1
|
Gao L, Shay C, Teng Y. Cell death shapes cancer immunity: spotlighting PANoptosis. J Exp Clin Cancer Res 2024; 43:168. [PMID: 38877579 PMCID: PMC11179218 DOI: 10.1186/s13046-024-03089-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/05/2024] [Indexed: 06/16/2024] Open
Abstract
PANoptosis represents a novel type of programmed cell death (PCD) with distinctive features that incorporate elements of pyroptosis, apoptosis, and necroptosis. PANoptosis is governed by a newly discovered cytoplasmic multimeric protein complex known as the PANoptosome. Unlike each of these PCD types individually, PANoptosis is still in the early stages of research and warrants further exploration of its specific regulatory mechanisms and primary targets. In this review, we provide a brief overview of the conceptual framework and molecular components of PANoptosis. In addition, we highlight recent advances in the understanding of the molecular mechanisms and therapeutic applications of PANoptosis. By elucidating the complex crosstalk between pyroptosis, apoptosis and necroptosis and summarizing the functional consequences of PANoptosis with a special focus on the tumor immune microenvironment, this review aims to provide a theoretical basis for the potential application of PANoptosis in cancer therapy.
Collapse
Affiliation(s)
- Lixia Gao
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, College of Pharmacy, Chongqing University of Arts and Sciences, Chongqing, 402160, People's Republic of China
| | - Chloe Shay
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30322, USA
| | - Yong Teng
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30322, USA.
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, 201 Dowman Dr, Atlanta, GA, 30322, USA.
| |
Collapse
|
2
|
Tong T, Xu A, Tan S, Jiang H, Liu L, Deng S, Wang H. Biological Effects and Biomedical Applications of Areca Nut and Its Extract. Pharmaceuticals (Basel) 2024; 17:228. [PMID: 38399443 PMCID: PMC10893415 DOI: 10.3390/ph17020228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/03/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
The dried, mature fruit of the palm tree species Areca catechu L. is known as the areca nut (AN) or betel nut. It is widely cultivated in the tropical regions. In many nations, AN is utilized for traditional herbal treatments or social activities. AN has historically been used to address various health issues, such as diarrhea, arthritis, dyspepsia, malaria, and so on. In this review, we have conducted a comprehensive summary of the biological effects and biomedical applications of AN and its extracts. Initially, we provided an overview of the constituents in AN extract. Subsequently, we summarized the biological effects of AN and its extracts on the digestive system, nervous system, and circulatory system. And we elucidated the contributions of AN and its extracts in antidepressant, anti-inflammatory, antioxidant, and antibacterial applications. Finally, we have discussed the challenges and future perspectives regarding the utilization of AN and its extracts as emerging pharmaceuticals or valuable adjuncts within the pharmaceutical field.
Collapse
Affiliation(s)
- Ting Tong
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan Binglang Science Institute, School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Aiqing Xu
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan Binglang Science Institute, School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Shuhua Tan
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan Binglang Science Institute, School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Hengzhi Jiang
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan Binglang Science Institute, School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Lixin Liu
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan Binglang Science Institute, School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Senwen Deng
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan Binglang Science Institute, School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Haihua Wang
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan Binglang Science Institute, School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
| |
Collapse
|
3
|
Gocol H, Zeng JH, Chang S, Koh BY, Nguyen H, Cirillo N. A Critical Interpretive Synthesis of the Role of Arecoline in Oral Carcinogenesis: Is the Local Cholinergic Axis a Missing Link in Disease Pathophysiology? Pharmaceuticals (Basel) 2023; 16:1684. [PMID: 38139811 PMCID: PMC10748297 DOI: 10.3390/ph16121684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Arecoline is the primary active carcinogen found in areca nut and has been implicated in the pathogenesis of oral squamous cell carcinoma (OSCC) and oral submucous fibrosis (OSF). For this study, we conducted a stepwise review process by combining iterative scoping reviews with a post hoc search, with the aim of identifying the specific mechanisms by which arecoline initiates and promotes oral carcinogenesis. Our initial search allowed us to define the current trends and patterns in the pathophysiology of arecoline-induced OSF and OSCC, which include the induction of cell proliferation, facilitation of invasion, adhesion, and migration, increased collagen deposition and fibrosis, imbalance in immune and inflammatory mechanisms, and genotoxicity. Key molecular pathways comprise the activation of NOTCH1, MYC, PRDX2, WNT, CYR61, EGFR/Pl3K, DDR1 signaling, and cytokine upregulation. Despite providing a comprehensive overview of potential pathogenic mechanisms of OSF, the involvement of molecules functioning as areca alkaloid receptors, namely, the muscarinic and nicotinic acetylcholine receptors (AChRs), was not elucidated with this approach. Accordingly, our search strategy was refined to reflect these evidence gaps. The results of the second round of reviews with the post hoc search highlighted that arecoline binds preferentially to muscarinic AChRs, which have been implicated in cancer. Consistently, AChRs activate the signaling pathways that partially overlap with those described in the context of arecoline-induced carcinogenesis. In summary, we used a theory-driven interpretive review methodology to inform, extend, and supplement the conventional systematic literature assessment workflow. On the one hand, the results of this critical interpretive synthesis highlighted the prevailing trends and enabled the consolidation of data pertaining to the molecular mechanisms involved in arecoline-induced carcinogenesis, and, on the other, brought up knowledge gaps related to the role of the local cholinergic axis in oral carcinogenesis, thus suggesting areas for further investigation.
Collapse
Affiliation(s)
| | | | | | | | | | - Nicola Cirillo
- Melbourne Dental School, The University of Melbourne, Carlton, VIC 3053, Australia (B.Y.K.)
| |
Collapse
|
4
|
Diwan P, Nirwan M, Bahuguna M, Kumari SP, Wahlang J, Gupta RK. Evaluating Alterations of the Oral Microbiome and Its Link to Oral Cancer among Betel Quid Chewers: Prospecting Reversal through Probiotic Intervention. Pathogens 2023; 12:996. [PMID: 37623956 PMCID: PMC10459687 DOI: 10.3390/pathogens12080996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/18/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023] Open
Abstract
Areca nut and slaked lime, with or without tobacco wrapped in Piper betle leaf, prepared as betel quid, is extensively consumed as a masticatory product in many countries across the world. Betel Quid can promote the malignant transformation of oral lesions as well as trigger benign cellular and molecular changes. In the oral cavity, it causes changes at the compositional level in oral microbiota called dysbiosis. This dysbiosis may play an important role in Oral Cancer in betel quid chewers. The abnormal presence and increase of bacteria Fusobacterium nucleatum, Capnocytophaga gingivalis, Prevotella melaninogenica, Peptostreptococcus sp., Porphyromonas gingivalis, and Streptococcus mitis in saliva and/or other oral sites of the cancer patients has attracted frequent attention for its association with oral cancer development. In the present review, the authors have analysed the literature reports to revisit the oncogenic potential of betel quid and oral microbiome alterations, evaluating the potential of oral microbiota both as a driver and biomarker of oral cancer. The authors have also shared a perspective that the restoration of local microbiota can become a potentially therapeutic or prophylactic strategy for the delay or reversal of lip and oral cavity cancers, especially in high-risk population groups.
Collapse
Affiliation(s)
- Prerna Diwan
- Department of Microbiology, Ram Lal Anand College, University of Delhi, New Delhi 110021, India; (M.N.); (M.B.); (S.P.K.); (R.K.G.)
| | - Mohit Nirwan
- Department of Microbiology, Ram Lal Anand College, University of Delhi, New Delhi 110021, India; (M.N.); (M.B.); (S.P.K.); (R.K.G.)
| | - Mayank Bahuguna
- Department of Microbiology, Ram Lal Anand College, University of Delhi, New Delhi 110021, India; (M.N.); (M.B.); (S.P.K.); (R.K.G.)
| | - Shashi Prabha Kumari
- Department of Microbiology, Ram Lal Anand College, University of Delhi, New Delhi 110021, India; (M.N.); (M.B.); (S.P.K.); (R.K.G.)
| | - James Wahlang
- Department of Biochemistry, St. Edmund’s College, Shillong 793003, India;
| | - Rakesh Kumar Gupta
- Department of Microbiology, Ram Lal Anand College, University of Delhi, New Delhi 110021, India; (M.N.); (M.B.); (S.P.K.); (R.K.G.)
| |
Collapse
|
5
|
Ko AMS, Tu HP, Ko YC. Systematic Review of Roles of Arecoline and Arecoline N-Oxide in Oral Cancer and Strategies to Block Carcinogenesis. Cells 2023; 12:1208. [PMID: 37190117 PMCID: PMC10137008 DOI: 10.3390/cells12081208] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/11/2023] [Accepted: 04/19/2023] [Indexed: 05/17/2023] Open
Abstract
Betel quid and areca nut are complex mixture carcinogens, but little is known about whether their derived single-agent arecoline or arecoline N-oxide (ANO) is carcinogenic, and the underlying mechanisms remain unclear. In this systematic review, we analyzed recent studies on the roles of arecoline and ANO in cancer and strategies to block carcinogenesis. In the oral cavity, flavin-containing monooxygenase 3 oxidizes arecoline to ANO, and both alkaloids conjugate with N-acetylcysteine to form mercapturic acid compounds, which are excreted in urine, reducing arecoline and ANO toxicity. However, detoxification may not be complete. Arecoline and ANO upregulated protein expression in oral cancer tissue from areca nut users compared to expression levels in adjacent normal tissue, suggesting a causal relationship between these compounds and oral cancer. Sublingual fibrosis, hyperplasia, and oral leukoplakia were diagnosed in mice subjected to oral mucosal smearing of ANO. ANO is more cytotoxic and genotoxic than arecoline. During carcinogenesis and metastasis, these compounds increase the expression of epithelial-mesenchymal transition (EMT) inducers such as reactive oxygen species, transforming growth factor-β1, Notch receptor-1, and inflammatory cytokines, and they activate EMT-related proteins. Arecoline-induced epigenetic markers such as sirtuin-1 hypermethylation, low protein expression of miR-22, and miR-886-3-p accelerate oral cancer progression. Antioxidants and targeted inhibitors of the EMT inducers used reduce the risk of oral cancer development and progression. Our review findings substantiate the association of arecoline and ANO with oral cancer. Both of these single compounds are likely carcinogenic to humans, and their mechanisms and pathways of carcinogenesis are useful indicators for cancer therapy and prognosis.
Collapse
Affiliation(s)
- Albert Min-Shan Ko
- Department of Biomedical Sciences, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan 33302, Taiwan
- Cardiovascular Department, Chang Gung Memorial Hospital, Taoyuan 33302, Taiwan
- Health Aging Research Center, Chang Gung University, Taoyuan 33302, Taiwan
| | - Hung-Pin Tu
- Department of Public Health and Environmental Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Ying-Chin Ko
- Department of Medical Research, China Medical University Hospital, China Medical University, No. 2 Yu-Der Road, Taichung 40447, Taiwan
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 106216, Taiwan
| |
Collapse
|
6
|
Yan W, Zhang T, Li S, Wang Y, Zhu L, Cao Y, Lai X, Huang H. Oxidative Stress and Endoplasmic Reticulum Stress Contributes to Arecoline and Its Secondary Metabolites-Induced Dyskinesia in Zebrafish Embryos. Int J Mol Sci 2023; 24:ijms24076327. [PMID: 37047326 PMCID: PMC10094114 DOI: 10.3390/ijms24076327] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
Areca nut has been listed as one of the most addictive substances, along with tobacco, alcohol and caffeine. Areca nut contains seven psychoactive alkaloids; however, the effects of these alkaloids on embryonic development and motor behavior are rarely addressed in zebrafish embryo-larvae. Herein, we investigated the effects of exposure to three alkaloids (arecoline and secondary metabolites—arecaidine and arecoline N-oxide) on the developmental parameters, locomotive behavior, oxidative stress and transcriptome of zebrafish embryos. Zebrafish embryos exposed to different concentrations (0, 0.1, 1, 10, 100 and 1000 μM) of arecoline, arecaidine and arecoline N-oxide showed no changes in mortality and hatchability rates, but the malformation rate of zebrafish larvae was significantly increased in a dose-dependent manner and accompanied by changes in body length. Moreover, the swimming activity of zebrafish larvae decreased, which may be due to the increase in reactive oxygen species and the imbalance between oxidation and antioxidation. Meanwhile, transcriptome analysis showed that endoplasmic reticulum stress and the apoptosis p53 signaling pathway were significantly enriched after exposure to arecoline and arecoline N-oxide. However, arecaidine exposure focuses on protein synthesis and transport. These findings provide an important reference for risk assessment and early warning of areca nut alkaloid exposure.
Collapse
Affiliation(s)
- Wenhua Yan
- The Second Affiliated Hospital of Chongqing Medical University, No.76 Linjiang Road, Yuzhong District, Chongqing 400010, China; (W.Y.)
| | - Tian Zhang
- Key Laboratory of Bio-Rheological Science and Technology, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, No.174 Shazhengjie, Shapingba, Chongqing 400044, China; (T.Z.)
| | - Shuaiting Li
- The Second Affiliated Hospital of Chongqing Medical University, No.76 Linjiang Road, Yuzhong District, Chongqing 400010, China; (W.Y.)
| | - Yunpeng Wang
- The Second Affiliated Hospital of Chongqing Medical University, No.76 Linjiang Road, Yuzhong District, Chongqing 400010, China; (W.Y.)
| | - Li Zhu
- Key Laboratory of Bio-Rheological Science and Technology, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, No.174 Shazhengjie, Shapingba, Chongqing 400044, China; (T.Z.)
| | - Yu Cao
- Key Laboratory of Bio-Rheological Science and Technology, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, No.174 Shazhengjie, Shapingba, Chongqing 400044, China; (T.Z.)
| | - Xiaofang Lai
- Key Laboratory of Marine Biological Resources and Environment of Jiangsu Province, College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Huizhe Huang
- The Second Affiliated Hospital of Chongqing Medical University, No.76 Linjiang Road, Yuzhong District, Chongqing 400010, China; (W.Y.)
- Correspondence: ; Tel.: +86-023-62888334
| |
Collapse
|
7
|
Myers AL. Metabolism of the areca alkaloids - toxic and psychoactive constituents of the areca (betel) nut. Drug Metab Rev 2022; 54:343-360. [PMID: 35543097 DOI: 10.1080/03602532.2022.2075010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Areca nut (AN) is consumed by millions of people for its therapeutic and psychoactive effects, making it one of the most widely self-administered psychoactive substances in the world. Even so, AN use/abuse is associated with myriad oral and systemic side effects, affecting most organ systems in the body. Alkaloids abundant in the nut (e.g. arecoline, arecaidine, guvacoline, and guvacine), collectively called the areca alkaloids, are presumably responsible for the major pharmacological effects experienced by users, with arecoline being the most abundant alkaloid with notable toxicological properties. However, the mechanisms of arecoline and other areca alkaloid elimination in humans remain poorly documented. Therefore, the purpose of this review is to provide an in-depth review of areca alkaloid pharmacokinetics (PK) in biological systems, and discuss mechanisms of metabolism by presenting information found in the literature. Also, the toxicological relevance of the known and purported metabolic steps will be reviewed. In brief, several areca alkaloids contain a labile methyl ester group and are susceptible to hydrolysis, although the human esterase responsible remains presumptive. Other notable mechanisms include N-oxidation, glutathionylation, nitrosamine conversion, and carbon-carbon double-bond reduction. These metabolic conversions result in toxic and sometimes less-toxic derivatives. Arecoline and arecaidine undergo extensive metabolism while far less is known about guvacine and guvacoline. Metabolism information may help predict drug interactions with human pharmaceuticals with overlapping elimination pathways. Altogether, this review provides a first-of-its-kind comprehensive analysis of AN alkaloid metabolism, adds perspective on new mechanisms of metabolism, and highlights the need for future metabolism work in the field.
Collapse
Affiliation(s)
- Alan L Myers
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center, Houston, TX, USA
| |
Collapse
|
8
|
Nithiyanantham S, Arumugam S, Hsu HT, Chung CM, Lee CP, Tsai MH, Yeh KT, Luo SY, Ko YC. Arecoline N-oxide initiates oral carcinogenesis and arecoline N-oxide mercapturic acid attenuates the cancer risk. Life Sci 2021; 271:119156. [PMID: 33548289 DOI: 10.1016/j.lfs.2021.119156] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 01/29/2023]
Abstract
Arecoline N-oxide (ANO), an oxidative metabolite of the areca nut, is a predictable initiator in carcinogenesis. The mechanisms of arecoline metabolites in human cancer specimens is still limited. This present study aims to estimate the oral squamous cell carcinoma (OSCC) inductive activity between arecoline metabolites in human cancer specimens/OSCC cells. We have collected 22 pairs (tumor and non-tumor part) of patient's specimens and checked for clinical characteristics. The identification of arecoline and its metabolites levels by using LC-MS/MS. The NOD/SCID mice model was used to check the OSCC inductive activity. The tumor part of OSCC samples exhibited higher levels of arecoline and ANO. Besides, ANO treated mice accelerates the NOTCH1, IL-17a and IL-1β expressions compared to the control mice. ANO exhibited higher cytotoxicity, intracellular ROS levels and decline in antioxidant enzyme levels in OC-3 cells. The protein expression of NOTCH1 and proliferation marker levels are significantly lower in NOM treated cells. Overall, ANO induced initial stage carcinogenesis in the oral cavity via inflammation, ROS and depletion of antioxidant enzymes. Arecoline N-oxide mercapturic acid (NOM) attenuates the initiation of oral carcinogenesis.
Collapse
Affiliation(s)
- Srinivasan Nithiyanantham
- Environment-Omics-Disease Research Center, China Medical University Hospital, China Medical University, Taichung, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Sankar Arumugam
- Department of Chemistry, National Chung Hsing University, Taichung, Taiwan
| | - Hui-Ting Hsu
- Department of Surgical Pathology, Changhua Christian Hospital, Changhua, Taiwan
| | - Chia-Min Chung
- Environment-Omics-Disease Research Center, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Chi-Pin Lee
- Environment-Omics-Disease Research Center, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Ming-Hsui Tsai
- Department of Otorhinolaryngology, China Medical University Hospital, Taichung, Taiwan
| | - Kun-Tu Yeh
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan
| | - Shun-Yuan Luo
- Department of Chemistry, National Chung Hsing University, Taichung, Taiwan
| | - Ying-Chin Ko
- Environment-Omics-Disease Research Center, China Medical University Hospital, China Medical University, Taichung, Taiwan.
| |
Collapse
|
9
|
Huang B, Zachar JJ. Social and behavioural determinants of areca nut consumption in adolescents. Oral Dis 2020; 26:1820-1826. [PMID: 32516860 DOI: 10.1111/odi.13467] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/21/2020] [Accepted: 05/28/2020] [Indexed: 01/21/2023]
Abstract
OBJECTIVE This study aimed to investigate the prevalence of areca nut consumption and to identify social and behavioural determinants among a Taiwanese adolescent population. SUBJECTS AND METHODS A random sample of 5,343 high school students aged between 15-18 years in Kaohsiung, Taiwan, participated in the study. Participants underwent a clinical dental examination and completed a self-administered questionnaire. Data analyses were performed using multivariate logistic regression to establish a relationship between areca nut consumption as well as social and behavioural characteristics. RESULTS The prevalence of areca nut consumption was 3.0%. The chewing habit was more prevalent among older adolescents (p < .001, OR = 1.50, 95% CI: 1.26, 1.78), males (p < .001, OR = 17.91, 95% CI: 8.57, 37.40), pupils living with non-birth parent(s) (p = .003, OR = 2.13, 95% CI: 1.29, 3.50), children of family heads with primary (p = .001, OR = 2.90, 95% CI: 1.50, 5.59) or secondary level of education (p < .001, OR = 2.78, 95% CI: 1.74, 4.46), frequent risk takers (p < .001, OR = 1.35, 95% CI: 1.27, 1.43) and students of low physical fitness (p < .001, OR = 3.65, 95% CI: 1.81, 7.35). CONCLUSIONS Areca nut consumption has become an ongoing pertinent issue in adolescent health. Future investigations into neurocognitive influences of risk-taking behaviour on areca nut consumption and social dependence of the habit are indicated.
Collapse
Affiliation(s)
- Boyen Huang
- Department of Primary Dental Care, School of Dentistry, University of Minnesota, Minneapolis, MN, USA
| | | |
Collapse
|
10
|
Betel quid-associated cancer: Prevention strategies and targeted treatment. Cancer Lett 2020; 477:60-69. [PMID: 32112902 DOI: 10.1016/j.canlet.2020.02.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 12/13/2022]
Abstract
Betel quid (BQ) and areca nut use are at risk of cancer. This review includes the latest evidence of carcinogenesis caused by BQ exposure, suggests possible prevention strategies. We conducted a systematic literature search in the PubMed and Web of Science databases to identify relevant articles published in the past 10 years according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses criteria. Arecoline N-oxide, a metabolite of areca nut, is likely an initiator in carcinogenesis and is detoxified by N-acetylcysteine. Oral potentially malignant disorder and reactive oxygen species involved in carcinogenesis pathways may be treatable using antioxidants. Screening programs conducted by trained physicians are useful for identifying patients with early stages of oral cancer in high-risk groups. Anti-inflammatory medications may be used as chemopreventive agents in the disease-free stage after surgery. The association between survival and tumor somatic mutations in patients who chew BQ should be addressed in cancer studies. Current evidence on the natural course from BQ exposure to cancer occurrence and development provides information for developing primary, secondary, and tertiary prevention strategies against BQ-associated cancer at clinical or translational levels.
Collapse
|
11
|
Chemistry, metabolism and pharmacology of carcinogenic alkaloids present in areca nut and factors affecting their concentration. Regul Toxicol Pharmacol 2019; 110:104548. [PMID: 31805361 DOI: 10.1016/j.yrtph.2019.104548] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/27/2019] [Accepted: 12/01/2019] [Indexed: 12/28/2022]
Abstract
Areca Nut (AN), the seed of tropical palm tree Areca catechu, is a widely chewed natural product with estimated 600 million users across the world. Various AN products, thriving in the market, portray 'Areca nut' or 'Supari' as mouth freshener and safe alternative to smokeless tobacco. Unfortunately, AN is identified as a Group 1 human carcinogen by International Agency for Research on Cancer (IARC). Wide variation in the level of alkaloids, broadly ranging from 2 to 10 mg/gm dry weight, is observed in diverse variety of AN sold worldwide. For the first time, various factors influencing the formation of carcinogenic alkaloids in AN at various stages, including during the growth, processing, and storage of the nut, are discussed. Current review illustrates the mechanism of cancer induction by areca alkaloids in humans and also compiles dose-dependent pharmacology and toxicology data of arecoline, the most potent carcinogenic alkaloid in AN. Careful monitoring of the arecoline content in AN can potentially be used as a tool in product surveillance studies to identify the variations in characteristics of various AN sample sold worldwide. The article will help to generate public awareness and sensitize the government bodies to initiate campaigns against AN use and addiction.
Collapse
|
12
|
Li YC, Cheng AJ, Lee LY, Huang YC, Chang JTC. Multifaceted Mechanisms of Areca Nuts in Oral Carcinogenesis: the Molecular Pathology from Precancerous Condition to Malignant Transformation. J Cancer 2019; 10:4054-4062. [PMID: 31417650 PMCID: PMC6692602 DOI: 10.7150/jca.29765] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 03/29/2019] [Indexed: 02/06/2023] Open
Abstract
Oral cancer is one of the most frequent malignant diseases worldwide, and areca nut is a primary carcinogen causing this cancer in Southeast Asia. It has been widely reported that areca nut induced several cytotoxic effects in oral cells, including ROS generation, inflammation, tissue hypoxia, DNA damage, and cell invasion. Recently, through chronic exposure model, more extensive pathological effects due to areca nut have been found. These include the induction of autophagy, promotion of epithelial- mesenchymal transition, and facilitation of cancer stemness conversion. Clinical findings support these adverse effects. Oral submucosal fibrosis, a premalignant condition, is prevalent in the area with habitual chewing of areca nuts. Consistently, oral cancer patients with habitual chewing areca nut exhibit more aggressive phenotypes, including resistance to chemo-radiotherapy. In this review, we comprehensively discuss and concisely summarize the up-to-date molecular and cellular mechanisms by which areca nuts contribute to malignant transformation. This review may provide critical information regarding clinical applications in risk assessment, disease prevention, diagnosis, and personalized therapeutics for areca nut-induced oral malignancy.
Collapse
Affiliation(s)
- Yi-Chen Li
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Ann-Joy Cheng
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan.,Department of Radiation Oncology, Chang Gung Memorial Hospital-Linkou, Taoyuan 333, Taiwan
| | - Li-Yu Lee
- Department of Pathology, Chang Gung Memorial Hospital-Linkou, Taoyuan 333, Taiwan
| | - Yu-Chen Huang
- Department of Oral Maxillofacial Surgery, Chang Gung Memorial Hospital-Linkou, Taoyuan 333, Taiwan
| | - Joseph Tung-Chieh Chang
- Department of Radiation Oncology, Chang Gung Memorial Hospital-Linkou, Taoyuan 333, Taiwan.,Department of Radiation Oncology, Xiamen Chang Gung Memorial Hospital, Xiamen, Fujian, China
| |
Collapse
|
13
|
Volgin AD, Bashirzade A, Amstislavskaya TG, Yakovlev OA, Demin KA, Ho YJ, Wang D, Shevyrin VA, Yan D, Tang Z, Wang J, Wang M, Alpyshov ET, Serikuly N, Wappler-Guzzetta EA, Lakstygal AM, Kalueff AV. DARK Classics in Chemical Neuroscience: Arecoline. ACS Chem Neurosci 2019; 10:2176-2185. [PMID: 30664352 DOI: 10.1021/acschemneuro.8b00711] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Arecoline is a naturally occurring psychoactive alkaloid from areca (betel) nuts of the areca palm ( Areca catechu) endemic to South and Southeast Asia. A partial agonist of nicotinic and muscarinic acetylcholine receptors, arecoline evokes multiple effects on the central nervous system (CNS), including stimulation, alertness, elation, and anxiolysis. Like nicotine, arecoline also evokes addiction and withdrawal symptoms (upon discontinuation). The abuse of areca nuts is widespread, with over 600 million users globally. The importance of arecoline is further supported by its being the world's fourth most commonly used human psychoactive substance (after alcohol, nicotine, and caffeine). Here, we discuss neuropharmacology, pharmacokinetics, and metabolism of arecoline, as well as social and historical aspects of its use and abuse. Paralleling clinical findings, we also evaluate its effects in animal models and outline future clinical and preclinical CNS research in this field.
Collapse
Affiliation(s)
- Andrey D. Volgin
- Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk 630117, Russia
| | - Alim Bashirzade
- Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk 630117, Russia
| | | | - Oleg A. Yakovlev
- Institute of Experimental Medicine, Almazov National Medical Research Centre, St. Petersburg 194156, Russia
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Konstantin A. Demin
- Institute of Experimental Medicine, Almazov National Medical Research Centre, St. Petersburg 194156, Russia
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Ying-Jui Ho
- Department of Psychology, Chung Shan Medical University, Taichung, Taiwan
| | - Dongmei Wang
- School of Pharmacy, Southwest University, Chongqing 400700, China
| | | | - Dongni Yan
- School of Pharmacy, Southwest University, Chongqing 400700, China
| | - Zhichong Tang
- School of Pharmacy, Southwest University, Chongqing 400700, China
| | - Jingtao Wang
- School of Pharmacy, Southwest University, Chongqing 400700, China
| | - Mengyao Wang
- School of Pharmacy, Southwest University, Chongqing 400700, China
| | - Erik T. Alpyshov
- School of Pharmacy, Southwest University, Chongqing 400700, China
| | - Nazar Serikuly
- School of Pharmacy, Southwest University, Chongqing 400700, China
| | | | - Anton M. Lakstygal
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
- Russian Scientific Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, St. Petersburg 197758, Russia
| | - Allan V. Kalueff
- School of Pharmacy, Southwest University, Chongqing 400700, China
- Ural Federal University, Ekaterinburg 620002, Russia
- The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, Louisiana 70458, United States
- Anatomy and Physiology Laboratory, Ural Federal University, Ekaterinburg 620002, Russia
- ZENEREI Research Center, Slidell, Louisiana 70458, United States
| |
Collapse
|
14
|
Chung CM, Hung CC, Lee CH, Lee CP, Lee KW, Chen MK, Yeh KT, Ko YC. Variants in FAT1 and COL9A1 genes in male population with or without substance use to assess the risk factors for oral malignancy. PLoS One 2019; 14:e0210901. [PMID: 30657779 PMCID: PMC6338366 DOI: 10.1371/journal.pone.0210901] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 01/03/2019] [Indexed: 12/17/2022] Open
Abstract
A number of genetic variants were suggested to be associated with oral malignancy, few variants can be replicated. The aim of this study was to identify significant variants that enhanced personal risk prediction for oral malignancy. A total of 360 patients diagnosed with oral squamous cell carcinoma, 486 controls and 17 newly diagnosed patients with OPMD including leukoplakia or oral submucous fibrosis were recruited. Fifteen tagSNPs which were derived from somatic mutations were genotyped and examined in associations with the occurrence of oral malignancy. Environmental variables along with the SNPs data were used to developed risk predictive models for oral malignancy occurrence. The stepwise model analysis was conducted to fit the best model in an economically efficient way. Two tagSNPs, rs28647489 in FAT1 gene and rs550675 in COL9A1 gene, were significantly associated with the risk of oral malignancy. The sensitivity and specificity were 85.7% and 85.5%, respectively (area under the receiver operating characteristic curve (AUC) was 0.91) for predicting oral squamous cell carcinoma occurrence with the combined genetic variants, betel-quid, alcohol and age. The AUC for OPMD was only 0.69. The predictive probability of squamous cell carcinoma occurrence for genetic risk score without substance use increased from 10% up to 43%; with substance use increased from 73% up to 92%. Genetic variants with or without substance use may enhance risk prediction for oral malignancy occurrence in male population. The prediction model may be useful as a clinical index for oral malignancy occurrence and its risk assessments.
Collapse
Affiliation(s)
- Chia-Min Chung
- Environment-Omics-Disease Research Center, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan
| | - Chung-Chieh Hung
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan
- Department of Psychiatry, China Medical University Hospital, Taichung, Taiwan
| | - Chien-Hung Lee
- Department of Public Health, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chi-Pin Lee
- Environment-Omics-Disease Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Ka-Wo Lee
- Department of Otolaryngology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Mu-Kuan Chen
- Oral Cancer Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Kun-Tu Yeh
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan
| | - Ying-Chin Ko
- Environment-Omics-Disease Research Center, China Medical University Hospital, Taichung, Taiwan
- * E-mail: ,
| |
Collapse
|
15
|
Kuo TM, Nithiyanantham S, Lee CP, Hsu HT, Luo SY, Lin YZ, Yeh KT, Ko YC. Arecoline N-oxide regulates oral squamous cell carcinoma development through NOTCH1 and FAT1 expressions. J Cell Physiol 2019; 234:13984-13993. [PMID: 30624777 DOI: 10.1002/jcp.28084] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 12/18/2018] [Indexed: 12/11/2022]
Abstract
Areca nut has been evaluated as a group I carcinogen to humans. However, the exact compounds of areca nut causing oral cancer remain unproven. Previous findings from our lab revealed that arecoline N-oxide (ANO), a metabolite of arecoline, exhibits an oral fibrotic effect in immune-deficient NOD/SCID mice. The aim of this study is to investigate the oral potentially malignant disorders (OPMD) inductive activity between areca-alkaloid arecoline and its metabolite ANO in C57BL/6 mice. Our findings show that ANO showed higher activity in inducing hyperplasia with leukoplakia and collagen deposition in C57BL/6 mice compared with the arecoline treated groups. Importantly, immunohistochemical studies showed significant upregulation of NOTCH1, HES1, FAT1, PCNA, and Ki67 expressions in the pathological hyperplastic part. In addition, in vitro studies showed that upregulation of NOTCH1 and FAT1 expressions in ANO treated HGF-1 and DOK cell models. We found that NOTCH1 regulates TP53 expression from NOTCH1 knockdown oral cancer cells. The DNA damage was significantly increased after arecoline and ANO treatment. Further, we found that arecoline-induced H2AX expression was regulated by FMO3. Altogether, our findings show that ANO exhibited higher toxicity in OPMD activity and play a significant role in the induction of areca nut mediated oral tumorigenesis.
Collapse
Affiliation(s)
- Tzer-Min Kuo
- Environment-Omics-Disease Research Center, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Srinivasan Nithiyanantham
- Environment-Omics-Disease Research Center, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Chi-Pin Lee
- Environment-Omics-Disease Research Center, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Hui-Ting Hsu
- Department of Surgical Pathology, Changhua Christian Hospital, Changhua, Taiwan
| | - Shun-Yuan Luo
- Department of Chemistry, National Chung Hsing University, Taichung, Taiwan
| | - You-Zhe Lin
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Kun-Tu Yeh
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan
| | - Ying-Chin Ko
- Environment-Omics-Disease Research Center, China Medical University Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|
16
|
ALPK1 Expression Is Associated with Lymph Node Metastasis and Tumor Growth in Oral Squamous Cell Carcinoma Patients. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 189:190-199. [PMID: 30315765 DOI: 10.1016/j.ajpath.2018.09.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 09/07/2018] [Accepted: 09/13/2018] [Indexed: 01/01/2023]
Abstract
Oral squamous cell carcinoma (OSCC) is the most common malignant cancer, with high mortality rates in advanced stages. Recent studies have shown that the expression of ALPK1 mRNA and its inhibitory differentiation function are associated with cancer progression. However, the expression and clinicopathologic features of ALPK1 in OSCC remain unexplored. Herein, the authors investigated the expression patterns of ALPK1 in 39 matched OSCC patients and examined the relationship between ALPK1 protein expression and clinicopathologic factors using immunohistochemical scores. Using Western blot analysis, ALPK1 expression was found to be significantly higher in tumor tissues than that in nontumor tissues. Through an immunoreactive scoring system, a significantly higher number of advanced-stage tumor size T4 and lymph node metastasis N2 exhibited higher ALPK1 expression levels than that exhibited by T1/T2/T3 tumors and N0/N1. In addition, ALPK1 protein expression was aberrant in malignant oral cancer cell lines compared with that in pre-malignant oral epithelial cells, whereas minimal expression was observed in normal oral epithelial cells. Knockdown of ALPK1 resulted in a significant reduction in cell growth, migration, and invasion capacity in vitro. Consequently, expression of N-cadherin and vimentin decreased in ALPK1-deficient cells. Thus, these results suggest that ALPK1 serves as a potential biomarker and target for OSCC development in late stages.
Collapse
|