1
|
Gianni E, Scholtzová E, Tyrologou P, Couto N, Pospíšil M, Papoulis D, Koukouzas N. Nanotubular clay minerals for simultaneous sorption of pesticides and PFCAs: a molecular simulation study. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2025:vjae038. [PMID: 39837800 DOI: 10.1093/inteam/vjae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 10/23/2024] [Accepted: 11/26/2024] [Indexed: 01/23/2025]
Abstract
Perfluoroalkyl and polyfluoroalkyl substances (PFAS) and herbicides are important persistent contaminants that require specific management. A variety of herbicides is stored in fluorinated containers in the form of aquatic solutions. In such environments, the simultaneous release of PFAS and herbicides takes place. Nature-based solutions, such as the use of clay materials as possible sorbents, are attractive for the immobilization of such contaminants and environmental protection. Nanotubular clay minerals, such as halloysite and imogolite, are sufficient sorbents for herbicides. Due to their structural morphology, such materials could be efficient sorbents for the simultaneous immobilization of PFAS and herbicides. In this study, the potential sorption of a short chain PFAS, perfluorobutanoic acid (PFBA), sorbent of PFBA, and herbicides (atrazine and diuron) were investigated. Forcefield calculations were used for the classical molecular simulation study. Different distributions, arrangements, and ratios of the investigated molecules were investigated for the complete structural and energy characterization of the systems. Both clay minerals created stable complexes with PFBA as well as with both PFBA and herbicide molecules. Halloysite mineral led to similar total energies of the system with sorbed PFBA molecules alone, herbicides alone, or both of the pollutants. In contrast, imogolite led to lower energies with sorbed herbicides and showed relatively higher energies when interacting with PFBA. The complexes with both of the pollutants presented moderate energies. Electrostatic interactions were dominant in all the investigated complexes.
Collapse
Affiliation(s)
- Eleni Gianni
- Chemical Process & Energy Resources Institute, Centre for Research & Technology Hellas (CERTH), Maroussi, Greece
- Department of Environment, Ionian University, Zakynthos, Greece
| | - Eva Scholtzová
- Institute of Inorganic Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Pavlos Tyrologou
- Chemical Process & Energy Resources Institute, Centre for Research & Technology Hellas (CERTH), Maroussi, Greece
| | - Nazaré Couto
- Center for Environmental and Sustainability Research & Global Change and Sustainability Institute, NOVA University Lisbon, Lisbon, Portugal
| | - Miroslav Pospíšil
- Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic
| | | | - Nikolaos Koukouzas
- Chemical Process & Energy Resources Institute, Centre for Research & Technology Hellas (CERTH), Maroussi, Greece
| |
Collapse
|
2
|
Teng G, Chen C, Ma X, Mao H, Yuan X, Xu H, Wu Z, Zhang J. Spherical Assembly of Halloysite Clay Nanotubes as a General Reservoir of Hydrophobic Pesticides for pH-Responsive Management of Pests and Weeds. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402921. [PMID: 38822715 DOI: 10.1002/smll.202402921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/20/2024] [Indexed: 06/03/2024]
Abstract
The development of smart systems for pesticidal delivery presents a significant advancement in enhancing the utilization efficiency of pesticides and mitigating environmental risks. Here an acid-responsive pesticidal delivery system using microspheres formed by the self-assembly of halloysite clay nanotubes (HNTs) is proposed. Insecticide avermectin (AVM) and herbicide prometryn (PMT) are used as two models of hydrophobic pesticide and encapsulated within the porous microspheres, followed by a coating of tannic acid/iron (TA/FeIII) complex films to generate two controlled-release pesticides, named as HCEAT and HCEPT, resulting in the loading capacity of AVM and PMT being 113.3 and 120.3 mg g-1, respectively. Both HCEAT and HCEPT exhibit responsiveness to weak acid, achieving 24 h-release ratios of 85.8% and 80.5% at a pH of 5.5. The experiment and simulation results indicate that the coordination interaction between EDTA2- and Ca2+ facilitates the spherical aggregation of HNTs. Furthermore, these novel pesticide formulations demonstrate better resistance against ultraviolet (UV) irradiation, higher foliar affinity, and less leaching effect, with negligible impact of the carrier material on plants and terrestrial organisms. This work presents a promising approach toward the development of efficient and eco-friendly pesticide formulations, greatly contributing to the sustainable advancement of agriculture.
Collapse
Affiliation(s)
- Guopeng Teng
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
| | - Chaowen Chen
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
| | - Xueqi Ma
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
| | - Hengjian Mao
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, Anhui, 230026, China
| | - Xue Yuan
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
| | - Huan Xu
- School of Carbon Neutrality Science and Engineering, Anhui University of Science and Technology, Hefei, Anhui, 231131, China
| | - Zhengyan Wu
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
- Engineering Research Center of Environmentally Friendly and High-Performance Fertilizer and Pesticide of Anhui Province, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
| | - Jia Zhang
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
- Engineering Research Center of Environmentally Friendly and High-Performance Fertilizer and Pesticide of Anhui Province, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
| |
Collapse
|
3
|
Li Q, Gong Y, Du T, Zhang L, Ma Y, Zhang T, Wu Z, Zhang W, Wang J. Modified halloysite nanotubes as GRAS nanocarrier for intelligent monitoring and food preservation. Food Chem 2024; 444:138678. [PMID: 38330598 DOI: 10.1016/j.foodchem.2024.138678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/25/2024] [Accepted: 02/03/2024] [Indexed: 02/10/2024]
Abstract
Conventional "all-in-one" methods for multi-component active packaging systems are not wholly adequate for fresh food. Given the need for multifunctional properties, introducing halloysite nanotubes (HNTs) could be a promising way to achieve controllable release of active ingredients while endowing with pH-sensitive performance. Here, we pioneered a GRAS composite with multifunctional properties, employing natural HNTs as a nanocarrier, citral (Cit) as an active antimicrobial agent, and myricetin (Myr) for monitoring freshness. The Cit-HNTs-Myr had excellent DPPH, ABTS and ·OH radical scavenging capacity, dual-model (contact and fumigant) antibacterial properties, and pH-sensitive performance. Subsequently, a smart tag prepared by dipping cellulose fibers into Cit-HNTs-Myr, which extended the shelf life of shrimp and blueberries, and provided freshness information for the shrimp. These results demonstrate the applicability of Cit-HNTs-Myr in the preservation of perishable goods and freshness monitoring.
Collapse
Affiliation(s)
- Qingqing Li
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Yuxin Gong
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Ting Du
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Liang Zhang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Yiyue Ma
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Tong Zhang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Zhiyi Wu
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Wentao Zhang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China.
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China.
| |
Collapse
|
4
|
Paul SK, Mazumder S, Naidu R. Herbicidal weed management practices: History and future prospects of nanotechnology in an eco-friendly crop production system. Heliyon 2024; 10:e26527. [PMID: 38444464 PMCID: PMC10912261 DOI: 10.1016/j.heliyon.2024.e26527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/23/2024] [Accepted: 02/14/2024] [Indexed: 03/07/2024] Open
Abstract
Weed management is an important aspect of crop production, as weeds cause significant losses in terms of yield and quality. Various approaches to weed management are commonly practiced by crop growers. Due to limitations in other control methods, farmers often choose herbicides as a cost-effective, rapid and highly efficient weed control strategy. Although herbicides are highly effective on most weeds, they are not a complete solution for weed management because of the genetic diversity and evolving flexibility of weed communities. The excessive and indiscriminate use of herbicides and their dominance in weed control have triggered the rapid generation of herbicide-resistant weed species. Moreover, environmental losses of active ingredients in the herbicides cause serious damage to the environment and pose a serious threat to living organisms. Scientific advances have enabled nanotechnology to emerge as an innovation with real potential in modern agriculture, adding a new dimension in the preparation of controlled release formulations (CRF) of herbicides. Here the required amount of active ingredients is released over longer periods of time to obtain the desired biological efficacy whilst reducing the harmful effects of these chemicals. Various organic and inorganic carrier materials have been utilised in CRF and researchers have a wide range of options for the synthesis of eco-friendly carrier materials, especially those with less or no toxicity to living organisms. This manuscript addresses the history, progress, and consequences of herbicide application, and discusses potential ways to reduce eco-toxicity due to herbicide application, along with directions for future research areas using the benefits of nanotechnology.
Collapse
Affiliation(s)
- Santosh Kumar Paul
- Global Centre for Environmental Remediation (GCER), ATC Building, The University of Newcastle, Callaghan, NSW 2308, Australia
- CRC for Contamination Assessment and Remediation of the Environment (crcCARE), ATC Building, The University of Newcastle, Callaghan, NSW 2308, Australia
- Agronomy Division, Bangladesh Agricultural Research Institute (BARI), Joydebpur, Gazipur 1701, Bangladesh
| | - Santa Mazumder
- Sher-E-Bangla Agricultural University, Dhaka-1207, Bangladesh
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), ATC Building, The University of Newcastle, Callaghan, NSW 2308, Australia
- CRC for Contamination Assessment and Remediation of the Environment (crcCARE), ATC Building, The University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
5
|
Gundogdu S, Saglam O, Isikber AA, Bozkurt H, Unal H. Pesticide Nanoformulations Based on Sunlight-Activated Controlled Release of Abamectin. ACS OMEGA 2024; 9:10380-10390. [PMID: 38463308 PMCID: PMC10918824 DOI: 10.1021/acsomega.3c08015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/03/2024] [Accepted: 01/10/2024] [Indexed: 03/12/2024]
Abstract
A controlled release system that enables the sunlight-triggered release of a model agrochemical, abamectin (abm), is presented. The release system consists of polydopamine functionalized halloysite nanotubes (HNT-PDA) utilized as photothermal nanocarriers to encapsulate 25 wt % abm and 37 wt % lauric acid (LA), a phase change material, that acts as a heat-activable gatekeeper stopping or facilitating the abm release. When exposed to sunlight for 20 min at 1 and 3 sun light density, the temperature of the photothermal nanocarriers reaches 51 and 122 °C, respectively, which triggers the melting of LA and the consequent release of abm from the nanocarriers. Abm was shown to be released gradually over a period of 10 days when nanohybrids were exposed to sunlight for 6 h per day and to remain stable and kill Myzus persicae (Sulzer) (Hemiptera: Aphididae), green peach aphids, at a mortality rate of over 70% for at least 10 days. Aqueous dispersions of the LA/abm@HNT-PDA nanohybrids were studied in terms of their potential as aqueous sprayable pesticide nanoformulations and presented over 30% suspensibility, 36 mg/cm2 foliar retention, strong rainwater resistance, and a 50% mortality rate for M. persicae at a concentration of 9 mg/mL. The proposed sunlight-activated controlled release system based on photothermal, LA-functionalized HNT-PDA nanocarriers holds great potential as controlled release pesticide nanoformulations.
Collapse
Affiliation(s)
- Selin
Oyku Gundogdu
- Faculty
of Engineering and Natural Sciences, Sabanci
University, Istanbul 34956, Turkey
- SUNUM
Nanotechnology Research Center, Sabanci
University, Istanbul 34956, Turkey
| | - Ozgur Saglam
- Faculty
of Agriculture, Namık Kemal University, Tekirdağ 59030, Turkey
| | - Ali Arda Isikber
- Agriculture
Faculty, Plant Protection Department, Kahramanmaraş
Sütçü Imam University, Kahramanmaraş 46100, Turkey
| | - Huseyin Bozkurt
- Agriculture
Faculty, Plant Protection Department, Kahramanmaraş
Sütçü Imam University, Kahramanmaraş 46100, Turkey
| | - Hayriye Unal
- SUNUM
Nanotechnology Research Center, Sabanci
University, Istanbul 34956, Turkey
| |
Collapse
|
6
|
Zhang Z, Yang N, Yu J, Jin S, Shen G, Chen H, Yuzhen N, Xiang D, Qian K. Research Progress of a Pesticide Polymer-Controlled Release System Based on Polysaccharides. Polymers (Basel) 2023; 15:2810. [PMID: 37447458 DOI: 10.3390/polym15132810] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/14/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
In recent years, with the development of the nanomaterials discipline, many new pesticide drug-carrying systems-such as pesticide nano-metal particles, nano-metal oxides, and other drug-carrying materials-had been developed and applied to pesticide formulations. Although these new drug-loading systems are relatively friendly to the environment, the direct exposure of many metal nanoparticles to the environment will inevitably lead to potential effects. In response to these problems, organic nanomaterials have been rapidly developed due to their high-quality biodegradation and biocompatibility. Most of these organic nanomaterials were mainly polysaccharide materials, such as chitosan, carboxymethyl chitosan, sodium alginate, β-cyclodextrin, cellulose, starch, guar gum, etc. Some of these materials could be used to carry inorganic materials to develop a temperature- or pH-sensitive pesticide drug delivery system. Herein, the pesticide drug-carrying system developed based on polysaccharide materials, such as chitosan, was referred to as the pesticide polymer drug-carrying system based on polysaccharide materials. This kind of drug-loading system could be used to protect the pesticide molecules from harsh environments, such as pH, light, temperature, etc., and was used to develop the function of a sustained release, targeted release of pesticides in the intestine of insects, and achieve the goal of precise application, reduction, and efficiency of pesticides. In this review, the recent progress in the field of polysaccharide-based polymer drug delivery systems for pesticides has been discussed, and suggestions for future development were proposed based on the current situation.
Collapse
Affiliation(s)
- Zan Zhang
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Ni Yang
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Jie Yu
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Shuo Jin
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Guangmao Shen
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Hanqiu Chen
- Institute of Vegetable, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850032, China
| | - Nima Yuzhen
- Institute of Vegetable, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850032, China
| | - Dong Xiang
- Institute of Vegetable, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850032, China
| | - Kun Qian
- College of Plant Protection, Southwest University, Chongqing 400715, China
| |
Collapse
|
7
|
Moreno-Rodríguez D, Gianni E, Pospíšil M, Scholtzová E. Is imogolite a suitable adsorbent agent for the herbicides like diuron and atrazine? J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
8
|
Cellulose Acetate Film Containing Bonechar for Removal of Metribuzin from Contaminated Drinking Water. Processes (Basel) 2022. [DOI: 10.3390/pr11010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Bonechar presents high sorption capacity for mobile herbicides retained in soil and water. However, its use in a granulated and/or powder form makes it difficult to remove water. The objective of this study was to produce a cellulose acetate film with bonechar as a viable alternative to remove metribuzin from water. The treatments were composed of 2 and 3 g of bonechar fixed on a cellulose acetate film, pure bonechar, and a control (no bonechar). The sorption and desorption study was carried out in the equilibrium batch mode with five concentrations of metribuzin (0.25, 0.33, 0.5, 1, and 2 mg L−1). The water used in the experiment was potable water. Herbicide analysis was performed by High-Performance Liquid Chromatography (HPLC). The addition of 2 and 3 g of the bonechar fixed on the acetate film sorbed 40% and 60%, respectively, of the metribuzin at the lowest concentrations (0.25, 0.33, and 0.5 mg L−1). For both additions, desorption was low, being 7% and 2.5% at 24 and 120 h, respectively. There are still no reports of the production of cellulose acetate film with bonechar for herbicide removal in water, considered an alternative of easy handling and indicated for water treatment plants.
Collapse
|
9
|
Antimicrobial film based on poly(lactic acid) and natural halloysite nanotubes for controlled cinnamaldehyde release. Int J Biol Macromol 2022; 224:848-857. [DOI: 10.1016/j.ijbiomac.2022.10.171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/12/2022] [Accepted: 10/20/2022] [Indexed: 11/05/2022]
|
10
|
Shan P, Lu Y, Lu W, Yin X, Liu H, Li D, Lian X, Wang W, Li Z, Li Z. Biodegradable and Light-Responsive Polymeric Nanoparticles for Environmentally Safe Herbicide Delivery. ACS APPLIED MATERIALS & INTERFACES 2022; 14:43759-43770. [PMID: 36111970 DOI: 10.1021/acsami.2c12106] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The low utilization efficiency of pesticides exerts an adverse impact on the environment and human health. Polymer-related controlled-release nanosized pesticide systems provide a promising and efficient way to overcome the problem. In this work, a biodegradable and light-responsive amphiphilic polymer was synthesized via 1,1,3,3-tetramethylguanidine-promoted polyesterification under mild conditions (low temperature, no vacuum, and no inert gas protection). We used this polymer to fabricate a light-triggered controlled-release nanosized pesticide system. The herbicide, 2,4-dichlorophenoxyacetic acid (2,4-D), was selected as a model drug to show its potential as a controlled-release pesticide system. It was found that the 2,4-D-loaded polymeric nanoparticles were stable without the treatment of UV, while the release rate of 2,4-D from the nanoparticles gradually increased after treatment with UV light. Pot trial showed that the 2,4-D-loaded polymer nanoparticles showed a good herbicidal effect. Finally, toxicity studies suggested that the polymer can reduce toxicity to nontarget organisms.
Collapse
Affiliation(s)
- Pengfei Shan
- School of Optometry and Ophthalmology and Eye Hospital, State Key Laboratory of Optometry and Vision Science, Wenzhou Medical University, Wenzhou 325027, China
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, China
| | - Yingwen Lu
- School of Optometry and Ophthalmology and Eye Hospital, State Key Laboratory of Optometry and Vision Science, Wenzhou Medical University, Wenzhou 325027, China
| | - Weilin Lu
- School of Optometry and Ophthalmology and Eye Hospital, State Key Laboratory of Optometry and Vision Science, Wenzhou Medical University, Wenzhou 325027, China
| | - Xiangping Yin
- School of Optometry and Ophthalmology and Eye Hospital, State Key Laboratory of Optometry and Vision Science, Wenzhou Medical University, Wenzhou 325027, China
| | - Haiwei Liu
- School of Optometry and Ophthalmology and Eye Hospital, State Key Laboratory of Optometry and Vision Science, Wenzhou Medical University, Wenzhou 325027, China
| | - Daai Li
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, China
| | - Xiaoyue Lian
- School of Optometry and Ophthalmology and Eye Hospital, State Key Laboratory of Optometry and Vision Science, Wenzhou Medical University, Wenzhou 325027, China
| | - Weiping Wang
- State Key Laboratory of Pharmaceutical Biotechnology and Dr. Li Dak-Sum Research Centre and Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Zhongyu Li
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, China
| | - Zhihui Li
- School of Optometry and Ophthalmology and Eye Hospital, State Key Laboratory of Optometry and Vision Science, Wenzhou Medical University, Wenzhou 325027, China
| |
Collapse
|
11
|
Miao Z, Lv R, Teng S, Cao C, Lu P. Development of antioxidant active packaging films with slow release properties incorporated with tea polyphenols-loaded porous starch microcapsules. Int J Biol Macromol 2022; 222:403-412. [PMID: 36126814 DOI: 10.1016/j.ijbiomac.2022.09.143] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/26/2022] [Accepted: 09/15/2022] [Indexed: 11/27/2022]
Abstract
Slow release active packaging films can realize the sustained release of active agents and prolong the shelf life of food. For this aim, a novel slow release active polyvinyl alcohol (PVA) film was developed by using solution casting method. With porous starch loaded with tea polyphenols (PSTP) as core material and maltodextrin (MD) as wall material, PSTP@MD microcapsules were prepared using freeze drying method and used as slow release carrier of tea polyphenols (TP) in the active films. The interactions between PSTP@MD microcapsules and PVA molecular chains were physical interactions. In addition, the relative crystallinity of the slow release active films was reduced to 23.74 %. The addition of PSTP@MD microcapsules can enhance the ductility of active films and reduce the water content and swelling degree of active films by 46.74 % and 54.38 %, respectively. Moreover, the thermal stability, water vapor and ultraviolet barrier properties of active films were promoted. The transparency and antioxidant activity of active films was high, and the radical scavenging activity of active films was 58 %. The encapsulation of TP with PSTP@MD microcapsules can realize the slow release of TP. The slow release active films had antioxidant activity and sustained release properties, which could be used as an active packaging film to extend the shelf life of food.
Collapse
Affiliation(s)
- Zhikun Miao
- Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, College of Chemistry and Material Science, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Ruifu Lv
- Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, College of Chemistry and Material Science, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Shilong Teng
- Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, College of Chemistry and Material Science, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Cheng Cao
- Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, College of Chemistry and Material Science, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Panfang Lu
- Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, College of Chemistry and Material Science, Shandong Agricultural University, Tai'an, Shandong 271018, PR China.
| |
Collapse
|
12
|
Sikandar M, Shoaib MH, Yousuf RI, Ahmed FR, Ali FR, Saleem MT, Ahmed K, Sarfaraz S, Jabeen S, Siddiqui F, Husain T, Qazi F, Imtiaz MS. Nanoclay-Based Composite Films for Transdermal Drug Delivery: Development, Characterization, and in silico Modeling and Simulation. Int J Nanomedicine 2022; 17:3463-3481. [PMID: 35959283 PMCID: PMC9359522 DOI: 10.2147/ijn.s367540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/24/2022] [Indexed: 11/26/2022] Open
Abstract
Purpose Halloysite nanotubes (HNTs) are a versatile and highly investigated clay mineral due to their natural availability, low cost, strong mechanical strength, biocompatibility, and binding properties. The present work explores its role for retarding and controlling the drug release from the composite polymer matrix material. Methods For this purpose, nanocomposite films comprising propranolol HCl and different concentrations of HNTs were formulated using the “solution casting method”. The menthol in a concentration of 1% w/v was used as a permeation enhancer, and its effect on release and permeation was also determined. Quality characteristics of the nanocomposite were determined, and in vitro release and permeation studies were performed using the Franz diffusion system. The data was analyzed using various mathematical models and permeation parameters. Optimized formulation was also subjected to skin irritation test, FTIR, DSC, and SEM study. Systemic absorption and disposition of propranolol HCl from the nanocomposites were predicted using the GastroPlus TCAT® model. Results The control in drug release rate was associated with the higher concentration of HNTs. F8 released 50% of propranolol within 8 hours (drug, HNTs ratio, 1:2). The optimized formulation (F6) with drug: HNTs (2:1), exhibited drug release 80% in 4 hours, with maximum flux of 145.812 µg/cm2hr. The optimized formulation was found to be a non-irritant for skin with a shelf life of 35.46 months (28–30 ℃). The in silico model predicted Cmax, Tmax, AUCt, and AUCinf as 32.113 ng/mL, 16.58 h, 942.34 ng/mL×h, and 1102.9 ng/mL×h, respectively. Conclusion The study demonstrated that HNTs could be effectively used as rate controlling agent in matrix type transdermal formulations.
Collapse
Affiliation(s)
- Muhammad Sikandar
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Muhammad Harris Shoaib
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, 75270, Pakistan
- Correspondence: Muhammad Harris Shoaib, Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, 75270, Pakistan, Email ;
| | - Rabia Ismail Yousuf
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Farrukh Rafiq Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Fatima Ramzan Ali
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, 75270, Pakistan
- Jinnah College of Pharmacy, Sohail University, Karachi, 74000, Pakistan
| | - Muhammad Talha Saleem
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Kamran Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Sana Sarfaraz
- Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Sabahat Jabeen
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Fahad Siddiqui
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Tazeen Husain
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Faaiza Qazi
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Muhammad Suleman Imtiaz
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, 75270, Pakistan
| |
Collapse
|
13
|
The development and application of nanocomposites with pH-sensitive “gates” to control the release of active agents: Extending the shelf-life of fresh wheat noodles. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108563] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
14
|
Singh G, Ramadass K, Sooriyakumar P, Hettithanthri O, Vithange M, Bolan N, Tavakkoli E, Van Zwieten L, Vinu A. Nanoporous materials for pesticide formulation and delivery in the agricultural sector. J Control Release 2022; 343:187-206. [DOI: 10.1016/j.jconrel.2022.01.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 12/25/2022]
|
15
|
Miao Z, Zhang Y, Lu P. Novel active starch films incorporating tea polyphenols-loaded porous starch as food packaging materials. Int J Biol Macromol 2021; 192:1123-1133. [PMID: 34655591 DOI: 10.1016/j.ijbiomac.2021.09.214] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/26/2021] [Accepted: 09/28/2021] [Indexed: 12/22/2022]
Abstract
A novel active food packaging film was developed by casting a corn starch/tea polyphenol (TP)-loaded porous starch (PS, obtained by enzymatic hydrolysis) film forming solution, with the latter helping to regulate the slow release of TP. Results showed that PS had a favorable TP adsorption capacity, and the casted films had a homogeneous distribution of the formulation components. Likewise, the active films had good mechanical properties, UV barrier properties, thermal stability, and excellent antioxidant properties. The slow release of TP from the films was sustained, which is a desired characteristic for extending the protection afforded by the active film to the food under consideration.
Collapse
Affiliation(s)
- Zhikun Miao
- Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, College of Chemistry and Material Science, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Yanfei Zhang
- School of Chemistry, Sun Yat-Sen University, Guangzhou, Guangdong 510275, PR China
| | - Panfang Lu
- Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, College of Chemistry and Material Science, Shandong Agricultural University, Tai'an, Shandong 271018, PR China..
| |
Collapse
|
16
|
Wang K, Sun X, Long B, Li F, Yang C, Chen J, Ma C, Xie D, Wei Y. Green Production of Biodegradable Mulch Films for Effective Weed Control. ACS OMEGA 2021; 6:32327-32333. [PMID: 34870052 PMCID: PMC8638303 DOI: 10.1021/acsomega.1c05725] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
Biodegradable mulch films are supposed to be a prospective substitute for poly(ethylene)-based mulch films in the field of sustainable agriculture. Among them, weeding mulch films play significant roles. However, the large-scale production of weeding mulch films through the traditional high-temperature film blowing process would often cause serious pollution due to the diffusion of herbicides in the surroundings. Herein, a green and facile coating approach is developed to produce biodegradable weeding mulch films. In our strategy, a herbicide was added into a poly(vinyl alcohol) aqueous solution with dopamine in it. After the subsequent low-temperature coating procedure on a biodegradable poly(butylene adipate-co-terephthalate)/poly(lactic acid) film, effective weeding mulch films were obtained. The morphology, structure, and mechanical property test results revealed the robustness and stability of the coating, and the pot experiments clearly demonstrated the effective weed suppression ability of the obtained weeding films. Evidently, this strategy to produce biodegradable weeding mulch films is green and facile, exhibiting great prospects in the large-scale production of weeding mulch films and other functional biodegradable mulch films.
Collapse
Affiliation(s)
- Ke Wang
- Institute
of Bioengineering and Guangdong Biomaterials Engineering Technology
Research Center, Guangdong Academy of Sciences, Guangzhou 510316, China
- Department
of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084, China
| | - Xiaoyan Sun
- Institute
of Bioengineering and Guangdong Biomaterials Engineering Technology
Research Center, Guangdong Academy of Sciences, Guangzhou 510316, China
| | - Bibo Long
- Institute
of Bioengineering and Guangdong Biomaterials Engineering Technology
Research Center, Guangdong Academy of Sciences, Guangzhou 510316, China
| | - Fayong Li
- Institute
of Bioengineering and Guangdong Biomaterials Engineering Technology
Research Center, Guangdong Academy of Sciences, Guangzhou 510316, China
| | - Chong Yang
- Institute
of Bioengineering and Guangdong Biomaterials Engineering Technology
Research Center, Guangdong Academy of Sciences, Guangzhou 510316, China
| | - Junjia Chen
- Institute
of Bioengineering and Guangdong Biomaterials Engineering Technology
Research Center, Guangdong Academy of Sciences, Guangzhou 510316, China
| | - Chunping Ma
- Guangdong-HongKong
Joint Laboratory for New Textile Materials, School of Textile Materials
and Engineering, Wuyi University, Jiangmen 529020, China
| | - Dong Xie
- Institute
of Bioengineering and Guangdong Biomaterials Engineering Technology
Research Center, Guangdong Academy of Sciences, Guangzhou 510316, China
| | - Yen Wei
- Department
of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084, China
| |
Collapse
|
17
|
Yao Z, Cao Q, Li C, Gong W, Meng X. Improvement of
β‐cyclodextrin
/cardanol inclusion complex for the
thermal‐oxidative
stability and environmental‐response antioxidation releasing property of polylactic acid. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Zhongyang Yao
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering and Production Engineering Department School of Chemical Engineering, East China University of Science and Technology Shanghai China
| | - Qiming Cao
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering and Production Engineering Department School of Chemical Engineering, East China University of Science and Technology Shanghai China
| | - Chenyang Li
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering and Production Engineering Department School of Chemical Engineering, East China University of Science and Technology Shanghai China
| | - Weiguang Gong
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering and Production Engineering Department School of Chemical Engineering, East China University of Science and Technology Shanghai China
| | - Xin Meng
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering and Production Engineering Department School of Chemical Engineering, East China University of Science and Technology Shanghai China
| |
Collapse
|
18
|
Liu L, Dai Y. Strong adsorption of metolachlor by biochar prepared from walnut shells in water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:48379-48391. [PMID: 33913108 DOI: 10.1007/s11356-021-14117-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
In this study, we investigated the removal of metolachlor (MET) by biochar (BC) prepared from walnut shells (W-BC) compared with BCs made from cow dung (D-BC) and corn cobs (C-BC) by characterizing the adsorption kinetics, pH, adsorbent dose, and ionic strength, and using isotherm models. Weight analysis was also conducted to understand the adsorption capacity and adsorption mechanisms. The results showed that the MET removal rates were 87.89% (W-BC), 52.91% (D-BC), and 10.91% (C-BC), respectively. According to the results fitted to the Langmuir isotherm model, the saturated adsorption capacities for MET were 96.15 mg g-1, 37.88 mg g-1, and 11.98 mg g-1 with W-BC, D-BC, and C-BC, respectively. The results demonstrated that W-BC was particularly effective at MET removal. Analyses based on the weights of different factors showed that the correlation coefficient was highest for the BC type with 46.11% in the MET adsorption process, followed by the initial concentration of MET (19.29%). The adsorption of MET by BCs was probably influenced mostly by electron donor-acceptor interactions and pore filling. These results may facilitate further studies of the adsorption mechanism and optimization of the process.
Collapse
Affiliation(s)
- Lu Liu
- College of Resources and Environment, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin, 150030, China
| | - Yingjie Dai
- College of Resources and Environment, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin, 150030, China.
| |
Collapse
|
19
|
Mahajan R, Selim A, Neethu KM, Sharma S, Shanmugam V, Jayamurugan G. A systematic study to unravel the potential of using polysaccharides based organic-nanoparticles versus hybrid-nanoparticles for pesticide delivery. NANOTECHNOLOGY 2021; 32:475704. [PMID: 34371483 DOI: 10.1088/1361-6528/ac1bdc] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 08/08/2021] [Indexed: 06/13/2023]
Abstract
To daze conventional pesticide release limitations, nanotechnology-mediated pesticide delivery using natural polymers has been actively investigated. However, the lack of information on what are the beneficial/non-beneficial aspects of using hybrid- and organic-nanoparticles (NP) and among the polysaccharides which are better suited concerning pesticide loading efficiency (PLE wt%), entrapment efficiency, and sustained pesticide release (SPR %) has prompted us to investigate this study. In this report, we systematically investigated a series of polysaccharides such as starch (S), cellulose (C), aminocellulose (AC), and sodium carboxymethylcellulose (NaCMC) coated on magnetite NP (MNP, Fe3O4) and complete organic nanocarrier systems (starch and cellulose) that have no MNP part were compared for the PLE wt% and SPR % efficiencies for chlorpyrifos (ChP) insecticide. Overall, all nanocarriers (NCs) have shown good to excellent PLE wt% due to the smaller-sized NP obtained through optimal conditions. However, among the hybrid polysaccharides studied, starch MNP has shown a maximum PLE of 111 wt% in comparison with other polysaccharides (80-94 wt%) coated hybrid-NCs as well as with organic-NCs (81-87 wt%). The use of inorganic support does improve the PLE wt% markedly for starch but not for cellulose derivatives. Similarly, the SPR results of S-NP showed a remarkably better sustained release profile for ChP of 88% in 14 d. In contrast, other unfunctionalized and functionalized celluloses exhibited poor release profiles of 60%-20% for the same period. This study may help the researchers choose the right system for designing and achieving enhanced pesticide efficiency.
Collapse
Affiliation(s)
- Ritu Mahajan
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Manauli PO, Mohali, Punjab 140306, India
| | - Abdul Selim
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Manauli PO, Mohali, Punjab 140306, India
| | - K M Neethu
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Manauli PO, Mohali, Punjab 140306, India
| | - Sandeep Sharma
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Manauli PO, Mohali, Punjab 140306, India
| | - Vijayakumar Shanmugam
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Manauli PO, Mohali, Punjab 140306, India
| | - Govindasamy Jayamurugan
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Manauli PO, Mohali, Punjab 140306, India
| |
Collapse
|
20
|
Improving the properties of antifouling hybrid composites: The use of Halloysites as nano-containers in epoxy coatings. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126779] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
21
|
Tan C, Zheng J, Feng Y, Liu M. Cell Membrane-Coated Halloysite Nanotubes for Target-Specific Nanocarrier for Cancer Phototherapy. Molecules 2021; 26:4483. [PMID: 34361636 PMCID: PMC8348248 DOI: 10.3390/molecules26154483] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/18/2021] [Accepted: 07/21/2021] [Indexed: 01/22/2023] Open
Abstract
Naturally-occurring halloysite nanotubes (HNTs) have many advantages for constructing target-specific delivery of phototherapeutic agents. Here, HNTs were labeled with fluorescein isothiocyanate (FITC) and loaded with the type-II photosensitizer indocyanine green (ICG) for phototherapy. HNTs-FITC-ICG was structurally stable due to presence of HNTs as the nanocarrier and protective agent. The nanocarrier was further wrapped with red blood cell membrane (RBCM) to enhance the biocompatibility. The HNTs-FITC-ICG-RBCM nanocarrier show high cytocompatibility and hemocompatibility. Due to the photothermal effect of ICG, a significant temperature rising was achieved by irradiation of the nanocarrier using 808 nm laser. The photothermal temperature rising was used to kill the cancer cells effectively. The HNTs-FITC-ICG-RBCM nanocarrier was further linked with anti-EpCAM to endow it with targeting therapy performance against breast cancer, and the anti-EpCAM-conjugated nanocarrier exhibited significantly tumor-specific accumulation. The RBCM-coated and biocompatible HNTs nanocarrier is a promising candidate for target-specific therapy of cancer.
Collapse
Affiliation(s)
| | | | | | - Mingxian Liu
- Department of Materials Science and Engineering, Jinan University, Guangzhou 510632, China; (C.T.); (J.Z.); (Y.F.)
| |
Collapse
|
22
|
Cui R, Zhu B, Yan J, Qin Y, Yuan M, Cheng G, Yuan M. Development of a Sodium Alginate-Based Active Package with Controlled Release of Cinnamaldehyde Loaded on Halloysite Nanotubes. Foods 2021; 10:foods10061150. [PMID: 34063767 PMCID: PMC8223774 DOI: 10.3390/foods10061150] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/03/2021] [Accepted: 05/11/2021] [Indexed: 12/02/2022] Open
Abstract
The worsening environment and the demand for safer food have accelerated the development of new food packaging materials. The objective of this research is to prepare antimicrobial food packaging film with controlled release by loading cinnamaldehyde (CIN) on etched halloysite nanotubes (T-HNTs) and adding it to sodium alginate (SA) matrix. The effects of T-HNTs-CIN on the physical functional properties and antibacterial activity of the film were systematically evaluated, and the release of CIN in the film was also quantified. Transmission electron microscopy and nitrogen adsorption experiments showed that the halloysite nanotubes had been etched and CIN was successfully loaded into the T-HNTs. The addition of T-HNTs-CIN significantly improved the water vapor barrier properties and tensile strength of the film. Similarly, the presence of T-HNTs-CIN in the film greatly reduced the negative effects of ultraviolet rays. The release experiment showed that the diffusion time of CIN in SA/T-HNTs-CIN film to fatty food simulation solution was delayed 144 h compared with that of SA/CIN film. Herein, the antibacterial experiment also confirmed the controlled release effect of T-HNTs on CIN. In conclusion, SA/T-HNTs-CIN film might have broad application prospects in fatty food packaging.
Collapse
Affiliation(s)
- Rui Cui
- Institute of Agriculture and Food Engineering, Kunming University of Science and Technology, Kunming 650550, China; (R.C.); (B.Z.); (J.Y.); (G.C.)
| | - Bifen Zhu
- Institute of Agriculture and Food Engineering, Kunming University of Science and Technology, Kunming 650550, China; (R.C.); (B.Z.); (J.Y.); (G.C.)
| | - Jiatong Yan
- Institute of Agriculture and Food Engineering, Kunming University of Science and Technology, Kunming 650550, China; (R.C.); (B.Z.); (J.Y.); (G.C.)
| | - Yuyue Qin
- Institute of Agriculture and Food Engineering, Kunming University of Science and Technology, Kunming 650550, China; (R.C.); (B.Z.); (J.Y.); (G.C.)
- Correspondence: (Y.Q.); (M.Y.)
| | - Mingwei Yuan
- Engineering Research Center of Biopolymer Functional Materials of Yunnan, Yunnan Nationalities University, Kunming 650550, China;
- Correspondence: (Y.Q.); (M.Y.)
| | - Guiguang Cheng
- Institute of Agriculture and Food Engineering, Kunming University of Science and Technology, Kunming 650550, China; (R.C.); (B.Z.); (J.Y.); (G.C.)
| | - Minglong Yuan
- Engineering Research Center of Biopolymer Functional Materials of Yunnan, Yunnan Nationalities University, Kunming 650550, China;
| |
Collapse
|
23
|
Xie D, Zhao Q, Zeng X, Ma S, Zhong B, Chen Y, Zhang Q, Jia Z, Jia D. Electrostatic wrapping of eupatorium-based botanical herbicide with chitosan derivatives for controlled release. Carbohydr Polym 2020; 247:116700. [PMID: 32829828 DOI: 10.1016/j.carbpol.2020.116700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 06/25/2020] [Accepted: 06/25/2020] [Indexed: 10/24/2022]
Abstract
To avoid the negative effects of chemical herbicides and prepare herbicide with long-term efficacy, the active ingredients of eupatorium adenophorum spreng (AIEAS, negatively charged) were used as a botanical herbicide, and based on electrostatic attraction, the self-assembled hydroxyl isopropyl chitosan (HPCTS, positively charged) and carboxymethyl chitosan (CMC, with good water solubility) were successfully employed as degradable and water-soluble carrier for AIEAS to realize its controlled release. The release of AIEAS from the chitosan carrier in water could be divided into two stages. In the first stage, a fast release of AIEAS was detected and the total amount of the released AIEAS reached 41.5 %, while the release rate effectively slowed down in the second stage, indicating that good balance between fast control of weeds and long-term efficacy was achieved through this controlled delivery system. The release kinetics of AIEAS during the whole release process showed good fit to the Ritger-Peppas model with Fickian diffusion as the dominant release mechanism. Moreover, it found that the released AIEAS from chitosan carrier showed fine herbicidal effect on barnyard grass.
Collapse
Affiliation(s)
- Dong Xie
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, PR China; Guangdong Biomaterials Engineering Technology Research Center, Guangdong Provincial Bioengineering Institute (Guangzhou Sugarcane Industry Research Institute), Guangzhou 510316, PR China
| | - Qi Zhao
- College of Life Science, Jilin Agricultural University, Changchun 130118, Jilin, PR China
| | - Xueqi Zeng
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Shufei Ma
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Bangchao Zhong
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, PR China.
| | - Yongjun Chen
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Qingzhong Zhang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Zhixin Jia
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, PR China.
| | - Demin Jia
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, PR China
| |
Collapse
|
24
|
Wang Y, Yi S, Lu R, Sameen DE, Ahmed S, Dai J, Qin W, Li S, Liu Y. Preparation, characterization, and 3D printing verification of chitosan/halloysite nanotubes/tea polyphenol nanocomposite films. Int J Biol Macromol 2020; 166:32-44. [PMID: 33035530 DOI: 10.1016/j.ijbiomac.2020.09.253] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/24/2020] [Accepted: 09/29/2020] [Indexed: 01/17/2023]
Abstract
In this study, chitosan/halloysite nanotubes/tea polyphenol (CS/HNTs/TP) nanocomposite films were prepared by the solution casting method. The scanning electron microscopy (SEM) result showed that the nanocomposite film with a CS/HNTs ratio of 6:4 and a TP content of 10% (C6H4-TP10) had a relatively smooth surface and a dense internal structure. The water vapor barrier property of the nanocomposite film was improved due to the tortuous channels formed by the HNTs. However, the swelling degree and water solubility of the nanocomposite films were decreased. The nanocomposite films have a good antioxidant capacity. Antibacterial experiments showed that the C6H4-TP10 nanocomposite film had certain inhibitory effects on the growth of both E. coli and S. aureus. In addition, we used 3D printer to verify the printability of the optimal formulation of the film-forming solution. Overall, this strategy provides a simple approach to construct promising natural antioxidants and antibacterial food packaging.
Collapse
Affiliation(s)
- Yihao Wang
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Shengkui Yi
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Rui Lu
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Dur E Sameen
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Saeed Ahmed
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Jianwu Dai
- College of Mechanical and Electrical Engineering, Sichuan Agricultural University, Yaan 625014, China
| | - Wen Qin
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Suqing Li
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China.
| | - Yaowen Liu
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China; California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
25
|
Effect of incorporation of Halloysite nanotubes on the structure and properties of low-density polyethylene/thermoplastic starch blend. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02185-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
26
|
Xiang Y, Lu X, Yue J, Zhang Y, Sun X, Zhang G, Cai D, Wu Z. Stimuli-responsive hydrogel as carrier for controlling the release and leaching behavior of hydrophilic pesticide. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 722:137811. [PMID: 32179301 DOI: 10.1016/j.scitotenv.2020.137811] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/04/2020] [Accepted: 03/07/2020] [Indexed: 06/10/2023]
Abstract
In this work, biochar based hydrogel microspheres were fabricated successfully to develop pH and ion strength dual-stimuli responsively controlled-release system for hydrophilic pesticide. Herein, gentian violet (GV) was selected as model hydrophilic pesticide. Taking advantage of the cross-linking reaction, GV was incorporated into biochar and the 3D network-structured hydrogel, guaranteeing a satisfying encapsulation efficiency and sustained release of pesticide. The leaching behavior of pesticide in simulated soil column at different pHs and ion strength was in accordance with the corresponding release performance, and bulk of pesticide was retarded on the surface. In addition, the pesticide carrier had nearly no toxic effect on the cell proliferation and zebrafish embryo, displaying a good biosafety. The work provides a promising strategy with a low-cost and simple procedure that could regulate pesticide release behavior, decrease leaching loss, and improve the utilization efficiency of pesticide.
Collapse
Affiliation(s)
- Yubin Xiang
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, No.219 Ningliu Road, Nanjing, Jiangsu 210044, People's Republic of China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei, Anhui 230031, People's Republic of China; Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei, Anhui 230031, People's Republic of China
| | - Xue Lu
- College of Science, Nanjing Forestry University, No.159 Lonpan Road, Nanjing, Jiangsu 210037, People's Republic of China
| | - Jiangtao Yue
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, No.219 Ningliu Road, Nanjing, Jiangsu 210044, People's Republic of China
| | - Yan Zhang
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, No.219 Ningliu Road, Nanjing, Jiangsu 210044, People's Republic of China
| | - Xiaoyue Sun
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, No.219 Ningliu Road, Nanjing, Jiangsu 210044, People's Republic of China
| | - Guilong Zhang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei, Anhui 230031, People's Republic of China; Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei, Anhui 230031, People's Republic of China
| | - Dongqing Cai
- College of Environmental Science and Engineering, Donghua University, Songjiang Campus, 2999 North Renmin Road, Shanghai 201620, People's Republic of China.
| | - Zhengyan Wu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei, Anhui 230031, People's Republic of China; Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei, Anhui 230031, People's Republic of China.
| |
Collapse
|
27
|
Maghsoudi S, Taghavi Shahraki B, Rabiee N, Fatahi Y, Dinarvand R, Tavakolizadeh M, Ahmadi S, Rabiee M, Bagherzadeh M, Pourjavadi A, Farhadnejad H, Tahriri M, Webster TJ, Tayebi L. Burgeoning Polymer Nano Blends for Improved Controlled Drug Release: A Review. Int J Nanomedicine 2020; 15:4363-4392. [PMID: 32606683 PMCID: PMC7314622 DOI: 10.2147/ijn.s252237] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/01/2020] [Indexed: 12/12/2022] Open
Abstract
With continual rapid developments in the biomedical field and understanding of the important mechanisms and pharmacokinetics of biological molecules, controlled drug delivery systems (CDDSs) have been at the forefront over conventional drug delivery systems. Over the past several years, scientists have placed boundless energy and time into exploiting a wide variety of excipients, particularly diverse polymers, both natural and synthetic. More recently, the development of nano polymer blends has achieved noteworthy attention due to their amazing properties, such as biocompatibility, biodegradability and more importantly, their pivotal role in controlled and sustained drug release in vitro and in vivo. These compounds come with a number of effective benefits for improving problems of targeted or controlled drug and gene delivery systems; thus, they have been extensively used in medical and pharmaceutical applications. Additionally, they are quite attractive for wound dressings, textiles, tissue engineering, and biomedical prostheses. In this sense, some important and workable natural polymers (namely, chitosan (CS), starch and cellulose) and some applicable synthetic ones (such as poly-lactic-co-glycolic acid (PLGA), poly(lactic acid) (PLA) and poly-glycolic acid (PGA)) have played an indispensable role over the last two decades for their therapeutic effects owing to their appealing and renewable biological properties. According to our data, this is the first review article highlighting CDDSs composed of diverse natural and synthetic nano biopolymers, blended for biological purposes, mostly over the past five years; other reviews have just briefly mentioned the use of such blended polymers. We, additionally, try to make comparisons between various nano blending systems in terms of improved sustained and controlled drug release behavior.
Collapse
Affiliation(s)
- Saeid Maghsoudi
- Department of Medicinal Chemistry, Shiraz University of Technology, Shiraz, Iran
| | | | - Navid Rabiee
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Rassoul Dinarvand
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Tavakolizadeh
- Polymer Research Laboratory, Department of Chemistry, Sharif University of Technology, Tehran11365-9516, Iran
| | - Sepideh Ahmadi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Rabiee
- Biomaterial Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | | | - Ali Pourjavadi
- Polymer Research Laboratory, Department of Chemistry, Sharif University of Technology, Tehran11365-9516, Iran
| | - Hassan Farhadnejad
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA02115, USA
| | - Lobat Tayebi
- School of Dentistry, Marquette University, Milwaukee, WI53233, USA
| |
Collapse
|
28
|
Hu T, Gui Z, Gong J, Rong R, Wang X, Tan W, Wang Z, Xu X. INOS-mediated acute stomach injury and recovery in mice after oral exposure to halloysite nanotubes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 258:113758. [PMID: 31881510 DOI: 10.1016/j.envpol.2019.113758] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 11/24/2019] [Accepted: 12/06/2019] [Indexed: 06/10/2023]
Abstract
Natural halloysite nanotubes (HNTs) with a hollow lumen are already applied in numerous fields and enter the environment in increasing quantities, which may have effects on animal and human health. However their in vivo toxicity in mammals is still largely unclear. The aim of this study is to assess acute oral toxicity of HNTs in the stomach of mice and recovery. Oral HNTs at low dose (5 mg HNTs/kg BW) for 30 days increased in daily food and water intake and promoted mouse growth with no obvious adverse effect on the stomach. The promotive effect on mouse growth disappeared after cessation of oral administration of the nanotubes. Oral HNTs for 30 days at high dose (50 mg HNTs/kg BW) induced Si and Al accumulation in the stomach, which caused oxidative stress, inflammation and iNOS-mediated damage in the organ. The damage in the stomach led to slight atrophic gastritis and reduced mouse growth. Oral HNTs-induced changes at high dose were not observed after a 30-days recovery period. The findings provided the evidence that oral HNTs-induced acute toxicity in the stomach was reversible. More importantly, this research showed that Al and Si were cleared out of the mice by hepatic excretion and renal excretion, respectively, during the recovery period. The results suggest that HNTs at low concentration in environments have no adverse effect on mice, while there are health risks to mice under severe contamination by HNTs.
Collapse
Affiliation(s)
- Tingting Hu
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, PR China
| | - Zongxiang Gui
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, PR China
| | - Jiachun Gong
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, PR China
| | - Rui Rong
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, PR China
| | - Xiaoqin Wang
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, PR China
| | - Weihang Tan
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, PR China
| | - Ziyi Wang
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, PR China
| | - Xiaolong Xu
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, PR China; National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230027, PR China.
| |
Collapse
|
29
|
Huang M, Ji Y, Yan J, Qi T, Zhang SF, Li T, Lü S, Liu Y, Liu M. A nano polymer conjugate for dual drugs sequential release and combined treatment of colon cancer and thrombotic complications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110697. [PMID: 32204009 DOI: 10.1016/j.msec.2020.110697] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 01/07/2020] [Accepted: 01/25/2020] [Indexed: 12/15/2022]
Abstract
Thrombotic complications turn into the second leading cause of death in colon cancer patients due to the hypercoagulable state caused by malignancy. Therefore, it is necessary to treat colon cancer and its thrombosis complications simultaneously. Herein, a nano polymer conjugate based on disulfide cross-linked low-generation peptide dendrimers was developed to treat colon cancer and its thrombotic complications. First, two-generation polyglutamic acid dendrimer was bonded to nattokinase (NK) and then cross-linkers containing disulfide linkages were used to obtain polymer conjugates (NK-G2)n. Then doxorubicin (Dox) was encapsulated. The system can release drugs sequentially due to the dissociation of the polymer conjugates. In vitro thrombolytic experiments exhibited a significant thrombolysis ability of (NK-G2)n. The toxicity and cellular uptake tests on HCT116 cells showed that Dox loaded polymer conjugates had good endocytosis ability and anti-cancer effect. Therefore, this drug delivery system will be a promising strategy to the combined treatment of colon cancer and thrombotic complications.
Collapse
Affiliation(s)
- Mengjie Huang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Department of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Yanzheng Ji
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Department of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jia Yan
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Department of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Taomei Qi
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Department of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Shao-Fei Zhang
- Institute of Agroforestry and Technology, Longnan Teacher's College, Longnan 742500, China
| | - Tao Li
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Department of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Shaoyu Lü
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Department of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| | - Yongming Liu
- The First School of Clinic Medicine, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Mingzhu Liu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Department of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
30
|
Nörnberg AB, Gehrke VR, Mota HP, Camargo ER, Fajardo AR. Alginate-cellulose biopolymeric beads as efficient vehicles for encapsulation and slow-release of herbicide. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123970] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
31
|
Lauric Acid-Modified Nitraria Seed Meal Composite as Green Carrier Material for Pesticide Controlled Release. J CHEM-NY 2019. [DOI: 10.1155/2019/5376452] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To alleviate the adverse effects of pesticide residues on the environment, development of a more safe, economical, and reliable usage approach of pesticides is critically urgent. In the present study, a novel pesticide carrier LA-NSM (lauric acid-modified Nitraria seed meal) with controlled release property was prepared through grafting esterification of lauric acid onto Nitraria seed meal substrates. The structure of the obtained samples was characterized by Fourier-transform infrared spectroscopy, scanning electron microscopy, and contact angle measurements. The results indicated that LA-NSM products had a well-defined hydrophobic surface and irregular holes for efficient loading of pesticide molecules. Deltamethrin (DEL), a representative insoluble pyrethroid insecticide in water, was deliberately selected as the index pesticide to evaluate the loading and releasing efficiency of LA-NSM. The loading capacity of LA-NSM for DEL can reach about 1068 mg/g. pH, humidity of soil, and temperature had a significant influence on controlled release performance of LA-NSM@DEL. Moreover, the releasing kinetics of LA-NSM@DEL composites could be fitted well with the Higuchi model. Overall, the highly hydrophobic property, excellent loading, and controlled release ability of LA-NSM made it a promising candidate in agricultural applications.
Collapse
|
32
|
Qiang X, Zhou S, Zhang Z, Quan Q, Huang D. Synergistic Effect of Halloysite Nanotubes and Glycerol on the Physical Properties of Fish Gelatin Films. Polymers (Basel) 2018; 10:E1258. [PMID: 30961183 PMCID: PMC6401894 DOI: 10.3390/polym10111258] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/06/2018] [Accepted: 11/07/2018] [Indexed: 11/17/2022] Open
Abstract
Fish gelatin (FG)/glycerol (GE)/halloysite (HT) composite films were prepared by casting method. The morphology of the composite films was observed by scanning electron microscopy (SEM). The effects of HT and GE addition on the mechanical properties, water resistance and optical properties of the composites were investigated. Results showed that with increasing GE content, the elongation at composite breaks increased significantly, but their tensile strength (TS) and water resistance decreased. SEM results showed that GE can partly promote HT dispersion in composites. TS and water resistance also increased with the addition of HTs. Well-dispersed HTs in the FG matrix decreased the moisture uptake and water solubility of the composites. All films showed a transparency higher than 80% across the visible light region (400⁻800 nm), thereby indicating that light transmittance of the resulting nanocomposites was slightly affected by GE and HTs.
Collapse
Affiliation(s)
- Xiaohu Qiang
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China.
| | - Songyi Zhou
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China.
| | - Zhuo Zhang
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China.
| | - Qiling Quan
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China.
| | - Dajian Huang
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China.
| |
Collapse
|
33
|
Effect of halloysite nanoclay on the physical, mechanical, and antioxidant properties of chitosan films incorporated with clove essential oil. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2018.05.048] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
34
|
Taverna ME, Busatto CA, Lescano MR, Nicolau VV, Zalazar CS, Meira GR, Estenoz DA. Microparticles based on ionic and organosolv lignins for the controlled release of atrazine. JOURNAL OF HAZARDOUS MATERIALS 2018; 359:139-147. [PMID: 30014909 DOI: 10.1016/j.jhazmat.2018.07.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 06/29/2018] [Accepted: 07/02/2018] [Indexed: 06/08/2023]
Abstract
Lignins are natural polymers of the lignocellulosic biomass. Nowadays, there is a growing interest in developing value-added products based on lignins due to their renewability, low cost and abundance. In this work, lignin microspheres from organosolv and ionic isolation processes were prepared for the controlled release of atrazine. Microspheres were prepared by the solvent extraction/evaporation technique. The controlled release of atrazine from organosolv and ionic lignins microparticles was studied in water. Mobility experiments were performed in an agricultural soil from Argentina. The results showed that microparticles prepared using dichloromethane as the dispersed phase were spherical, while lignins dispersed in ethyl acetate produce irregular microparticles. Organosolv lignin microparticles presented higher encapsulation efficiency for all herbicide loads. About 98% and 95% of atrazine was released in 24 and 48 h approximately from organosolv and ionic lignin microparticles, respectively. The release profiles of atrazine from both lignin microparticles were not affected by the herbicide load. Atrazine mobility experiments in soil showed that about 80% of free atrazine was leached in 37 days, while 65.0% and 59.7% of the herbicide was leached from ionic and organosolv lignin microparticles, respectively. Thus, atrazine-loaded microparticles could reduce leaching compared to a commercial formulation of free atrazine.
Collapse
Affiliation(s)
- María Eugenia Taverna
- INTEC (UNL-CONICET), Güemes 3450, (3000) Santa Fe, Argentina; UTN Regional San Francisco, Av. de la Universidad 501, (2400) San Francisco, Córdoba, Argentina
| | | | | | | | | | | | | |
Collapse
|