1
|
Cheng Y, Wu A, Liu L, Xu L, Kuang H, Xu C, Guo L. Immunochromatographic strip for rapid and sensitive detection of bupirimate residues in peach, orange, and carrot. Food Chem 2024; 459:140417. [PMID: 39003856 DOI: 10.1016/j.foodchem.2024.140417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 07/07/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024]
Abstract
Bupirimate (BPM) is a high-efficiency and low-toxicity fungicide used to combat powdery mildew in crops. To mitigate potential health risks to consumers resulting from improper BPM usage, we prepared a monoclonal antibody against BPM based on novel hapten synthesis, which has high sensitivity and strong specificity, and then successfully designed a colloidal gold-based immunochromatographic (ICG) strip. The newly designed ICG strip was then employed for detecting BPM residues in peach, orange, and carrot. The results show that for the peach, orange, and carrot samples, the calculated detection limits of the ICG strip are 9.36, 0.79, and 0.57 ng/g, respectively, and that it is resistant to the matrix effect and meets the maximum residue limit requirements of European Commission for BPM. Therefore, this developed ICG strip is expected to enable swift detection of BPM residues on the spot.
Collapse
Affiliation(s)
- Yuan Cheng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Aihong Wu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Liqiang Liu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Liguang Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hua Kuang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Chuanlai Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Lingling Guo
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
2
|
Zhang L, Wu S, Liu J, Ping M, Yang W, Fu F. Isolation of aptamers with excellent cross-reactivity and specificity to sulfonamides towards a ratiometric fluorescent aptasensor for the detection of nine sulfonamides in seafood. Talanta 2024; 277:126380. [PMID: 38852344 DOI: 10.1016/j.talanta.2024.126380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/06/2024] [Accepted: 06/05/2024] [Indexed: 06/11/2024]
Abstract
Sulfonamides (SAs) is a class of antibiotics that extensively used for treating infectious diseases in livestock industries and aquaculture. Thus, it is urgent need to obtain the bio-receptor, which has excellent cross-reactivity and specificity to SAs, for developing high-throughput methods for the determination of multiple SAs even all commonly-used SAs, to realize the quick screening/detection of total SAs in animal-derived foods. We herein isolated several SAs-specific cross-reactive aptamers by using a library-immobilized SELEX with multi-SAs parallel selection strategy. Two of the isolated aptamers (Sul-01 and Sul-04) can specifically recognize and bind seven SAs respectively with higher binding affinity and no interference of non-sulfonamide antibiotics, and thus can be applied as bio-receptors for developing high-throughput aptasensors for the quick screening/detection of multiple SAs. By using the mixture of Sul-01 and Sul-04 as bio-receptor, a ratiometric fluorescent aptasensor was created for the quick detection of nine SAs including sulfamethoxydiazine (SMD), sulfapyridine (SPD), sulfaquinoxaline (SQ), sulfathiazole (ST), sulfamonomethoxine (SMM), sulfamerazine (SMR), sulfaguanidine (SG), sulfamethazine (SMZ) and sulfadiazine (SD) with a detection limit (LOD) of 0.10-0.50 μM, or total of above nine SAs with a LOD of 0.20 μM. The fluorescent aptasensor was successfully applied to detect each or total of SMD, SPD, SQ, ST, SMM, SMR, SG, SMZ and SD in fish samples with a recovery of 83 %-92 % and a relative standard deviation (RSD, n = 5) < 5 %. This study not only provided several promising bio-receptors for the development of diverse high-throughput aptasensors to achieve the quick screening of multiple SAs residues, but also provided a simple, stable and sensitive method for the quick screening of SMD, SPD, SQ, ST, SMM, SMR, SG, SMZ and SD in seafood.
Collapse
Affiliation(s)
- Lin Zhang
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Siqi Wu
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Junfeng Liu
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Meiling Ping
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China.
| | - Weijuan Yang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - FengFu Fu
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China.
| |
Collapse
|
3
|
Xiao X, Yu S, Zhang G, Chen Z, Hu H, Lai X, Liu D, Lai W. Efficient Photothermal Sensor Based on Coral-Like Hollow Gold Nanospheres for the Sensitive Detection of Sulfonamides. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307764. [PMID: 38372021 DOI: 10.1002/smll.202307764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/07/2024] [Indexed: 02/20/2024]
Abstract
Gold nanoparticles (AuNPs), universally regarded as colorimetric signal reporters, are widely employed in lateral flow immunoassays (LFIAs). However, it is difficult for AuNPs-LFIA to achieve a wide range and sensitive detection. Herein, novel coral-like hollow gold nanospheres (CHGNPs) are synthesized. The growth of gold nanospheres can be regulated to obtain a multibranched and hollow construction. The obtained CHGNPs possess intense broadband absorption across the visible to near-infrared region, exhibiting a high molar extinction coefficient of 14.65 × 1011 M-1 cm-1 and a photothermal conversion efficiency of 79.75%. Thus, the photothermal/colorimetric dual-readout LFIA is developed based on CHGNPs (CHGNPs-PT-LFIA and CHGNPs-CM-LFIA) to effectively improve the detection sensitivity and broaden the detection range in regard to sulfonamides (SAs). The limits of detection of the CHGNPs-PT-LFIA and CHGNPs-CM-LFIA reached 1.9 and 2.8 pg mL-1 for the quantitative detection of sulfaquinoxaline, respectively, which are 6.3-fold and 4.3-fold lower than that of the AuNPs-LFIA. Meanwhile, the CHGNPs-PT-LFIA broadened the detection range to three orders of magnitude, which ranged from 2.5 to 5000 pg mL-1. The synthesized photothermal CHGNPs have been proven effective in improving the performance of the LFIA and provide a potential option for the construction of sensing platforms.
Collapse
Affiliation(s)
- Xiaoyue Xiao
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 East Nanjing Road, Nanchang, 330047, China
| | - Sha Yu
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 East Nanjing Road, Nanchang, 330047, China
| | - Gan Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 East Nanjing Road, Nanchang, 330047, China
| | - Zongyou Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 East Nanjing Road, Nanchang, 330047, China
| | - Hong Hu
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 East Nanjing Road, Nanchang, 330047, China
| | - Xiaocui Lai
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 East Nanjing Road, Nanchang, 330047, China
| | - Daofeng Liu
- Jiangxi Province Key Laboratory of Diagnosing and Tracing of Foodborne Disease, Jiangxi Province Centre for Disease Control and Prevention, 555 East Beijing Road, Nanchang, 330029, China
| | - Weihua Lai
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 East Nanjing Road, Nanchang, 330047, China
| |
Collapse
|
4
|
Zhou J, Wu W, Wang D, Wang W, Chang X, Li Y, Li J, Fan B, Zhou J, Guo R, Zhu X, Li B. Development of a colloidal gold immunochromatographic strip for the simultaneous detection of porcine epidemic diarrhea virus and transmissible gastroenteritis virus. Front Microbiol 2024; 15:1418959. [PMID: 38962124 PMCID: PMC11220158 DOI: 10.3389/fmicb.2024.1418959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/15/2024] [Indexed: 07/05/2024] Open
Abstract
In recent years, porcine diarrhea-associated viruses have caused significant economic losses globally. These viruses present similar clinical symptoms, such as watery diarrhea, dehydration, and vomiting. Co-infections with porcine epidemic diarrhea virus (PEDV) and transmissible gastroenteritis virus (TGEV) are common. For the rapid and on-site preliminary diagnosis on the pig farms, this study aimed to develop a colloidal gold immunochromatography assay (GICA) strip for the detection of PEDV and TGEV simultaneously. The GICA kit showed that there was no cross-reactivity with the other five common porcine viruses. With visual observation, the lower limits were approximately 104 TCID50/mL and 104 TCID50/mL for PEDV and TGEV, respectively. The GICA strip could be stored at 4°C or 25°C for 12 months without affecting its efficacy. To validate the GICA strip, 121 clinical samples were tested. The positive rates of PEDV and TGEV were 42.9 and 9.9%, respectively, and the co-infection rate of the two viruses was 5.8% based on the duplex GICA strip. Thus, the established GICA strip is a rapid, specific, and stable tool for on-site preliminary diagnosis of PEDV- and TGEV-associated diarrhea.
Collapse
Affiliation(s)
- Jinzhu Zhou
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China
- Guotai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| | - Wei Wu
- Fujian Agricultural and Forestry University, Fuzhou, China
| | - Dandan Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China
- Guotai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| | - Wei Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China
- Guotai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| | - Xinjian Chang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China
- Guotai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| | - Yunchuan Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China
- Guotai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| | - Jizong Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China
- Guotai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| | - Baochao Fan
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China
- Guotai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| | - Junming Zhou
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China
- Guotai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| | - Rongli Guo
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China
- Guotai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| | - Xuejiao Zhu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China
- Guotai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| | - Bin Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China
- Guotai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| |
Collapse
|
5
|
Yang X, Li Q, Kwee S, Yang J, Zhang Q, Hu X. An immunochromatographic strip sensor for marbofloxacin residues. PLoS One 2024; 19:e0299709. [PMID: 38551994 PMCID: PMC10980191 DOI: 10.1371/journal.pone.0299709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 02/13/2024] [Indexed: 04/01/2024] Open
Abstract
Marbofloxacin (MBF) was once widely used as a veterinary drug to control diseases in animals. MBF residues in animal food endanger human health. In the present study, an immunochromatographic strip assay (ICSA) utilizing a competitive principle was developed to rapidly detect MBF in beef samples. The 50% inhibitory concentration (IC50) and the limit of detection (LOD) of the ICSAs were 2.5 ng/mL and 0.5 ng/mL, respectively. The cross-reactivity (CR) of the MBF ICSAs to Ofloxacin (OFL), enrofloxacin (ENR), norfloxacin (NOR), and Ciprofloxacin (CIP) were 60.98%, 32.05%, 22.94%, and 23.58%, respectively. The CR for difloxacin (DIF) and sarafloxacin (SAR) was less than 0.1%. The recovery rates of MBF in spiked beef samples ranged from 82.0% to 90.4%. The intra-assay and interassay coefficients of variation (CVs) were below 10%. In addition, when the same authentic beef samples were detected in a side-by-side comparison between the ICSAs and HPLC‒MS, no statistically significant difference was observed. Therefore, the proposed ICSAs can be a useful tool for monitoring MBF residues in beef samples in a qualitative and quantitative manner.
Collapse
Affiliation(s)
- Xingdong Yang
- Institute of Food and Drug Inspection, Zhoukou Normal University, Zhoukou, P. R. China
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, P. R. China
| | - Qingmei Li
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, P. R. China
| | - Sharon Kwee
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX, United States of America
| | - Jifei Yang
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, P. R. China
| | - Qianqian Zhang
- Institute of Food and Drug Inspection, Zhoukou Normal University, Zhoukou, P. R. China
| | - Xiaofei Hu
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, P. R. China
| |
Collapse
|
6
|
Zhang Q, Wu A, Li J, Liu L, Kuang H, Xu C, Guo L. Development of an ic-ELISA and immunochromatographic assay strip for the rapid detection of chloridazon in oranges and celery. Analyst 2024; 149:467-474. [PMID: 38044701 DOI: 10.1039/d3an01785k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Chloridazon (CLZ) is a selective herbicide used in the control of annual broadleaf weeds. The misuse or abuse of CLZ may result in the accumulation of CLZ in crops and water, which can pose a risk to human health. In this study, a hapten of CLZ with three carbon spacer arms was designed and a highly sensitive and specific antibody against CLZ was prepared with a half-maximal inhibitory concentration of 0.630 ng mL-1 and a linear range of 0.181-2.195 ng mL-1.Based on this antibody, we developed an immunochromatographic assay (ICA) strip for the detection of CLZ in oranges and celery. Under optimized conditions, the visual limit of detection was 2 ng mL-1 and 10 ng mL-1 in oranges and celery, respectively, and the cut-off value was 50 ng mL-1. In CLZ-spiked samples and the recovery test, the results of the ICA strip were consistent with those of indirect competitive enzyme-linked immunosorbent assay (ic-ELISA). Therefore, the ICA strip developed in our study represents an efficient and reliable method for the rapid screening of CLZ in oranges and celery.
Collapse
Affiliation(s)
- Qing Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China.
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Aihong Wu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China.
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Jinyan Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China.
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Liqiang Liu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China.
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Hua Kuang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China.
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Chuanlai Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China.
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Lingling Guo
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China.
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
7
|
Hu X, Na G, Sun Y, Xing Y, Chen L, Gaiping Z. Establishment of ultrasensitive immunoassay strip based on colloidal gold-McAb probe for detecting cyproheptadine hydrochloride and six phenothiazines in feed. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2023; 40:1440-1449. [PMID: 37819997 DOI: 10.1080/19440049.2023.2266516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/26/2023] [Indexed: 10/13/2023]
Abstract
An ultrasensitive and broad-specific monoclonal antibody recognising cyproheptadine hydrochloride and six phenothiazines was produced. The 50% inhibition concentration against cyproheptadine hydrochloride was 0.036 ng/mL, and the cross-reactivities for six phenothiazines were from 6.33% to 63.16%. Based on the developed monoclonal antibody, an immunochromatographic strip was established, with the visual detection limits (cut-off values) of seven drugs ranging from 5 to 100 ng/g in feedstuffs. With the strip reader, the 50% inhibition concentration of the developed immunochromatographic strip for seven drugs ranged from 0.570 to 7.750 ng/g. The intra-assay recoveries were from 79.8% to 103.4% with the highest coefficient of variation of 11.3%. The inter-assay recoveries were from 79.0% to 96.6% with the highest coefficient of variation of 12.7%. In summary, the proposed immunochromatographic strip was considered suitable for simultaneously monitoring cyproheptadine hydrochloride and phenothiazines in feedstuffs.
Collapse
Affiliation(s)
- Xiaofei Hu
- Key Laboratory for Animal Immunology of the Ministry of Agriculture, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Guanqiong Na
- Key Laboratory for Animal Immunology of the Ministry of Agriculture, Henan Academy of Agricultural Sciences, Zhengzhou, China
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Yaning Sun
- Key Laboratory for Animal Immunology of the Ministry of Agriculture, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Yunrui Xing
- Key Laboratory for Animal Immunology of the Ministry of Agriculture, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Linlin Chen
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Zhang Gaiping
- Key Laboratory for Animal Immunology of the Ministry of Agriculture, Henan Academy of Agricultural Sciences, Zhengzhou, China
| |
Collapse
|
8
|
He T, Cui PL, Zhang S, Fan YH, Jin QS, Wang JP. Development of a receptor based signal amplified fluorescence polarization assay for multi-detection of 35 sulfonamides in pork. Food Chem X 2023; 19:100867. [PMID: 37780256 PMCID: PMC10534214 DOI: 10.1016/j.fochx.2023.100867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/21/2023] [Accepted: 09/05/2023] [Indexed: 10/03/2023] Open
Abstract
With the increasing focus on food security, a screening method with high-throughput, ultra-sensitivity, and user-friendly operation is urgently needed for monitoring of sulfonamides residues in animal-derived foods. In this study, the sulfonamides' receptor dihydropteroate synthase of Staphylococcus aureus was subjected to saturate mutation, and a mutant with higher affinities for sulfonamides was obtained. The mutant was then used as recognition material to establish a fluorescence polarization assay for determination of 35 sulfonamides in pork. Due to the use of an enhanced fluorescent tracer containing two fluorophore molecules, the sensitivities for the 35 sulfonamides were improved for 2.8-8.6 folds (LODs 0.03-1.16 ng/mL) in comparison with using conventional fluorescent tracer. The present method outperformed all previous fluorescence polarization (immuno)assays for sulfonamides due to its broader spectrum, higher sensitivity, and shorter assay time. Furthermore, this is the first study reporting an enhanced fluorescence polarization assay for determination of small molecule substance.
Collapse
Affiliation(s)
- Tong He
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Peng Lei Cui
- College of Science, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Shuai Zhang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Yu Hang Fan
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Qiu Shi Jin
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Jian Ping Wang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei 071000, China
| |
Collapse
|
9
|
Chen Y, Zhang H, Ding H, Sun M, Xu C, Guo L. Development of a gold nanoparticle-based lateral flow immunoassay for the fast detection of diafenthiuron in cabbage and apples. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023. [PMID: 37401441 DOI: 10.1039/d3ay00562c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Due to its unique insecticidal and acaricidal mechanism of action, and ability to mix with most insecticides and fungicides, diafenthiuron (DIAF) is widely used in the cultivation of fruits and vegetables. However, this insecticide can cause unacceptable harm to organisms, making the detection of DIAF residues in fruits and vegetables crucial. In this study, a novel hapten based on the structure of DIAF was utilized to prepare a monoclonal antibody (mAb) with high specificity and sensitivity. The half maximum inhibitory concentration (IC50) of the anti-DIAF mAb was 20.96 μg kg-1 as determined by ic-ELISA and little cross-reactivity with other analogues. Next, a GNP-based lateral flow immunoassay (LFIA) was developed to detect DIAF in cabbages and apples. The optimized LFIA, for cabbage samples, showed a visual limit of detection (vLOD), cut-off value and calculated limit of detection (cLOD) of 0.1 mg kg-1, 10 mg kg-1 and 1.5 μg kg-1, respectively, and for apples 0.1 mg kg-1, 5 mg kg-1 and 3.4 μg kg-1, respectively. Recovery rates in cabbage and apples were 89.4-105.0% and 105.3-112.0%, with a coefficient of variation of 2.73-5.71% and 2.15-7.56%, respectively. These results indicated that the established LFIA based on our anti-DIAF mAb was a reliable method for in situ rapid detection of DIAF in cabbage and apple samples.
Collapse
Affiliation(s)
- Yunhui Chen
- International Joint Research Laboratory for Biointerface and Biodetection, School, of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| | - Hongyu Zhang
- International Joint Research Laboratory for Biointerface and Biodetection, School, of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| | - Hongliu Ding
- Key Laboratory of Food Safety Rapid Detection Technology and Product Evaluation for Market Regulation of Jiangsu Province, Suzhou, Jiangsu, 215133, China
| | - Maozhong Sun
- International Joint Research Laboratory for Biointerface and Biodetection, School, of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| | - Chuanlai Xu
- International Joint Research Laboratory for Biointerface and Biodetection, School, of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| | - Lingling Guo
- International Joint Research Laboratory for Biointerface and Biodetection, School, of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
10
|
Xu J, Sun J, Lu X, Wang Y, Zhang Y, Sun X. A highly sensitive fluorescence immunochromatography strip for thiacloprid in fruits and vegetables using recombinant antibodies. Talanta 2023; 256:124258. [PMID: 36736270 DOI: 10.1016/j.talanta.2023.124258] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/05/2023] [Accepted: 01/05/2023] [Indexed: 01/15/2023]
Abstract
Thiacloprid (TCL) is a neonicotinoid insecticide. Its widespread use has led to high levels of residue in fruits and vegetables. Hence, it is important to detect TCL rapidly, accurately, and sensitively in fruits and vegetables. Recombinant antibodies (rAbs) can be synthesized rapidly with little batch-to-batch variation. In this study, recombinant single-chain variable fragment (scFv) antibody and full-length recombinant antibody against TCL were produced using three different expression systems (E. coli, yeast, and mammalian cell). The results of SDS-PAGE and non - competitive enzyme-linked immunosorbent assay (ELISA) indicated that the full-length rAb exhibited promising characteristics, and the IC50 value of indirect competitive ELISA (ic-ELISA) was 2.63 μg L-1. However, recombinant scFv antibody had little affinity for the antigen. To understand antibody recognition, the three-dimensional (3D) model of the variable fragment (Fv) was built via homologous modeling. The interaction between Fv and TCL was analyzed via molecular docking and the results of molecular docking showed that VAL-158, ALA-211, PHE-220, TRP-218, TRP-49, and ILE-100 were mainly responsible for antibody recognition. In addition, a time-resolved fluorescent microsphere-immunochromatographic test strip (TRFM-ICTS) was developed with a linear range and limit of detection of 0.01-10 ng mL-1 and 0.003 ng mL-1 within 15 min under optimal conditions. The IC50 value was 4.268 ng mL-1, and the recovery ranged between 79.4% and 118.6%, which was consistent with HPLC-MS. The TRFM-ICTS has great advantages in sensitivity and applicability.
Collapse
Affiliation(s)
- Jia Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, 214200, China
| | - Jiadi Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, 214200, China
| | - Xin Lu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, 214200, China
| | - Yunyun Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, 214200, China
| | - Yinzhi Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, 214200, China
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, 214200, China.
| |
Collapse
|
11
|
Dang M, Li Z, Mao Y, Huang X, Song L, Li W, Ma R, Liu Y, Wang L, Yu X, Yang H, Zhang X. A highly sensitive lateral flow immunoassay based on a group-specific monoclonal antibody and amorphous carbon nanoparticles for detection of sulfonamides in milk. Mikrochim Acta 2023; 190:186. [PMID: 37071204 DOI: 10.1007/s00604-023-05766-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/26/2023] [Indexed: 04/19/2023]
Abstract
To meet high-throughput screening of the residues of sulfonamides (SAs) with high sensitivity toward sulfamethazine (SM2) in milk samples, a new highly sensitive lateral flow immunoassay (LFA) based on amorphous carbon nanoparticles (ACNs) was developed. First, a group-specific monoclonal antibody 10H7 (mAb 10H7) that could recognize 25 SAs with high sensitivity toward SM2 (IC50 value of 0.18 ng/mL) was prepared based on H1 as an immune hapten and H4 as a heterologous coating hapten. Then, mAb 10H7 was conjugated to ACNs as an immune probe for LFA development. Under the optimized conditions, the LFA could detect 25 SAs with the cut-off value toward SM2 of 2 ng/mL, which could meet the requirement for detection of SAs. In addition, the LFA developed was also used for screening SAs' residues in real milk samples, with results being consistent with HPLC-MS/MS. Thus, this LFA can be used as a high-throughput screening tool for detection of SAs.
Collapse
Affiliation(s)
- Meng Dang
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, Henan, China
| | - Zizhe Li
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, Henan, China
| | - Yexuan Mao
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, Henan, China
| | - Xianqing Huang
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, Henan, China
| | - Lianjun Song
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, Henan, China
| | - Wenfeng Li
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, Henan, China
| | - Ruxiang Ma
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, Henan, China
| | - Yang Liu
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, Henan, China
| | - Liye Wang
- College of Food and Drug, Luoyang Normal University, Luoyang, 471934, Henan, China
| | - Xuezhi Yu
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, China Agricultural University, Beijing, 100193, China
| | - Huijuan Yang
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, China Agricultural University, Beijing, 100193, China.
| | - Xiya Zhang
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, Henan, China.
| |
Collapse
|
12
|
Nan X, Yang L, Cui Y. Lateral Flow Immunoassay for Proteins. Clin Chim Acta 2023; 544:117337. [PMID: 37044163 DOI: 10.1016/j.cca.2023.117337] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/07/2023] [Accepted: 04/07/2023] [Indexed: 04/14/2023]
Abstract
Protein biomarkers are useful for disease diagnosis. Identification thereof using in vitro diagnostics such as lateral flow immunoassays (LFIAs) has attracted considerable attention due to their low cost and ease of use especially in the point of care setting. Current challenges, however, do remain with respect to material selection for each component in the device and the synergistic integration of these components to display detectable signals. This review explores the principle of LFIA for protein biomarkers, device components including biomaterials and labeling methods. Medical applications and commercial status are examined as well. This review highlights critical methodologies in the development of new LFIAs and their role in advancing healthcare worldwide.
Collapse
Affiliation(s)
- Xuanxu Nan
- School of Materials Science and Engineering, Peking University; First Hospital Interdisciplinary Research Center, Peking University, Beijing 100871, P.R. China
| | - Li Yang
- Renal Division, Peking University First Hospital; Peking University Institute of Nephrology; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing 100034, P. R. China.
| | - Yue Cui
- School of Materials Science and Engineering, Peking University; First Hospital Interdisciplinary Research Center, Peking University, Beijing 100871, P.R. China.
| |
Collapse
|
13
|
Wang SH, Wang JP, Wu NP. Determination of 35 sulfonamides in pork by magnetic molecularly imprinted polymer-based dispersive solid-phase extraction and ultra-performance liquid chromatography photodiode array method. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:1954-1963. [PMID: 36347630 DOI: 10.1002/jsfa.12324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/19/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Sulfonamide residues in foods of animal origin are potential risks to consumer health, so it is very important to inspect them. Among the previously reported instrumental methods, the best method can only be used to determine at most 22 sulfonamides. Thus, an instrumental method capable of determining more sulfonamide species is desirable. RESULTS In this study, sulfadoxine was used as a template to synthesize a type of magnetic molecularly imprinted polymer that could recognize 35 sulfonamides. After characterization, this composite was used to develop a dispersive solid-phase extraction method for extraction and purification of the 35 sulfonamides in pork, followed by determination using an ultra-performance liquid chromatography photodiode array method. This composite exhibited high adsorption capacity (11.01-19.21 μg mg-1 ) and high recovery (>89.01%), and could be reused at least ten times. Due to the enrichment effect during sample preparation (enrichment factor 22-66), the limits of detection for determination of the 35 drugs in pork were in the range of 0.08-0.53 ng g-1 . The detection results for some real pork samples were consistent with a liquid chromatographic-tandem mass spectrometric method. After comparison, the present method showed generally better performances than the previously reported sample preparation methods and instrumental methods for detection of sulfonamides. CONCLUSION The method developed in the present study could be used as a practical tool for routine detection of sulfonamide residues in pork samples. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Su Han Wang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei, China
| | - Jian Ping Wang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei, China
- Veterinary Biological Technology Innovation Center of Hebei Province, Baoding, Hebei, China
| | - Ning Peng Wu
- Henan Institute of Veterinary Drug and Feed Control, Zhengzhou, Henan, China
| |
Collapse
|
14
|
Chen Q, Pan Y, Sun C, Wang Z, Wu Y, Fu F. A multicolor immunosensor for the visual detection of six sulfonamides based on manganese dioxide nanosheet-mediated etching of gold nanobipyramids. Talanta 2023; 258:124449. [PMID: 36924640 DOI: 10.1016/j.talanta.2023.124449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 02/24/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023]
Abstract
In reality, various sulfonamides (SAs) were alternately used in animal husbandry to avoid generating drug resistance. Thus, it is crucial to develop simple and high-throughput methods for detecting multiple or groups of SAs to realize rapid screening of total SAs residues in foods. We herein developed a sensitive and efficient MnO2 nanosheets-mediated etching of gold nanobipyramids (AuNBPs), which can generate more vivid color changes, and further fabricated a high-throughput multicolor immunosensor for the visual screening/semi-quantitative detection of 6 different SAs including sulfamethazine (SMZ), sulfamethoxydiazine (SMD), sulfisomidine (SIM), sulfamerazine (SMR), sulfamonomethoxine (SMM) and sulfaquinoxaline (SQ) by using AuNBPs as signal and broad-specificity anti-SAs antibody as a bio-receptor. The immunosensor displays more vivid color changes, and has a lower visual detection limit and excellent specificity. It can be applied to detect as little as 1.0 ng/mL of SMZ, SMD, SMR and 2.0 ng/mL of SIM, SMM, SQ by bare eye observation, and 0.2 ng/mL of above 6 SAs by UV-visible spectrophotometry. The visual detection limit of the immunosensor is much lower than the maximum residue limit of total SAs (100 μg/kg) in edible tissues. The immunosensor was successfully applied to detect SMZ, SMD, SIM, SMR, SMM and SQ in milk with a recovery of 84%-106% and a RSD (n = 5) < 8%. The success of this study provided a promising assay for the on-site rapid screening of SMZ, SMD, SIM, SMR, SMM and SQ in food by bare eye observation. Importantly, the immunosensor may be expended as a general method for the visual screening/semi-quantitative detection of the group of other antibiotics by using the corresponding broad-specificity antibody as a bio-receptor.
Collapse
Affiliation(s)
- Qian Chen
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Yuquan Pan
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Chaochen Sun
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Zongwen Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Yongning Wu
- NHC Key Lab of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of China Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing, 100021, China
| | - FengFu Fu
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China.
| |
Collapse
|
15
|
Paramithiotis S. Molecular Targets for Foodborne Pathogenic Bacteria Detection. Pathogens 2023; 12:pathogens12010104. [PMID: 36678453 PMCID: PMC9865778 DOI: 10.3390/pathogens12010104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
The detection of foodborne pathogenic bacteria currently relies on their ability to grow on chemically defined liquid and solid media, which is the essence of the classical microbiological approach. Such procedures are time-consuming and the quality of the result is affected by the selectivity of the media employed. Several alternative strategies based on the detection of molecular markers have been proposed. These markers may be cell constituents, may reside on the cell envelope or may be specific metabolites. Each marker provides specific advantages and, at the same time, suffers from specific limitations. The food matrix and chemical composition, as well as the accompanying microbiota, may also severely compromise detection. The aim of the present review article is to present and critically discuss all available information regarding the molecular targets that have been employed as markers for the detection of foodborne pathogens. Their strengths and limitations, as well as the proposed alleviation strategies, are presented, with particular emphasis on their applicability in real food systems and the challenges that are yet to be effectively addressed.
Collapse
Affiliation(s)
- Spiros Paramithiotis
- Laboratory of Food Process Engineering, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos St., 11855 Athens, Greece
| |
Collapse
|
16
|
Tang J, Zheng X, Jiang S, Cao M, Wang S, Zhou Z, Nie X, Fang Y, Le T. Dual fluorescent aptasensor for simultanous and quantitative detection of sulfadimethoxine and oxytetracycin residues in animal-derived foods tissues based on mesoporous silica. Front Nutr 2022; 9:1077893. [PMID: 36618689 PMCID: PMC9811004 DOI: 10.3389/fnut.2022.1077893] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
Herein, we developed a dual fluorescent aptasensor based on mesoporous silica to simultaneously detect sulfadimethoxine (SDM) and oxytetracycline (OTC) in animal-derived foods. We immobilized two types of aptamers modified with FAM and CY5 on the silica surface by base complementary pairing reaction with the cDNA modified with a carboxyl group and finally formed the aptasensor detection platform. Under optimal conditions, the detection range of the aptasensor for SDM and OTC was 3-150 ng/mL (R 2 = 0.9831) and 5-220 ng/mL (R 2 = 0.9884), respectively. The limits of detection for SDM and OTC were 2.2 and 1.23 ng/mL, respectively. The limits of quantification for SDM and OTC were 7.3 and 4.1 ng/mL, respectively. Additionally, the aptasensor was used to analyze spiked samples. The average recovery rates ranged from 91.75 to 114.65% for SDM and 89.66 to 108.94% for OTC, and all coefficients of variation were below 15%. Finally, the performance and practicability of our aptasensor were confirmed by HPLC, demonstrating good consistency. In summary, this study was the first to use the mesoporous silica-mediated fluorescence aptasensor for simultaneous detection of SDM and OTC, offering a new possibility to analyze other antibiotics, biotoxins, and biomolecules.
Collapse
Affiliation(s)
- Jiaming Tang
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Xiaoling Zheng
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Shuang Jiang
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Mingdong Cao
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Sixian Wang
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Zhaoyang Zhou
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Xunqing Nie
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Yu Fang
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Tao Le
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| |
Collapse
|
17
|
Chen J, Lin Q, Chen Y. Development of a time‐resolved fluorescent immunochromatographic test for simultaneous detection of norfloxacin and sulfamethazine in pork samples through green pretreatment. J Food Saf 2022. [DOI: 10.1111/jfs.13031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Junjun Chen
- National Engineering Laboratory for Deep Process of Rice and By‐products, Hunan Key Laboratory of Grain‐oil Deep Process and Quality Control, Hunan Key Laboratory of Processed Food for Special Medical Purpose, Hunan Key Laboratory of Forestry Edible Sources Safety and Processing College of Food Science and Technology, Central South University of Forestry and Technology Changsha China
| | - Qinlu Lin
- National Engineering Laboratory for Deep Process of Rice and By‐products, Hunan Key Laboratory of Grain‐oil Deep Process and Quality Control, Hunan Key Laboratory of Processed Food for Special Medical Purpose, Hunan Key Laboratory of Forestry Edible Sources Safety and Processing College of Food Science and Technology, Central South University of Forestry and Technology Changsha China
- Hunan Provincial Key Laboratory of Food Safety Monitoring and Early Warning Hunan Provincial Institute of Product and Goods Quality Inspection Changsha China
| | - Yanni Chen
- National Engineering Laboratory for Deep Process of Rice and By‐products, Hunan Key Laboratory of Grain‐oil Deep Process and Quality Control, Hunan Key Laboratory of Processed Food for Special Medical Purpose, Hunan Key Laboratory of Forestry Edible Sources Safety and Processing College of Food Science and Technology, Central South University of Forestry and Technology Changsha China
- Hunan Provincial Key Laboratory of Food Safety Monitoring and Early Warning Hunan Provincial Institute of Product and Goods Quality Inspection Changsha China
| |
Collapse
|
18
|
Xu R, Yang C, Huang L, Lv W, Yang W, Wu Y, Fu F. Broad-Specificity Aptamer of Sulfonamides: Isolation and Its Application in Simultaneous Detection of Multiple Sulfonamides in Fish Sample. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11804-11812. [PMID: 36070569 DOI: 10.1021/acs.jafc.2c03423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Sulfonamide antibiotics (SAs) are widely used in animal husbandry and aquaculture, and the excess residues of SAs in animal-derived foods will harm the health of consumers. In reality, various SAs were alternately used in animal husbandry and aquaculture, and thus, it is urgent need to develop simple and high-throughput methods for simultaneously detecting multiple SAs or groups of SAs in order to realize rapid screening of total SAs residues in animal-derived foods. We herein isolated a broad-specificity aptamer for SAs by using a multi-SAs systematic evolution of ligands by exponential enrichment (SELEX) strategy. The isolated broad-specificity aptamer has a higher binding affinity to five different SAs including sulfaquinoxaline (SQ), sulfamethoxypyridazine (SMPZ), sulfametoxydiazine (SMD), sulfachloropyridazine (SCP), and sulfapyridine (SPD) and, thus, can be used as a bioreceptor for developing various high-throughput methods for the simultaneous detection or rapid screening of above five SAs. Based on the isolated broad-specificity aptamer and Cy7 (diethylthiatricarbocyanine) displacement strategy, a colorimetric aptasensor was developed for the simultaneous detection of SQ, SMPZ, SMD, SCP, and SPD with a visual detection limit of 2.0-5.0 μM and a spectrometry detection limit of 0.2-0.5 μM. The colorimetric aptasensor was successfully used to detect SQ, SMPZ, SMD, SCP, and SPD in fish muscle with a recovery of 82%-92% and a RSD (n = 5) < 7%. The success of this study provided a promising bioreceptor for developing various high-throughput methods for on-site rapid screening of multiple SAs residues, as well as a simple method for the rapid and cost-effective screening of total SQ, SMPZ, SMD, SCP, and SPD in seafood.
Collapse
Affiliation(s)
- Ruyi Xu
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Chen Yang
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Lin Huang
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Wenchao Lv
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Weijuan Yang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yongning Wu
- NHC Key Lab of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of China Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - FengFu Fu
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| |
Collapse
|
19
|
Wang P, Xu X, Liu L, Song S, Kuang H, Xu C, Wu X. A colloidal gold immunochromatography for the detection of flumioxazin residues in fruits. J Food Sci 2022; 87:4538-4547. [DOI: 10.1111/1750-3841.16288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/26/2022] [Accepted: 07/22/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Peng Wang
- State Key Laboratory of Food Science and Technology Jiangnan University, Wuxi, Jiangsu 214122 People's Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection and School of Food Science and Technology Jiangnan University, Wuxi, Jiangsu 214122 People's Republic of China
- Collaborative Innovation center of Food Safety and Quality Control in Jiangsu Province Jiangnan University Wuxi Jiangsu People's Republic of China
| | - Xinxin Xu
- State Key Laboratory of Food Science and Technology Jiangnan University, Wuxi, Jiangsu 214122 People's Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection and School of Food Science and Technology Jiangnan University, Wuxi, Jiangsu 214122 People's Republic of China
- Collaborative Innovation center of Food Safety and Quality Control in Jiangsu Province Jiangnan University Wuxi Jiangsu People's Republic of China
| | - Liqiang Liu
- State Key Laboratory of Food Science and Technology Jiangnan University, Wuxi, Jiangsu 214122 People's Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection and School of Food Science and Technology Jiangnan University, Wuxi, Jiangsu 214122 People's Republic of China
- Collaborative Innovation center of Food Safety and Quality Control in Jiangsu Province Jiangnan University Wuxi Jiangsu People's Republic of China
| | - Shanshan Song
- State Key Laboratory of Food Science and Technology Jiangnan University, Wuxi, Jiangsu 214122 People's Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection and School of Food Science and Technology Jiangnan University, Wuxi, Jiangsu 214122 People's Republic of China
- Collaborative Innovation center of Food Safety and Quality Control in Jiangsu Province Jiangnan University Wuxi Jiangsu People's Republic of China
| | - Hua Kuang
- State Key Laboratory of Food Science and Technology Jiangnan University, Wuxi, Jiangsu 214122 People's Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection and School of Food Science and Technology Jiangnan University, Wuxi, Jiangsu 214122 People's Republic of China
- Collaborative Innovation center of Food Safety and Quality Control in Jiangsu Province Jiangnan University Wuxi Jiangsu People's Republic of China
| | - Chuanlai Xu
- State Key Laboratory of Food Science and Technology Jiangnan University, Wuxi, Jiangsu 214122 People's Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection and School of Food Science and Technology Jiangnan University, Wuxi, Jiangsu 214122 People's Republic of China
- Collaborative Innovation center of Food Safety and Quality Control in Jiangsu Province Jiangnan University Wuxi Jiangsu People's Republic of China
| | - Xiaoling Wu
- State Key Laboratory of Food Science and Technology Jiangnan University, Wuxi, Jiangsu 214122 People's Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection and School of Food Science and Technology Jiangnan University, Wuxi, Jiangsu 214122 People's Republic of China
- Collaborative Innovation center of Food Safety and Quality Control in Jiangsu Province Jiangnan University Wuxi Jiangsu People's Republic of China
| |
Collapse
|
20
|
A Rapid Tricolour Immunochromatographic Assay for Simultaneous Detection of Tricaine and Malachite Green. BIOSENSORS 2022; 12:bios12070456. [PMID: 35884259 PMCID: PMC9312490 DOI: 10.3390/bios12070456] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/20/2022] [Accepted: 06/24/2022] [Indexed: 12/03/2022]
Abstract
In this research, we designed a rapid tricolour immunochromatographic test strip with double test lines (TS-DTL) and two-colour AuNP probes, which realised the simultaneous detection of tricaine mesylate (TMS) and malachite green (MG). Through a distinct tricolour system (red T1 line, blue T2 line and purple C line), a visual identification of TMS (0.2 μg/mL) and MG (0.5 μg/mL) was quickly achieved on site, which improved the accuracy of naked eye observations. The LODs of TMS in aquaculture water, fish and shrimp were 11.0, 29.6 and 61.4 ng/mL, respectively. MG LODs were 47.0 ng/mL (aquaculture water), 82.8 ng/mL (fish) and 152.4 ng/mL (shrimp). The LOD of MG was close to the similar TS methods. However, visual detection of TMS could meet the requirements of the residue limit (1 μg/mL) of TMS in the USA, and the quantitative detection of TMS was over 16 times lower than the USA standard. The developed platform was rapid (~20 min, HPLC~3 h) and accurate, which was verified using a traditional HPLC method. The recovery rates ranged from 82.2% to 108.6% in three types of real samples, indicating a potential application in on-site fast screening or multiple detection for TMS and MG residues in aquatic products.
Collapse
|
21
|
A novel fluorescent aptasensor based on mesoporous silica nanoparticles for the selective detection of sulfadiazine in edible tissue. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
22
|
Wang P, Xu X, Song S, Liu L, Kuang H, Xu C. Rapid and sensitive detection of clomazone in potato and pumpkin samples using a gold nanoparticle-based lateral-flow strip. Food Chem 2022; 375:131888. [PMID: 34974348 DOI: 10.1016/j.foodchem.2021.131888] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 11/20/2021] [Accepted: 12/15/2021] [Indexed: 12/27/2022]
Abstract
In this study, an ultrasensitive monoclonal antibody (mAb) was produced and used to develop a gold nanoparticle-based lateral flow immunochromatographic (ICA) strip for screening of clomazone (CLO) in potato and pumpkin samples. With assayed by indirect competitive enzyme-linked immunosorbent assay (ic-ELISA) method, the mAb belonging of IgG2 subclass showed a half-maximal inhibitory concentration (IC50) of 3.47 ng/mL and a linear range of detection of 0.43-28.09 ng/mL. A cross-reactivity test revealed that the mAb had good specificity for CLO. The strip assay had a visual limit of detection (LOD) of 5 µg/kg and a cut-off value of 50 µg/kg for CLO pumpkin samples (potato samples was 100 µg/kg) when evaluated with the naked eye. The results were consistent with ic-ELISA and high performance liquid chromatography tandem mass spectrometry (HPLC-MS). Thus, this ICA strip assay represents a potentially tool for on-site and rapid initial detection of CLO in potato and pumpkin samples.
Collapse
Affiliation(s)
- Peng Wang
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Xinxin Xu
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Shanshan Song
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Liqiang Liu
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China.
| | - Hua Kuang
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Chuanlai Xu
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China.
| |
Collapse
|
23
|
Metal-organic framework modified carbon cloth for electric field enhanced thin film microextraction of sulfonamides in animal-derived food. J Chromatogr A 2022; 1674:463120. [DOI: 10.1016/j.chroma.2022.463120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/16/2022] [Accepted: 05/04/2022] [Indexed: 11/18/2022]
|
24
|
Liu W, Zhang S, Xiao L, Wan Y, He L, Wang K, Qi Z, Li X. Synthesis and biological activity of novel hydantoin cyclohexyl sulfonamide derivatives as potential antimicrobial agents in agriculture. PEST MANAGEMENT SCIENCE 2022; 78:1438-1447. [PMID: 34921739 DOI: 10.1002/ps.6761] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/24/2021] [Accepted: 12/18/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Plant disease is one of the most serious problems in agriculture that can damage crops. Chemical fungicides are widely used to control plant diseases, but have led to resistance and a series of environmental problems. It is, therefore, necessary to develop highly effective and eco-friendly antimicrobial compounds with novel structures. RESULTS A series of novel hydantoin cyclohexyl sulfonamide derivatives were synthesized through an intramolecular condensation reaction. The bioassay results indicated that a majority of the title compounds displayed potent inhibitory activity against Botrytis cinerea, Sclerotinia sclerotiorum and Erwinia carotorora. The in vivo inhibition rate of compound 3h was 91.01% against B. cinerea, which was higher than that of iprodione (84.07%). Compound 3w showed excellent antifungal activity against B. cinerea with a half-maximal effective concentration (EC50 ) of 4.80 μg ml-1 , which is lower than that of iprodione. Compound 3q had an EC50 value of 1.44 μg ml-1 against S. sclerotiorum, which was close to that of iprodione (1.39 μg ml-1 ), and the inhibition rate was also similar to that of iprodione. Compounds 3i and 3w had the best inhibition efficacy against S. sclerotiorum, both on growth of the mycelium and sclerotia and in the greenhouse pot test in vitro. Further study showed that compounds 3h, 3r and 3s have superb antibacterial activity against E. carotorora with EC50 values of 2.65, 4.24 and 4.29 μg ml-1 respectively, and were superior to streptomycin sulfate (5.96 μg ml-1 ). CONCLUSION Because of their excellent antifungal and antibacterial activity against B. cinerea, S. sclerotiorum and E. carotorora, these hydantoin cyclohexyl sulfonamide derivatives could be considered as suitable candidates for new antimicrobial agents. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wei Liu
- Department of Pesticide Science, Plant Protection College, Shenyang Agricultural University, Shenyang, China
| | - Shen Zhang
- Department of Pesticide Science, Plant Protection College, Shenyang Agricultural University, Shenyang, China
| | - Lifeng Xiao
- Dalian Join King Fine Chemical Co., Ltd., Dalian, China
| | - Ying Wan
- Department of Pesticide Science, Plant Protection College, Shenyang Agricultural University, Shenyang, China
| | - Lu He
- Department of Pesticide Science, Plant Protection College, Shenyang Agricultural University, Shenyang, China
| | - Kai Wang
- Department of Pesticide Science, Plant Protection College, Shenyang Agricultural University, Shenyang, China
| | - Zhiqiu Qi
- Department of Pesticide Science, Plant Protection College, Shenyang Agricultural University, Shenyang, China
| | - Xinghai Li
- Department of Pesticide Science, Plant Protection College, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
25
|
Cheng Y, Ge W, Kuang H, Zhu J, Liu L, Zhu Y, Xu C. Gold-based immunochromatographic strip for rapid ketoconazole detection. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
26
|
Yao J, Xu X, Liu L, Kuang H, Xu C. Gold nanoparticle-based immunoassay for the detection of bifenthrin in vegetables. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2022; 39:531-541. [PMID: 35104182 DOI: 10.1080/19440049.2021.2020909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
We have developed a sensitive and rapid gold nanoparticle-based immunochromatographic strip (GNP-ICS) for the detection of bifenthrin (BF) using an anti-BF monoclonal antibody (mAb). When used in indirect competitive enzyme-linked immunosorbent assay (icELISA), the specific anti-BF mAb (3D1) had a half-maximal inhibitory concentration (IC50) and limit of detection (LOD) of 59 and 15 ng mL-1 respectively. Additionally, its cross-reactivity (CR) with other pyrethroids was negative. The developed GNP-ICS assay based on the GNP-labelled mAb was specific and sensitive for determining BF, with a cut-off value of 1,000 ng mL-1, and a visual LOD (vLOD) value of 50 ng mL-1. Furthermore, the developed icELISA and GNP-ICS were applied with a simple pre-treatment to determine BF-spiked vegetable samples, and the recoveries were validated using gas chromatography-mass spectrometry (GC-MS). The results revealed that the developed GNP-ICS was reliable for the detection of BF in practical samples.
Collapse
Affiliation(s)
- Jingjing Yao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.,International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Xinxin Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.,International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Liqiang Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.,International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Hua Kuang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.,International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Chuanlai Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.,International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| |
Collapse
|
27
|
Xu X, Xu X, Sun L, Wu A, Song S, Kuang H, Xu C. An ultrasensitive colloidal gold immunosensor to simultaneously detect 12 beta (2)-adrenergic agonists. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1191:123119. [DOI: 10.1016/j.jchromb.2022.123119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/23/2021] [Accepted: 01/08/2022] [Indexed: 01/03/2023]
|
28
|
Precise Hapten Design of Sulfonamides by Combining Machine Learning and 3D-QSAR Approaches. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-021-02179-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Wang Z, Zhao J, Xu X, Guo L, Xu L, Sun M, Hu S, Kuang H, Xu C, Li A. An Overview for the Nanoparticles-Based Quantitative Lateral Flow Assay. SMALL METHODS 2022; 6:e2101143. [PMID: 35041285 DOI: 10.1002/smtd.202101143] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/27/2021] [Indexed: 06/14/2023]
Abstract
The development of the lateral flow assay (LFA) has received much attention in both academia and industry because of their broad applications to food safety, environmental monitoring, clinical diagnosis, and so forth. The user friendliness, low cost, and easy operation are the most attractive advantages of the LFA. In recent years, quantitative detection has become another focus of LFA development. Here, the most recent studies of quantitative LFAs are reviewed. First, the principles and corresponding formats of quantitative LFAs are introduced. In the biomaterial and nanomaterial sections, the detection, capture, and signal amplification biomolecules and the optical, fluorescent, luminescent, and magnetic labels used in LFAs are described. The invention of dedicated strip readers has drawn further interest in exploiting the better performance of LFAs. Therefore, next, the development of dedicated reader devices is described and the usefulness and specifications of these devices for LFAs are discussed. Finally, the applications of LFAs in the detection of metal ions, biotoxins, pathogenic microorganisms, veterinary drugs, and pesticides in the fields of food safety and environmental health and the detection of nucleic acids, biomarkers, and viruses in clinical analyses are summarized.
Collapse
Affiliation(s)
- Zhongxing Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
| | - Jing Zhao
- Department of Radiology, Affiliated Hospital, Jiangnan University, No. 1000, Hefeng Road, Wuxi, Jiangsu, 214122, China
| | - Xinxin Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
| | - Lingling Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
| | - Liguang Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
| | - Maozhong Sun
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
| | - Shudong Hu
- Department of Radiology, Affiliated Hospital, Jiangnan University, No. 1000, Hefeng Road, Wuxi, Jiangsu, 214122, China
| | - Hua Kuang
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
| | - Chuanlai Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
| | - Aike Li
- Academy of National Food and Strategic Reserves Administration, No. 11, Baiwanzhuang Street, Beijing, 100037, P. R. China
| |
Collapse
|
30
|
Xu X, Guo L, Kuang H, Xu L, Xu C, Liu L. Preparation of a broad-specific monoclonal antibody and development of an immunochromatographic assay for monitoring of anthranilic diamides in vegetables and fruits. Analyst 2022; 147:5149-5160. [DOI: 10.1039/d2an01366e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A mAb-based lateral flow immunochromatographic strip for the detection of anthranilic diamides in vegetables and fruits was developed. The strip provided cut-off values of 2.5, 5, 10, and 10 ng g−1 for CHL, CYA, CYC, and TEA, respectively.
Collapse
Affiliation(s)
- Xinxin Xu
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Lingling Guo
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Hua Kuang
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Liguang Xu
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Chuanlai Xu
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Liqiang Liu
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| |
Collapse
|
31
|
Xu ZK, Meng JN, Lei Y, Yang XX, Yan YY, Liu HH, Lei HT, Wang TC, Shen X, Xu ZL. Highly selective monoclonal antibody-based lateral flow immunoassay for visual and sensitive determination of conazole fungicides propiconazole in vegetables. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2022; 39:92-104. [PMID: 34702140 DOI: 10.1080/19440049.2021.1976423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/22/2021] [Indexed: 10/20/2022]
Abstract
The conazole fungicide propiconazole is frequently found in vegetables although usage is not allowed. To overcome the high-cost and time-consuming labour requirements of instrumental methods, we developed a simple and visual lateral flow immunoassay for the sensitive determination of propiconazole. A hapten was carefully designed to raise a monoclonal antibody against propiconazole. Bal b/c mice were immunised with the hapten-carrier protein conjugate and a specific monoclonal antibody (mAb) was produced. Based on this mAb, a sensitive immunochromatographic strip assay (ICA) was established for rapid screening of propiconazole in vegetable samples. After optimisation of analytical parameters, the ICA strip showed a detection limit of 0.13 ng g-1 and a linear range from 0.5 to 80 ng g-1 using a strip reader. The assay also can be read by the naked eye with a visual limit of detection of 80 ng g-1. The recoveries for spiked vegetable samples by ICA ranged from 85.2% to 114.9%, with a coefficient of variation less than 11.7%. The assay time is within 45 min for a single sample including the sample pre-treatment. For spiked and blind samples, the detection capability of ICA was equivalent to liquid chromatography-mass spectrometry.
Collapse
Affiliation(s)
- Ze-Ke Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety/ Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Jing-Nan Meng
- Guangdong Provincial Key Laboratory of Food Quality and Safety/ Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Yi Lei
- Department of Organic Substances Analyisis, Guangdong Institute of Food Inspection, Guangzhou, China
| | - Xing-Xing Yang
- Department of Technique, Shenzhen Bioeasy Biotechnology Co., Ltd, Shenzhen, China
| | - Yi-Yong Yan
- Department of Technique, Shenzhen Bioeasy Biotechnology Co., Ltd, Shenzhen, China
| | - Hai-Hong Liu
- Department of Organic Substances Analyisis, Guangdong Institute of Food Inspection, Guangzhou, China
| | - Hong-Tao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety/ Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Ting-Cai Wang
- Department of Organic Substances Analyisis, Guangdong Institute of Food Inspection, Guangzhou, China
| | - Xing Shen
- Guangdong Provincial Key Laboratory of Food Quality and Safety/ Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Zhen-Lin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety/ Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
32
|
Cheng S, Wei Z, Zhiming X, Yang L, Xia F. Trace analysis and identification of 33 sulfonamides and sulfonamide potentiators in eggs by ultrahigh-performance liquid chromatography coupled with quadrupole-high-field orbitrap high-resolution mass spectrometry. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:4452-4460. [PMID: 34494035 DOI: 10.1039/d1ay01079d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A method was established for the simultaneous trace analysis and identification of 27 sulfonamides and 6 sulfonamide potentiators in eggs by ultrahigh-performance liquid chromatography coupled with quadrupole-high-field orbitrap high-resolution mass spectrometry and multifunction impurity adsorption cleaning. The appropriate extraction, purification, and instrument conditions were optimized. The drugs were extracted by acetonitrile with 1% formic acid and purified with optimized adsorption material based on multifunction impurity adsorption cleaning. The elution was evaporated by nitrogen blowing, dissolved, and then assayed. The limits of detection were 0.01-0.28 μg kg-1 for all drugs, while the recoveries were 82.4-110.6%, the relative standard deviations were 2.5-14.9%, and the linearity of the drugs in the corresponding concentration range was greater than 0.995. The proposed method was successfully applied for the monitoring of sulfonamides and their potentiators in egg samples, whereby 4 sulfonamides and 3 sulfonamide potentiators were detected in 200 egg samples.
Collapse
Affiliation(s)
- Suode Cheng
- Institute of Quality Standards and Testing Technology for Agricultural Product, Chinese Academy of Agricultural Science, Beijing, 100081, China.
| | - Zhou Wei
- Zhejiang Center for Animal Disease Control and Prevention, Hangzhou, 311119, China
| | - Xiao Zhiming
- Institute of Quality Standards and Testing Technology for Agricultural Product, Chinese Academy of Agricultural Science, Beijing, 100081, China.
| | - Li Yang
- Institute of Quality Standards and Testing Technology for Agricultural Product, Chinese Academy of Agricultural Science, Beijing, 100081, China.
| | - Fan Xia
- Institute of Quality Standards and Testing Technology for Agricultural Product, Chinese Academy of Agricultural Science, Beijing, 100081, China.
| |
Collapse
|
33
|
Lu X, Ji J, Li M, Xu H, Sun J, Wang L, Zhang Y, Sun X. Universal fluorescence nanoprobes to enhance the sensitivity of immunochromatographic assay for detection of 17β-estradiol in milk. Food Chem 2021; 370:131027. [PMID: 34537432 DOI: 10.1016/j.foodchem.2021.131027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 07/25/2021] [Accepted: 08/30/2021] [Indexed: 01/07/2023]
Abstract
The pollution caused by estrogens in the environment and food has received increasing attention. It is still challenging for on-site immunochromatographic assay (ICA) detection of estrogens. The performance of the prepared probes plays a decisive role in the sensitivity and stability of the ICA system. The published probes usually directly couple the detection antibody to the label, ignoring the influence of the label on the activity of the antibody. In this study, 17β-estradiol (E2) was used as a model analyte for the ICA system. Two universal probes were constructed based on quantum dot nanobeads (QBs), recombinant protein A (SPA, from Staphylococcus aureus), and rabbit anti-mouse immunoglobulin G antibody (anti-IgG). The probes were prepared by coupling QBs with SPA, releasing anti-E2 monoclonal antibody (mAb), and maintaining its activity. The prepared universal probes can orient recognize the Fc region of mAb and fully expose its Fab region, improving the detection sensitivity of the ICA system. The free anti-E2 mAb and the universal probe (QBs@SPA or QBs@SPA@anti-IgG) were used as the detection antibodies and signal donors, respectively. The results show that the proposed ICA based on QBs@SPA and QBs@SPA@anti-IgG probes could detect E2 with IC50 of 8.83 and 0.93 ng/mL, respectively, within 15 min under optimal conditions. The recovery results of ICA based on QBs@SPA and QBs@SPA@anti-IgG probes showed good agreement with the findings of the high-performance liquid chromatography (HPLC) analysis for spiked samples. The developed ICA system based on universal probes was superior in terms of sensitivity, rapidity, and applicability, and held great promise for its implementation in detecting environmental and food small-molecule pollutants.
Collapse
Affiliation(s)
- Xin Lu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Jian Ji
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Miao Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Hongwen Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Jiadi Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Liping Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Yinzhi Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| |
Collapse
|
34
|
Wang X, Xue CH, Yang D, Jia ST, Ding YR, Lei L, Gao KY, Jia TT. Modification of a nitrocellulose membrane with nanofibers for sensitivity enhancement in lateral flow test strips. RSC Adv 2021; 11:26493-26501. [PMID: 35479983 PMCID: PMC9037416 DOI: 10.1039/d1ra04369b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 07/23/2021] [Indexed: 01/16/2023] Open
Abstract
Lateral-flow analysis (LFA) is a convenient, low-cost, and rapid detection method, which has been widely used for screening of diseases. However, sensitivity enhancement in LFA is still a focus in this field and remains challenging. Herein, we propose an electrospinning coating method to modify the conventional nitrocellulose (NC) membrane and optimize the liquid flow rate for enhancing the sensitivity of the NC based LFA strips in the detection of human chorionic gonadotropin (HCG) and luteinizing hormone (LH). It can be seen that coating the NC membrane with nitrocellulose fibers could obtain a NC based strip with HCG and LH detection limits of 0.22 and 0.36 mIU mL-1 respectively, and a quantitative linear range of 0.5-500 mIU mL-1. The results show that electrospinning is effective in modifying conventional NC membranes for LFA applications.
Collapse
Affiliation(s)
- Xue Wang
- College of Environmental Science and Engineering, Shaanxi University of Science and Technology Xi'an 710021 China
| | - Chao-Hua Xue
- College of Environmental Science and Engineering, Shaanxi University of Science and Technology Xi'an 710021 China
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology Xi'an 710021 China
| | - Dong Yang
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology Xi'an 710021 China
| | - Shun-Tian Jia
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology Xi'an 710021 China
| | - Ya-Ru Ding
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology Xi'an 710021 China
| | - Lei Lei
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology Xi'an 710021 China
| | - Ke-Yi Gao
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology Xi'an 710021 China
| | - Tong-Tong Jia
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology Xi'an 710021 China
| |
Collapse
|
35
|
Zhao S, Bu T, Yang K, Xu Z, Bai F, He K, Li L, Wang L. Immunochromatographic Assay Based on Polydopamine-Decorated Iridium Oxide Nanoparticles for the Rapid Detection of Salbutamol in Food Samples. ACS APPLIED MATERIALS & INTERFACES 2021; 13:28899-28907. [PMID: 34106688 DOI: 10.1021/acsami.1c06724] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Salbutamol (SAL), a β-2 adrenoreceptor agonist, is an unpopular addition to livestock and poultry, causing several side effects to human health. Thus, it is very important to develop a simple and rapid analytical method to screen SAL in the field of food safety. Here, we present an immunochromatographic assay (ICA) method for sensitively detecting SAL with polydopamine-decorated iridium oxide nanoparticles (IrO2@PDA NPs) as a signal tag. The IrO2@PDA with excellent hydrophilicity, biocompatibility, and stability was synthesized by oxidating self-polymerization of dopamine hydrochloride (DAH) on the surface of IrO2 NPs and used to label monoclonal antibodies (mAbs) through simple physical adsorption. Compared with IrO2 NPs, the IrO2@PDA also possessed superior optical properties and higher affinity with mAbs. With the proposed method, the limit of detection for SAL was 0.002 ng/mL, which was improved at least 24-fold and 180-fold compared with the IrO2 NPs-based ICA and conventional gold nanoparticles-based ICA, respectively. Furthermore, the SAL residuals in pork, pork liver, and beef were successfully detected by the developed biosensor and the recoveries ranged from 85.56% to 115.56%. Briefly, this work indicated that the powerful IrO2@PDA-based ICA can significantly improve detection sensitivity and has huge potential for accurate and sensitive detection of harmful small molecules analytes in food safety fields.
Collapse
Affiliation(s)
- Shuang Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Tong Bu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Kairong Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Zhihao Xu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Feier Bai
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Kunyi He
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Lihua Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Li Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| |
Collapse
|
36
|
Yao J, Xu X, Liu L, Kuang H, Wang Z, Xu C. A gold-based strip sensor for the detection of benzo[ a]pyrene in edible oils. Analyst 2021; 146:3871-3879. [PMID: 34028472 DOI: 10.1039/d1an00612f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
This report describes the development of a sensitive and broadly specific indirect competitive enzyme-linked immunosorbent assay (icELISA) and a gold nanoparticle-based immunochromatographic strip (GNP-ICS) assay for the detection of benzo[a]pyrene (B[a]P), using an anti-B[a]P monoclonal antibody (mAb). A broad-specific anti-B[a]P mAb (4E8) was raised from two types of haptens, with half maximal inhibitory concentrations and limits of detection (LOD) values of 2.51 and 0.54 ng mL-1, respectively. In addition, the cross-reactivity was up to 390% with structurally related compounds. The GNP-ICS assay based on a GNP-labeled mAb showed broad specificity in the detection of B[a]P and its analogues, with cut-off and visual LOD values of 100 and 10 ng mL-1, respectively. Furthermore, the recoveries from the developed icELISA and GNP-ICS assay in edible oil samples spiked with B[a]P were validated by high-performance liquid chromatography-fluorescence detection. The results revealed that the icELISA could reliably detect B[a]P in edible oils.
Collapse
Affiliation(s)
- Jingjing Yao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China. and International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Xinxin Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China. and International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Liqiang Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China. and International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Hua Kuang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China. and International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Zhengyou Wang
- Standards & Quality Center of National Food and Strategic Reserves Administration, Xicheng District, 100037 Beijing, China
| | - Chuanlai Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China. and International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| |
Collapse
|
37
|
Xiao X, Hu S, Lai X, Peng J, Lai W. Developmental trend of immunoassays for monitoring hazards in food samples: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.045] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
38
|
Cui Y, Jiang L, Li H, Meng D, Chen Y, Ding L, Xu Y. Molecularly imprinted electrospun nanofibre membrane assisted stir bar sorptive extraction for trace analysis of sulfonamides from animal feeds. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.01.045] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
39
|
Yao J, Wang Z, Guo L, Xu X, Liu L, Kuang H, Xu C. Lateral flow immunoassay for the simultaneous detection of fipronil and its metabolites in food samples. Food Chem 2021; 356:129710. [PMID: 33836353 DOI: 10.1016/j.foodchem.2021.129710] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 12/12/2022]
Abstract
We developed a sensitive and rapid lateral flow immunochromatographic (LFI) assay for the simultaneous detection of fipronil and its metabolites in eggs and cucumbers using gold nanoparticle (GNP)-labeled monoclonal antibodies (mAbs). Anti-fipronil mAbs (1B6) were produced using two haptens and identified by heterologous indirect competitive enzyme-linked immunosorbent assay (icELISA) with half maximal inhibitory concentration (IC50) and limit of detection (LOD) values of 0.46 ± 0.07 and 0.05 ± 0.01 ng mL-1, respectively. The developed LFI strip showed high sensitivity and specificity in the detection of fipronil with cut-off and visual limit of detection (vLOD) values of 10 and 0.25 ng mL-1, respectively. Furthermore, the application of LFI in the detection of fipronil-spiked egg and cucumber samples was validated by liquid chromatography tandem mass spectrometry (LC-MS/MS). Our developed LFI assay is suitable for detection of fipronil and its metabolites in real samples.
Collapse
Affiliation(s)
- Jingjing Yao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China; International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Zhongxing Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China; International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Lingling Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China; International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Xinxin Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China; International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Liqiang Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China; International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.
| | - Hua Kuang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China; International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.
| | - Chuanlai Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China; International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| |
Collapse
|
40
|
Wang Z, Hu S, Bao H, Xing K, Liu J, Xia J, Lai W, Peng J. Immunochromatographic assay based on time-resolved fluorescent nanobeads for the rapid detection of sulfamethazine in egg, honey, and pork. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:684-692. [PMID: 32705699 DOI: 10.1002/jsfa.10681] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/17/2020] [Accepted: 07/24/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Sulfamethazine (SMZ), a veterinary drug widely used in animal husbandry, is harmful to human health when excess residues are present in food. In this study, a fast, reliable, and sensitive immunochromatographic assay (ICA) was developed on the basis of the competitive format by using time-resolved fluorescent nanobeads (TRFN) as label for the detection of SMZ in egg, honey, and pork samples. RESULTS Under optimized working conditions, this method had limits of detection of 0.016, 0.049, and 0.029 ng mL-1 and corresponding linear ranges of 0.05 to 1.00, 0.05 to 5.00, and 0.05 to 1.00 ng mL-1 in egg, honey, and pork samples, respectively. The recovery experiments showed that the average recoveries ranged from 90.5% to 113.9%, 82.4% to 112.0%, and 79.8% to 93.4% with corresponding coefficients of variation of 4.1% to 11.7%, 7.5% to 11.5%, and 4.8% to 8.7% for egg, honey, and pork samples, respectively. The developed TRFN-ICA was also systematically compared with high-performance liquid chromatography coupled with tandem mass spectrometry (HPLC-MS/MS) by analyzing 45 actual samples from egg, honey, and pork. CONCLUSION Overall, the developed TRFN-ICA had high reliability and excellent potential for the ultrasensitive detection of SMZ for food safety monitoring, also providing a universal platform for the on-site detection of other targets. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zexiang Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Song Hu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Huanhuan Bao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Keyu Xing
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Jintao Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Jun Xia
- Jiangxi Institute of Veterinary Drug and Feedstuff Control, Nanchang, China
| | - Weihua Lai
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Juan Peng
- School of Food Science and Technology, Nanchang University, Nanchang, China
| |
Collapse
|
41
|
Lin L, Xu L, Kuang H, Xiao J, Xu C. Ultrasensitive and simultaneous detection of 6 nonsteroidal anti-inflammatory drugs by colloidal gold strip sensor. J Dairy Sci 2021; 104:2529-2538. [PMID: 33455779 DOI: 10.3168/jds.2020-19500] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/26/2020] [Indexed: 01/11/2023]
Abstract
In this work, an oxicam group-selective monoclonal antibody against 6 nonsteroidal anti-inflammatory drugs (NSAID; meloxicam, lornoxicam, piroxicam, sudoxicam, droxicam, and tenoxicam) was prepared. Also, a spacer arm with carboxyl group was derived at the hydroxyl of meloxicam to generate the meloxicam hapten. The half-maximal inhibitory concentrations (IC50) were, respectively, 0.31 ng/mL for meloxicam, 0.49 ng/mL for lornoxicam, 2.90 ng/mL for piroxicam, 1.95 ng/mL for sudoxicam, 3.08 ng/mL for droxicam, and 5.36 ng/mL for tenoxicam. A colloidal gold immunochromatographic strip based on the monoclonal antibody was developed for the detection of these 6 NSAID in milk. The results could be obtained by the naked eye in 10 min, and the cut-off values and the visual limits of detection in real samples were 5, 5, 10, 10, 25, and 25 ng/mL, and 0.25, 1, 0.5, 0.5, 1, and 1 ng/mL, respectively. This immunochromatopgraphic strip is a suitable tool for on-site detection and screening of oxicam NSAID in milk samples.
Collapse
Affiliation(s)
- Lu Lin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214121, People's Republic of China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi 214121, People's Republic of China
| | - Liguang Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214121, People's Republic of China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi 214121, People's Republic of China
| | - Hua Kuang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214121, People's Republic of China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi 214121, People's Republic of China
| | - Jing Xiao
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100022, People's Republic of China.
| | - Chuanlai Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214121, People's Republic of China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi 214121, People's Republic of China.
| |
Collapse
|
42
|
Guo L, Wang Z, Xu X, Xu L, Wang Z, Kuang H, Xu C. An ultrasensitive fluorescent paper sensor for fast screening of berberine. NEW J CHEM 2021. [DOI: 10.1039/d1nj02210e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Berberine (BBR) is a highly effective animal feed additive, but it also has adverse side effects on animals and causes potential food safety issues. Based on BBR antibody preparation, fluorescent immunochromatography assay was established for quantitative detection of BBR in feed samples.
Collapse
Affiliation(s)
- Lingling Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University
- China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology
- Jiangnan University
- Wuxi
| | - Zhongxing Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University
- China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology
- Jiangnan University
- Wuxi
| | - Xinxin Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University
- China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology
- Jiangnan University
- Wuxi
| | - Liguang Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University
- China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology
- Jiangnan University
- Wuxi
| | - Zhengyou Wang
- Standards & Quality Center of National Food and Strategic Reserves Administration
- Xicheng District
- 100037 Beijing
- China
| | - Hua Kuang
- State Key Laboratory of Food Science and Technology, Jiangnan University
- China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology
- Jiangnan University
- Wuxi
| | - Chuanlai Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University
- China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology
- Jiangnan University
- Wuxi
| |
Collapse
|
43
|
Xu X, Sun L, Wang Z, Guo L, Xu X, Wu A, Kuang H, Song S, Xu C. Hapten synthesis and antibody production for the development of a paper immunosensor for lean meat powder zilpaterol. NEW J CHEM 2021. [DOI: 10.1039/d1nj00426c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
An anti-zilpaterol mAb with an IC50 of 0.31 ng mL−1 and a limit of detection (LOD) of 0.02 ng mL−1 has been developed. For semi-quantitative detection in pork samples, the visual LOD is 0.5 ng mL−1 and the cut-off value is 5 ng mL−1.
Collapse
Affiliation(s)
- Xiaoxin Xu
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- People's Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology
| | - Li Sun
- No. 11
- Ronghua South Road
- Yizhuang Economic and Technological Development Zone
- Beijing
- China
| | - Zhongxing Wang
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- People's Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology
| | - Lingling Guo
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- People's Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology
| | - Xinxin Xu
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- People's Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology
| | - Aihong Wu
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- People's Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology
| | - Hua Kuang
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- People's Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology
| | - Shanshan Song
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- People's Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology
| | - Chuanlai Xu
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- People's Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology
| |
Collapse
|
44
|
Guo X, Lin L, Song S, Wu A, Liu L, Kuang H, Xu C. Development of enzyme linked immunosorbent assay and lateral flow immunoassay for the rapid detection of dapsone in milk. NEW J CHEM 2021. [DOI: 10.1039/d1nj03247j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
High-throughput rapid detection of dapsone in milk without pretreatment.
Collapse
Affiliation(s)
- Xin Guo
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Lu Lin
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Shanshan Song
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Aihong Wu
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Liqiang Liu
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Hua Kuang
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Chuanlai Xu
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| |
Collapse
|
45
|
Zheng L, Peng D, Zhang S, Yang Y, Zhang L, Meng P. Adsorption of sulfamethoxazole and sulfadiazine on phosphorus-containing stalk cellulose under different water pH studied by quantitative evaluation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:43246-43261. [PMID: 32734543 DOI: 10.1007/s11356-020-10241-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/20/2020] [Indexed: 06/11/2023]
Abstract
To improve the high-value application of corn stalk, phosphorus-containing stalk cellulose (PFC) was prepared, characterized, and utilized for the adsorption of sulfamethoxazole (SMZ) and sulfadiazine (SD), with maximum adsorption capacities of 1.385 and 2.527 mg/g at pH 7. As expected, the adsorption efficiency of PFC was strongly affected by pH, and the preferential adsorption order of SMZ- (SD0) > SMZ0 (SD-) > SMZ+ (SD+) was obtained from the experimental results and due to the charges of PFC and the SMZ and SD species. Furthermore, these results were qualitatively linked to the adsorption mechanism, e.g., π+-π electron donor-acceptor (EDA), anion-π bond electrostatic, and hydrophobic interactions. In particular, the adsorption mechanism was further characterized in terms of structure and analyzed systematically using density functional theory (DFT), frontier orbital theory (FOT), and molecular dynamics (MD) simulation, with the aim to explain the theoretical calculation and experimental results. As a result, the highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) orbitals revealed the key role of the rings and functional groups of PFC and SMZ (or SD) and validated the optimized structures of PFC+ sulfonamides (SAs)+, PFC- SAs0, and PFC- SAs-, in which their binding energy values, energy gaps, and relevant molecular lengths determined their stability. Additionally, the van der Waals (vdW) energy confirmed the effect of various interactions on adsorption.
Collapse
Affiliation(s)
- Liuchun Zheng
- School of Environment, South China Normal University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, People's Republic of China.
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, People's Republic of China.
| | - Dan Peng
- Department of Transportation and Environment, Shenzhen Institute of Information Technology, Shenzhen, 518172, People's Republic of China
| | - Shiping Zhang
- School of Chemistry and Environment, South China Normal University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, People's Republic of China
| | - Yuebei Yang
- School of Environment, South China Normal University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, People's Republic of China
| | - Lijuan Zhang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, People's Republic of China
| | - Peipei Meng
- College of Environment, Jinan University, Guangzhou, 510632, People's Republic of China
| |
Collapse
|
46
|
Guo L, Wang Z, Xu X, Xu L, Kuang H, Xiao J, Xu C. Europium nanosphere-based fluorescence strip sensor for ultrasensitive and quantitative determination of fumonisin B 1. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:5229-5235. [PMID: 33084636 DOI: 10.1039/d0ay01734e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Contamination of grains and related products by fumonisins (FBs) is increasingly becoming a serious food security issue. The aim of this work was to develop a europium fluorescent microsphere-based time-resolved fluorescence immunochromatographic assay (TRFICA) for FB1 detection in different grains, including corn, corn flour, wheat, rice and brown rice. Standard curves for the five types of grain matrix were established, and showed good linearity (R2 > 0.975), LOD of 8.26 μg kg-1, and a wide working range of 13.81-1000 μg kg-1. The recoveries of TRFICA for FB1 detection ranged from 82.85-103.62% with variation coefficients of 1.92-15.33%. Two corn reference materials and other natural samples were tested using TRFICA. The same samples analyzed by liquid chromatography tandem mass spectrometry further confirmed the TRFICA results. The entire detection time of TRFICA was within 30 min. Thus, this developed TRFICA can be used for onsite detection and quantitation of FB1 in grains.
Collapse
Affiliation(s)
- Lingling Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, China.
| | | | | | | | | | | | | |
Collapse
|
47
|
Wang X, Yang D, Jia ST, Zhao LL, Jia TT, Xue CH. Electrospun nitrocellulose membrane for immunochromatographic test strip with high sensitivity. Mikrochim Acta 2020; 187:644. [PMID: 33155110 DOI: 10.1007/s00604-020-04626-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 10/28/2020] [Indexed: 02/07/2023]
Abstract
The main goal of this work is to develop an economical, portable, disposable, and reliable point of care paper biosensor based on visualization, which can be used to detect viruses, bacteria, and proteins. However, the sensitivity of immunochromatography test (ICT) strips based on nitrocellulose to target detection has always been a problem. Here, we use an electrospun nitrocellulose (ENC) fiber membrane instead of traditional nitrocellulose fiber membrane to construct ICT strips for early pregnancy detection. By proper selection of the diameter of the ENC fiber to adjust the pore size, porosity, and morphology of the membrane, ICT strips with low flow rate and high protein loading were obtained. Based on these properties, a convenient and sensitive method for the colorimetric determination of human chorionic gonadotropin was developed. Under the optimal conditions, the detection limit of ICT based on ENC membrane is 10 mIU mL-1 (S/N = 3), the linear detection range is 5-1000 mIU mL-1, and the linear relationship is Y = 0.0434 X - 0.0136 (R2 = 0.9802). In addition, the test strip has good specificity and stability, and will not produce false-positive results. Graphical abstract.
Collapse
Affiliation(s)
- Xue Wang
- College of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Dong Yang
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | - Shun-Tian Jia
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Ling-Ling Zhao
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Tong-Tong Jia
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Chao-Hua Xue
- College of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China. .,College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| |
Collapse
|
48
|
Wang Z, Wu X, Liu L, Xu L, Kuang H, Xu C. An immunochromatographic strip sensor for sildenafil and its analogues. J Mater Chem B 2020; 7:6383-6389. [PMID: 31642841 DOI: 10.1039/c9tb00280d] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In this study, a new hapten of sildenafil (Sild) was successfully synthesized and a sensitive monoclonal antibody (mAb) against Sild was produced based on this new hapten. The subclass of the mAb was IgG2a, and the half-maximal inhibitory concentration (IC50) of the mAb was 0.53 ng mL-1. Next, an immunochromatographic assay (ICA) was established for detecting Sild and its analogues in functional foods, where the visual detection limit (vLOD) and cut-off values were 0.5 and 20 μg kg-1, respectively. With the aid of a strip scan reader, the ICA can measure Sild with an LOD of 0.7 μg kg-1 and a line range of detection between 1.40 and 13.11 μg kg-1. The whole test process takes only 15 min. Therefore, the ICA provides a useful tool for the on-site detection and rapid initial screening of Sild in functional food samples.
Collapse
Affiliation(s)
- Zhongxing Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China. and International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Xiaoling Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China. and International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Liqiang Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China. and International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Liguang Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China. and International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Hua Kuang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China. and International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Chuanlai Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China. and International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| |
Collapse
|
49
|
Xu X, Wu X, Kuang H, Song S. Gold nanoparticle-based lateral flow strips for rapid and sensitive detection of Virginiamycin M1. FOOD AGR IMMUNOL 2020. [DOI: 10.1080/09540105.2020.1763262] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Xiaoxin Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
| | - Xiaoling Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
| | - Hua Kuang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
| | - Shanshan Song
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
| |
Collapse
|
50
|
Lei X, Xu X, Liu L, Kuang H, Xu L, Hao C. Immunochromatographic test strip for the rapid detection of tricaine in fish samples. FOOD AGR IMMUNOL 2020. [DOI: 10.1080/09540105.2020.1752155] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Xianlu Lei
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
| | - Xinxin Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
| | - Liqiang Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
| | - Hua Kuang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
| | - Liguang Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
| | - Changlong Hao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
| |
Collapse
|