs under the inoculum size of mycelia 0.50% and cocultivation time 36 h. More precisely, the contents of CSA in hairy roots and culture media after fungal elicitation increased by 9.87- and 62.18-fold over control, respectively. Meanwhile, the contents of flavonoid glycosides decreased, while aglycone yields increased upon AO 3.951 elicitation. Moreover, AO 3.951 could trigger the oxidative stress and pathogen defense response thus activating the expression of biosynthesis- and ABC transporter-related genes, which contributed to the intracellular accumulation and extracellular secretion of phenolic compounds (especially CSA) in PPHRCs. And PAL2, 4CL2, STS1, and I3'H were likely to be the potential key enzyme genes regulating the biosynthesis of CSA, and ABCB11X1-1, ABCB11, and ABCG24X2 were closely related to the transmembrane transport of CSA. Overall, the cocultivation approach could make PPHRCs more commercially attractive for the production of high-value phenolic compounds such as CSA and flavonoid aglycones in nutraceutical/medicinal fields. And the elucidation of crucial biosynthesis and transport genes was important for systematic metabolic engineering aimed at increasing CSA productivity. KEY POINTS: • Cocultivation of PPHRCs and live fungi was to enhance CSA production and secretion. • PPHRCs augmented CSA productivity 10.73-fold when cocultured with AO 3.951 mycelia. • Several biosynthesis and transport genes related to CSA production were clarified.
Collapse
Affiliation(s)
- Jiao Jiao
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, People's Republic of China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, People's Republic of China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, 150040, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Northeast Forestry University, Harbin, 150040, People's Republic of China
| | - Lan Yao
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, People's Republic of China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, People's Republic of China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, 150040, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Northeast Forestry University, Harbin, 150040, People's Republic of China
| | - Jin-Xian Fu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, People's Republic of China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, People's Republic of China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, 150040, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Northeast Forestry University, Harbin, 150040, People's Republic of China
| | - Yao Lu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, People's Republic of China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, People's Republic of China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, 150040, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Northeast Forestry University, Harbin, 150040, People's Republic of China
| | - Qing-Yan Gai
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, People's Republic of China.
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, People's Republic of China.
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, 150040, People's Republic of China.
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Northeast Forestry University, Harbin, 150040, People's Republic of China.
| | - Xue Feng
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, People's Republic of China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, People's Republic of China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, 150040, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Northeast Forestry University, Harbin, 150040, People's Republic of China
| | - Xiao-Jia He
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, People's Republic of China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, People's Republic of China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, 150040, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Northeast Forestry University, Harbin, 150040, People's Republic of China
| | - Run-Ze Cao
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, People's Republic of China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, People's Republic of China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, 150040, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Northeast Forestry University, Harbin, 150040, People's Republic of China
| | - Yu-Jie Fu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, People's Republic of China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, People's Republic of China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, 150040, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Northeast Forestry University, Harbin, 150040, People's Republic of China
| |
Collapse
|
7
|
Hairy Root Cultures as a Source of Polyphenolic Antioxidants: Flavonoids, Stilbenoids and Hydrolyzable Tannins. PLANTS 2022; 11:plants11151950. [PMID: 35956428 PMCID: PMC9370385 DOI: 10.3390/plants11151950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022]
Abstract
Due to their chemical properties and biological activity, antioxidants of plant origin have gained interest as valuable components of the human diet, potential food preservatives and additives, ingredients of cosmetics and factors implicated in tolerance mechanisms against environmental stress. Plant polyphenols are the most prominent and extensively studied, albeit not only group of, secondary plant (specialized) metabolites manifesting antioxidative activity. Because of their potential economic importance, the productive and renewable sources of the compounds are desirable. Over thirty years of research on hairy root cultures, as both producers of secondary plant metabolites and experimental systems to investigate plant biosynthetic pathways, brought about several spectacular achievements. The present review focuses on the Rhizobium rhizogenes-transformed roots that either may be efficient sources of plant-derived antioxidants or were used to elucidate some regulatory mechanisms responsible for the enhanced accumulation of antioxidants in plant tissues.
Collapse
|
8
|
Sun H, Zuo X, Zhang Q, Gao J, Kai G. Elicitation of ( E)-2-Hexenal and 2,3-Butanediol on the Bioactive Compounds in Adventitious Roots of Astragalus membranaceus var. mongholicus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:470-479. [PMID: 34985895 DOI: 10.1021/acs.jafc.1c05813] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This study aimed to investigate the elicitation of volatile organic compounds (E)-2-hexenal and 2,3-butanediol on bioactive metabolites in Astragalus membranaceus var. mongholicus adventitious root cultures by adding them into the medium. The experiment was performed for 72 h and the roots were dynamically sampled for quantification of representative astragaloside IV, calycosin-7-O-β-d-glucoside (CG), ononin, and the gene expression. Compared with the controls, the combination of 2,3-butanediol and (E)-2-hexenal advanced the peak accumulation of astragaloside IV and was the most effective, but their individual application delayed it. Meanwhile, 2,3-butanediol and (E)-2-hexenal had no obviously promoting effect on the production of CG and ononin but chronologically changed their accumulation patterns. The underlying mechanism was uncovered by the correlation analysis between the metabolites and the gene expression, as did the identification of the target genes. Collectively, 2,3-butanediol and (E)-2-hexenal were important cues shaping the production of bioactive products in the herbal plant.
Collapse
Affiliation(s)
- Haifeng Sun
- College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Xinyu Zuo
- College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Qingqing Zhang
- College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Jianping Gao
- College of Pharmacy, Shanxi Medical University, Jinzhong, Shanxi 030060, China
| | - Guoyin Kai
- College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| |
Collapse
|