1
|
Hashemi E, Norouzi MM, Sadeghi-Kiakhani M. Magnetic biochar as a revolutionizing approach for diverse dye pollutants elimination: A comprehensive review. ENVIRONMENTAL RESEARCH 2024; 261:119548. [PMID: 38977156 DOI: 10.1016/j.envres.2024.119548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024]
Abstract
The term "biomass" encompasses all substances found in the natural world that were once alive or derived from living organisms or their byproducts. These substances consist of organic molecules containing hydrogen, typically oxygen, frequently nitrogen, and small amounts of heavy, alkaline earth and alkali metals. Magnetic biochar refers to a type of material derived from biomass that has been magnetized typically by adding magnetic components such as magnetic iron oxides to display magnetic properties. These materials are extensively applicable in widespread areas like environmental remediation and catalysis. The magnetic properties of these compounds made them ideal for practical applications through their easy separation from a reaction mixture or environmental sample by applying a magnetic field. With the evolving global strategy focused on protecting the planet and moving towards a circular, cost-effective economy, natural compounds, and biomass have become particularly important in the field of biochemistry. The current research explores a comparative analysis of the versatility and potential of biomass for eliminating dyes as a sustainable, economical, easy, compatible, and biodegradable method. The elimination study focused on the removal of various dyes as pollutants. Various operational parameters which influenced the dye removal process were also discussed. Furthermore, the research explained, in detail, adsorption kinetic models, types of isotherms, and desorption properties of magnetic biochar adsorbents. This comprehensive review offers an advanced framework for the effective use of magnetic biochar, removing dyes from textile wastewater.
Collapse
Affiliation(s)
- Elaheh Hashemi
- Department of Chemistry, Faculty of Sciences, Shahid Rajaee Teacher Training University, P.O. Box: 1678815811, Tehran, Iran.
| | - Mohammad-Mahdi Norouzi
- Department of Chemistry, Faculty of Sciences, Shahid Rajaee Teacher Training University, P.O. Box: 1678815811, Tehran, Iran
| | - Mousa Sadeghi-Kiakhani
- Institute for Color Science and Technology, Department of Organic Colorants, P.O. Box: 16765-654, Tehran, Iran
| |
Collapse
|
2
|
Yang X, Liu J, Huang X, Cui H, Wei L, Shao G, Fu X, Liu N, An Q, Zhai S. Magnetically nanorized seaweed residue for the adsorption of methylene blue in aqueous solutions. RSC Adv 2024; 14:23606-23620. [PMID: 39077309 PMCID: PMC11284532 DOI: 10.1039/d4ra04416a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 07/17/2024] [Indexed: 07/31/2024] Open
Abstract
The cost-effective and green separation of dye pollutants from wastewater is of great importance in environmental remediation. Industrial seaweed residue (SR), as a low-cost cellulose source, was used to produce carboxylated nanorized-SR (NSR) via oxalic acid (OA)-water pretreatments followed by ultrasonic disintegration. Fourier transform infrared spectroscopy, X-ray polycrystalline diffraction, nitrogen isotherms, scanning electron microscopy, transmission electron microscopy, vibrating sample magnetometry, X-ray photoelectron spectrometry, particle charge detection, zeta potential and retro titration experiments were utilized to explore the physiochemical properties of samples. The NSRs with carboxyl content of 4.58-6.73 mmol g-1 were prepared using 10-60% OA-water pretreatment. In the case of 20% OA-water pretreatment, the highest NSR yield (73.9%) and nanocellulose content (80.2%) were obtained. Through self-assembly induced by the electrostatic interaction, magnetic NSR composite adsorbents (MNSRs) were prepared with the combination of NSR and Fe3O4 nanoparticles (NPs). The carboxylated NSR with negative charge demonstrated good affinity for Fe3O4 NPs. The Fe3O4 NPs were perfectly microencapsulated with the NSR when the NSR/Fe3O4 mass ratio was higher than 1/1. The adsorption properties of the MNSR for methylene blue (MB) removal from aqueous solution were investigated. The adsorbent with NSR/Fe3O4 mass ratio of 1/1 (MNSR1/1) exhibited optimum performance in terms of the magnetic properties and adsorption capacity. The MNSR1/1 showed high adsorption ability in a pH ≥7 environment. According to the Langmuir fitting, the maximum adsorption capacity of MNSR1/1 for MB reached 184.25 mg g-1. The adsorption of MB complies with the pseudo-second-order kinetic model. MNSR1/1 still maintained good adsorption properties after the fifth cycle of adsorption-desorption. MNSR1/1 could selectively adsorb cationic dye (i.e., MB and methyl violet) from wastewater, with hydrogen bonding and electrostatic interaction as the main force.
Collapse
Affiliation(s)
- Xinyi Yang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University Dalian 116034 China +86 0411 86323726
| | - Jingjing Liu
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University Dalian 116034 China +86 0411 86323726
| | - Xuejin Huang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University Dalian 116034 China +86 0411 86323726
| | - Hemin Cui
- Dalian Zhonghuida Scientific Instrument Co. Ltd Dalian 116023 China
| | - Ligang Wei
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University Dalian 116034 China +86 0411 86323726
| | - Guolin Shao
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University Dalian 116034 China +86 0411 86323726
| | - Xu Fu
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University Dalian 116034 China +86 0411 86323726
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, Dalian Polytechnic University, Dalian Polytechnic University Dalian 116034 China
| | - Na Liu
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University Dalian 116034 China +86 0411 86323726
| | - Qingda An
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University Dalian 116034 China +86 0411 86323726
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, Dalian Polytechnic University, Dalian Polytechnic University Dalian 116034 China
| | - Shangru Zhai
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University Dalian 116034 China +86 0411 86323726
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, Dalian Polytechnic University, Dalian Polytechnic University Dalian 116034 China
| |
Collapse
|
3
|
Raghunathan M, Kapoor A, Mohammad A, Kumar P, Singh R, Tripathi SC, Muzammil K, Pal DB. Advances in two-dimensional transition metal dichalcogenides-based sensors for environmental, food, and biomedical analysis: A review. LUMINESCENCE 2024; 39:e4703. [PMID: 38433325 DOI: 10.1002/bio.4703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/10/2024] [Accepted: 02/06/2024] [Indexed: 03/05/2024]
Abstract
Transition metal dichalcogenides (TMDCs) are versatile two-dimensional (2D) nanomaterials used in biosensing applications due to their excellent physical and chemical properties. Due to biomaterial target properties, biosensors' most significant challenge is improving their sensitivity and stability. In environmental analysis, TMDCs have demonstrated exceptional pollutant detection and removal capabilities. Their high surface area, tunable electronic properties, and chemical reactivity make them ideal for sensors and adsorbents targeting various contaminants, including heavy metals, organic pollutants, and emerging contaminants. Furthermore, their unique electronic and optical properties enable sensitive detection techniques, enhancing our ability to monitor and mitigate environmental pollution. In the food analysis, TMDCs-based nanomaterials have shown remarkable potential in ensuring food safety and quality. These nanomaterials exhibit high specificity and sensitivity for detecting contaminants, pathogens, and adulterants in various food matrices. Their integration into sensor platforms enables rapid and on-site analysis, reducing the reliance on centralized laboratories and facilitating timely interventions in the food supply chain. In biomedical studies, TMDCs-based nanomaterials have demonstrated significant strides in diagnostic and therapeutic applications. Their biocompatibility, surface functionalization versatility, and photothermal properties have paved the way for novel disease detection, drug delivery, and targeted therapy approaches. Moreover, TMDCs-based nanomaterials have shown promise in imaging modalities, providing enhanced contrast and resolution for various medical imaging techniques. This article provides a comprehensive overview of 2D TMDCs-based biosensors, emphasizing the growing demand for advanced sensing technologies in environmental, food, and biomedical analysis.
Collapse
Affiliation(s)
- Muthukumar Raghunathan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, India
| | - Ashish Kapoor
- Department of Chemical Engineering, Harcourt Butler Technical University, Kanpur, Uttar Pradesh, India
| | - Akbar Mohammad
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, Republic of Korea
| | - Praveen Kumar
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, India
| | - Rajeev Singh
- Department of Chemical Environmental Science, Jamia Millia Islamia, New Delhi, India
| | - Subhash C Tripathi
- Institute of Applied Sciences & Humanities, Department of Chemistry, GLA University, Mathura, Uttar Pradesh, India
| | - Khursheed Muzammil
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushait Campus, King Khalid University, Abha, Saudi Arabia
| | - Dan Bahadur Pal
- Department of Chemical Engineering, Harcourt Butler Technical University, Kanpur, Uttar Pradesh, India
| |
Collapse
|
4
|
Huang W, Xu Y, Chen N, Cheng G, Ke H. Removal of cationic dyes from aqueous solution using polyacrylic acid modified hemp stem. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:5568-5581. [PMID: 38127237 DOI: 10.1007/s11356-023-31627-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/16/2023] [Indexed: 12/23/2023]
Abstract
Water pollution caused by dyes is a pressing environmental challenge due to their persistence and difficulty in degradation. Herein, an anionic adsorbent (HS-PAANa) was synthesized by grafting polyacrylic acid (PAA) onto the agricultural waste-hemp stem (HS). The obtained HS-PAANa adsorbent exhibited rapid adsorption kinetics, high adsorption capacity, and a favorable preference for cationic dyes, such as methylene blue (MB) and crystal violet (CV). The experimental data fit well with the pseudo-second-order kinetic model and Langmuir isotherm, demonstrating the efficiency of HS-PAANa in dye removal. Notably, the optimal adsorption capacities of HS-PAANa for MB and CV were found to be 1296.65 mg/g and 1451.43 mg/g, respectively. In the cationic/anionic dyes (MB/MO) binary systems, HS-PAANa exhibited enhanced selective adsorption of cationic dyes (MB), indicating its potential for targeted removal of specific dyes from mixed solutions. Moreover, HS-PAANa adsorption shows an excellent recyclability, after five cycles, HS-PAANa still maintained MB and CV removal rates of 93.85% and 95.08%, respectively. Therefore, the bioadsorbent HS-PAANa exhibits high potential as a highly efficient adsorbent for the effective treatment of cationic pollutants in wastewater.
Collapse
Affiliation(s)
- Wentao Huang
- Faculty of Materials Science and Chemistry, China University of Geosciences (Wuhan), 68 Jincheng Street, East Lake High-tech Development Zone, Wuhan, 430078, China
| | - Yuping Xu
- Faculty of Materials Science and Chemistry, China University of Geosciences (Wuhan), 68 Jincheng Street, East Lake High-tech Development Zone, Wuhan, 430078, China
| | - Niansheng Chen
- Faculty of Materials Science and Chemistry, China University of Geosciences (Wuhan), 68 Jincheng Street, East Lake High-tech Development Zone, Wuhan, 430078, China
| | - Guoe Cheng
- Faculty of Materials Science and Chemistry, China University of Geosciences (Wuhan), 68 Jincheng Street, East Lake High-tech Development Zone, Wuhan, 430078, China
| | - Hanzhong Ke
- Faculty of Materials Science and Chemistry, China University of Geosciences (Wuhan), 68 Jincheng Street, East Lake High-tech Development Zone, Wuhan, 430078, China.
| |
Collapse
|
5
|
Aghajanzadeh S, Fayaz G, Soleimanian Y, Ziaiifar AM, Turgeon SL, Khalloufi S. Hornification: Lessons learned from the wood industry for attenuating this phenomenon in plant-based dietary fibers from food wastes. Compr Rev Food Sci Food Saf 2023; 22:4-45. [PMID: 36199175 DOI: 10.1111/1541-4337.13047] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 08/03/2022] [Accepted: 08/31/2022] [Indexed: 02/07/2023]
Abstract
A significant amount of waste is annually generated worldwide by the supply chain of the food industry. Considering the population growth, the environmental concerns, and the economic opportunities, waste recovery is a promising solution to produce valuable and innovative ingredients for food and nonfood industries. Indeed, plant-based wastes are rich in dietary fibers (DF), which have relevant technical functionalities such as water/oil holding capacity, swelling capacity, viscosity, texture, and physiological properties such as antioxidant activity, cholesterol, and glucose adsorption capacities. Different drying technologies could be applied to extend the shelf life of fresh DF. However, inappropriate drying technologies or process conditions could adversely affect the functionalities of DF via the hornification phenomenon. Hornification is related to the formation of irreversible hydrogen bindings, van der Waals interactions, and covalent lactone bridges between cellulose fibrils during drying. This review aims to capitalize on the knowledge developed in the wood industry to tackle the hornification phenomenon occurring in the food industry. The mechanisms and the parameters affecting hornification as well as the mitigation strategies used in the wood industry that could be successfully applied to foods are summarized. The application of conventional drying technologies such as air or spray-drying increased the occurrence of hornification. In contrast, solvent exchange, supercritical drying, freeze-drying, and spray-freeze-drying approaches were considered effective strategies to limit the consequences of this phenomenon. In addition, incorporating capping agents before drying attenuated the hornification. The knowledge summarized in this review can be used as a basis for process design in the valorization of plant-based wastes and the production of functional DF that present relevant features for the food and packaging industries.
Collapse
Affiliation(s)
- Sara Aghajanzadeh
- Soils Science and Agri-Food Engineering Department, Laval University, Québec, Canada.,Institute of Nutrition and functional foods, Laval University, Québec, Canada
| | - Goly Fayaz
- Soils Science and Agri-Food Engineering Department, Laval University, Québec, Canada.,Institute of Nutrition and functional foods, Laval University, Québec, Canada
| | - Yasamin Soleimanian
- Soils Science and Agri-Food Engineering Department, Laval University, Québec, Canada.,Institute of Nutrition and functional foods, Laval University, Québec, Canada
| | - Aman Mohammad Ziaiifar
- Food Process Engineering Department, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Sylvie L Turgeon
- Institute of Nutrition and functional foods, Laval University, Québec, Canada.,Food Science Department, Laval University, Québec, Canada
| | - Seddik Khalloufi
- Soils Science and Agri-Food Engineering Department, Laval University, Québec, Canada.,Institute of Nutrition and functional foods, Laval University, Québec, Canada
| |
Collapse
|
6
|
Recent Advances in Nanomaterial-Based Sensing for Food Safety Analysis. Processes (Basel) 2022. [DOI: 10.3390/pr10122576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
The increasing public attention on unceasing food safety incidents prompts the requirements of analytical techniques with high sensitivity, reliability, and reproducibility to timely prevent food safety incidents occurring. Food analysis is critically important for the health of both animals and human beings. Due to their unique physical and chemical properties, nanomaterials provide more opportunities for food quality and safety control. To date, nanomaterials have been widely used in the construction of sensors and biosensors to achieve more accurate, fast, and selective food safety detection. Here, various nanomaterial-based sensors for food analysis are outlined, including optical and electrochemical sensors. The discussion mainly involves the basic sensing principles, current strategies, and novel designs. Additionally, given the trend towards portable devices, various smartphone sensor-based point-of-care (POC) devices for home care testing are discussed.
Collapse
|
7
|
Multifunctional Electrospun Nanofibers Based on Biopolymer Blends and Magnetic Tubular Halloysite for Medical Applications. Polymers (Basel) 2021; 13:polym13223870. [PMID: 34833169 PMCID: PMC8624944 DOI: 10.3390/polym13223870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/27/2021] [Accepted: 11/03/2021] [Indexed: 11/17/2022] Open
Abstract
Tubular halloysite (HNT) is a naturally occurring aluminosilicate clay with a unique combination of natural availability, good biocompatibility, high mechanical strength, and functionality. This study explored the effects of magnetically responsive halloysite (MHNT) on the structure, morphology, chemical composition, and magnetic and mechanical properties of electrospun nanofibers based on polycaprolactone (PCL) and gelatine (Gel) blends. MHNT was prepared via a simple modification of HNT with a perchloric-acid-stabilized magnetic fluid–methanol mixture. PCL/Gel nanofibers containing 6, 9, and 12 wt.% HNT and MHNT were prepared via an electrospinning process, respecting the essential rules for medical applications. The structure and properties of the prepared nanofibers were studied using infrared spectroscopy (ATR-FTIR) and electron microscopy (SEM, STEM) along with energy-dispersive X-ray spectroscopy (EDX), magnetometry, and mechanical analysis. It was found that the incorporation of the studied concentrations of MHNT into PCL/Gel nanofibers led to soft magnetic biocompatible materials with a saturation magnetization of 0.67 emu/g and coercivity of 15 Oe for nanofibers with 12 wt.% MHNT. Moreover, by applying both HNT and MHNT, an improvement of the nanofibers structure was observed, together with strong reinforcing effects. The greatest improvement was observed for nanofibers containing 9 wt.% MHNT when increases in tensile strength reached more than two-fold and the elongation at break reached a five-fold improvement.
Collapse
|
8
|
Yadav A, Bagotia N, Sharma AK, Kumar S. Advances in decontamination of wastewater using biomass-basedcomposites: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 784:147108. [PMID: 33892326 DOI: 10.1016/j.scitotenv.2021.147108] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
Contaminant removal from wastewater using natural biosorbents has been widely studied as a suitable and environmentally benign alternative for conventional techniques. Currently, researchers are working on various biomass-based composites for wastewater remediation to improve the performance of natural biosorbents. This review takes into focus a wide range of biomass-based composites like hydrogel composites, metal oxide composites, magnetic composites, polymer composites, carbon nanotubes (CNTs) and graphene composites, metal organic framework composites (MOFs) and clay composites for the removal of various contaminants from wastewater. It is evident from the literature survey that the composite fabrication involves the modification of morphological and textural features of the biomass which results in significant enhancement of adsorption capacity. Apart from this, regeneration of the used biomass-based composite is also studied in depth in order to overcome the problem of solid waste generation. This review would prove to be beneficial for researchers who are currently focusing on the development of cost-effective, easily available, recyclable biomass-based composites with enhanced adsorption capacities for wastewater treatment.
Collapse
Affiliation(s)
- Aruna Yadav
- Department of Chemistry, Chaudhary Bansi Lal University, Bhiwani 127021, Haryana, India
| | - Nisha Bagotia
- Department of Chemistry, Chaudhary Bansi Lal University, Bhiwani 127021, Haryana, India
| | - Ashok K Sharma
- Department of Chemistry, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Sonepat 131039, Haryana, India
| | - Surender Kumar
- Department of Chemistry, Chaudhary Bansi Lal University, Bhiwani 127021, Haryana, India.
| |
Collapse
|
9
|
Safarik I, Prochazkova J, Schroer MA, Garamus VM, Kopcansky P, Timko M, Rajnak M, Karpets M, Ivankov OI, Avdeev MV, Petrenko VI, Bulavin L, Pospiskova K. Cotton Textile/Iron Oxide Nanozyme Composites with Peroxidase-like Activity: Preparation, Characterization, and Application. ACS APPLIED MATERIALS & INTERFACES 2021; 13:23627-23637. [PMID: 33988970 DOI: 10.1021/acsami.1c02154] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
At present, both native and immobilized nanoparticles are of great importance in many areas of science and technology. In this paper, we have studied magnetic iron oxide nanoparticles and their aggregates bound on woven cotton textiles employing two simple modification procedures. One modification was based on the treatment of textiles with perchloric-acid-stabilized magnetic fluid diluted with methanol followed by drying. The second procedure was based on the microwave-assisted conversion of ferrous sulfate at high pH followed by drying. The structure and functional properties of these modified textiles were analyzed in detail. Scanning electron microscopy of native and modified textiles clearly showed the presence of iron oxide nanoparticles on the surface of the modified cotton fibers. All of the modified textile materials exhibited light to dark brown color depending on the amount of the bound iron oxide particles. Magnetic measurements showed that the saturation magnetization values reflect the amount of magnetic nanoparticles present in the modified textiles. Small-angle X-ray and neutron scattering measurements were conducted for the detailed structural characterization at the nanoscale of both the native and magnetically modified textiles, and different structural organization of nanoparticles in the two kinds of textile samples were concluded. The textile-bound iron oxide particles exhibited peroxidase-like activity when the N,N-diethyl-p-phenylenediamine sulfate salt was used as a substrate; this nanozyme activity enabled rapid decolorization of crystal violet in the presence of hydrogen peroxide. The deposition of a sufficient amount of iron oxide particles on textiles enabled their simple magnetic separation from large volumes of solutions; if necessary, the magnetic response of the modified textiles can be simply increased by incorporation of a piece of magnetic iron wire. The simplicity of the immobilized nanozyme preparation and the low cost of all the precursors enable its widespread application, such as decolorization and degradation of selected organic dyes and other important pollutants. Other types of textile-bound nanozymes can be prepared and used as low-cost catalysts for a variety of applications.
Collapse
Affiliation(s)
- Ivo Safarik
- Department of Nanobiotechnology, Biology Centre, ISB, CAS, Na Sadkach 7, 370 05 Ceske Budejovice, Czech Republic
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic
- Department of Magnetism, Institute of Experimental Physics, SAS, Watsonova 47, 040 01 Kosice, Slovakia
| | - Jitka Prochazkova
- Department of Nanobiotechnology, Biology Centre, ISB, CAS, Na Sadkach 7, 370 05 Ceske Budejovice, Czech Republic
| | - Martin A Schroer
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation c/o DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Vasil M Garamus
- Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, Geesthacht 21502, Germany
| | - Peter Kopcansky
- Department of Magnetism, Institute of Experimental Physics, SAS, Watsonova 47, 040 01 Kosice, Slovakia
| | - Milan Timko
- Department of Magnetism, Institute of Experimental Physics, SAS, Watsonova 47, 040 01 Kosice, Slovakia
| | - Michal Rajnak
- Department of Magnetism, Institute of Experimental Physics, SAS, Watsonova 47, 040 01 Kosice, Slovakia
- Faculty of Electrical Engineering and Informatics, Technical University of Košice, Letná 9, 04200 Košice, Slovakia
| | - Maksym Karpets
- Department of Magnetism, Institute of Experimental Physics, SAS, Watsonova 47, 040 01 Kosice, Slovakia
- Faculty of Electrical Engineering and Informatics, Technical University of Košice, Letná 9, 04200 Košice, Slovakia
| | | | - Mikhail V Avdeev
- Joint Institute for Nuclear Research, 141980 Dubna, Moscow Region, Russia
| | - Viktor I Petrenko
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, 48940 Leioa, Spain
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Leonid Bulavin
- Taras Shevchenko National University of Kyiv, 64/13, Volodymyrs'ka Str., Kyiv 01601, Ukraine
| | - Kristyna Pospiskova
- Department of Nanobiotechnology, Biology Centre, ISB, CAS, Na Sadkach 7, 370 05 Ceske Budejovice, Czech Republic
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| |
Collapse
|
10
|
Ahmed M, Hameed B, Hummadi E. Insight into the chemically modified crop straw adsorbents for the enhanced removal of water contaminants: A review. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115616] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
11
|
Girelli AM, Scuto FR. Eggshell membrane as feedstock in enzyme immobilization. J Biotechnol 2020; 325:241-249. [PMID: 33068695 DOI: 10.1016/j.jbiotec.2020.10.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/30/2020] [Accepted: 10/12/2020] [Indexed: 12/11/2022]
Abstract
Eggshell membrane, an eco-compatible, safe and cheap by-product was employed as carrier for the laccase from Trametes versicolor immobilization. In order to evaluate the best protocol to apply for the syringic acid degradation, two different types of laccase loading on eggshell membrane were used by incubation in solution or by enzyme-dropping. Chemicals (covalent) and physicals (adsorption) immobilizations were tested for both procedure using native or periodate-oxidized laccase. It is shown that immobilization of periodate-oxidized laccase on NiCl2-pretreated eggshell membrane was the best method for the first procedure (immobilized activity 1300 U/Kg, a residual activity of 30 % for 6 reuse). For the enzyme-dropping protocol a covalent method with the bifunctional cross linker (glutaraldehyde) was the best method (immobilized activity 3500 U/Kg, a residual activity of 45 % for 6 reuse).
Collapse
Affiliation(s)
- A M Girelli
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy.
| | - F R Scuto
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| |
Collapse
|
12
|
Girelli AM, Astolfi ML, Scuto FR. Agro-industrial wastes as potential carriers for enzyme immobilization: A review. CHEMOSPHERE 2020; 244:125368. [PMID: 31790990 DOI: 10.1016/j.chemosphere.2019.125368] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/14/2019] [Accepted: 11/13/2019] [Indexed: 06/10/2023]
Abstract
This review provides a general overview of the suitability of different agro-industrial wastes for enzyme immobilization. For the purposes of this literary study, the support materials are divided into two main groups, called lignocellulosic (coconut fiber, corn cob, spent grain, spent coffee, husk, husk ash, and straw rice, soybean and wheat bran) and not lignocellulosic by-products (eggshell and eggshell membranes). The study pointed out that all of these wastes are materials of great potentiality for enzyme immobilization even if coconut fiber is preferred. This result is of significant interest due to the low cost and great availability of such wastes, which actually are underused and cause significant environmental problems for improper storage. In addition, the development of economic biocatalysts more sustainable, besides reduce environmental impacts, improve the application of enzymatic technology in industry. Therefore, the enzyme immobilization reaction and the application of biocatalysts are reviewed and discussed.
Collapse
Affiliation(s)
- Anna Maria Girelli
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185, Rome, Italy.
| | - Maria Luisa Astolfi
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185, Rome, Italy
| | - Francesca Romana Scuto
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185, Rome, Italy
| |
Collapse
|
13
|
Sustainable development of carbon nanodots technology: Natural products as a carbon source and applications to food safety. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.02.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
14
|
Astafyeva BV, Shapovalova OE, Drozdov AS, Vinogradov VV. α-Amylase@Ferria: Magnetic Nanocomposites with Enhanced Thermal Stability for Starch Hydrolysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:8054-8060. [PMID: 29976057 DOI: 10.1021/acs.jafc.8b01298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The present study is devoted to the development of a new class recyclable magnetic catalytic nanocomposites for starch hydrolysis. α-Amylase was entrapped within a magnetite-derived xerogel matrix in a course of a room-temperature sol-gel transition, leading to enzyme immobilization within the pores of a rigid magnetic matrix. For hybrid organo-inorganic composites with enzyme mass fractions less than 10 wt %, no enzyme leaching was observed. At 80 °C, the amylase@ferria composite demonstrates catalytic activity on the level of 10 units/mg and the starch hydrolysis rate comparable to free enzyme, while at 90 °C, the activity of amylase@ferria is at least twice higher than that of free amylase as a result of higher thermal stability of the composite. Entrapped amylase showed excellent stability and lost only 9% of its activity after 21 days of storage in a buffer solution, while free enzyme was totally inactivated after 17 days. The material can be used as either a magnetically separable reusable catalyst or a catalytic ceramic coating with at least 10 cycles of use.
Collapse
Affiliation(s)
- Bazhena V Astafyeva
- Laboratory of Solution Chemistry of Advanced Materials and Technologies , ITMO University , St. Petersburg 191002 , Russian Federation
| | - Olga E Shapovalova
- Laboratory of Solution Chemistry of Advanced Materials and Technologies , ITMO University , St. Petersburg 191002 , Russian Federation
| | - Andrey S Drozdov
- Laboratory of Solution Chemistry of Advanced Materials and Technologies , ITMO University , St. Petersburg 191002 , Russian Federation
| | - Vladimir V Vinogradov
- Laboratory of Solution Chemistry of Advanced Materials and Technologies , ITMO University , St. Petersburg 191002 , Russian Federation
| |
Collapse
|
15
|
Osial M, Rybicka P, Pękała M, Cichowicz G, Cyrański MK, Krysiński P. Easy Synthesis and Characterization of Holmium-Doped SPIONs. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E430. [PMID: 29899262 PMCID: PMC6027423 DOI: 10.3390/nano8060430] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 06/06/2018] [Accepted: 06/08/2018] [Indexed: 11/17/2022]
Abstract
The exceptional magnetic properties of superparamagnetic iron oxide nanoparticles (SPIONs) make them promising materials for biomedical applications like hyperthermia, drug targeting and imaging. Easy preparation of SPIONs with the controllable, well-defined properties is a key factor of their practical application. In this work, we report a simple synthesis of Ho-doped SPIONs by the co-precipitation route, with controlled size, shape and magnetic properties. To investigate the influence of the ions ratio on the nanoparticles’ properties, multiple techniques were used. Powder X-ray diffraction (PXRD) confirmed the crystallographic structure, indicating formation of an Fe₃O₄ core doped with holmium. In addition, transmission electron microscopy (TEM) confirmed the correlation of the crystallites’ shape and size with the experimental conditions, pointing to critical holmium content around 5% for the preparation of uniformly shaped grains, while larger holmium content leads to uniaxial growth with a prism shape. Studies of the magnetic behaviour of nanoparticles show that magnetization varies with changes in the initial Ho3+ ions percentage during precipitation, while below 5% of Ho in doped Fe₃O₄ is relatively stable and sufficient for biomedicine applications. The characterization of prepared nanoparticles suggests that co-precipitation is a simple and efficient technique for the synthesis of superparamagnetic, Ho-doped SPIONs for hyperthermia application.
Collapse
Affiliation(s)
- Magdalena Osial
- Faculty of Chemistry, University of Warsaw, Pasteura 1 Street, 02-093 Warsaw, Poland.
| | - Paulina Rybicka
- Faculty of Chemistry, University of Warsaw, Pasteura 1 Street, 02-093 Warsaw, Poland.
| | - Marek Pękała
- Faculty of Chemistry, University of Warsaw, Pasteura 1 Street, 02-093 Warsaw, Poland.
| | - Grzegorz Cichowicz
- Faculty of Chemistry, University of Warsaw, Pasteura 1 Street, 02-093 Warsaw, Poland.
| | - Michał K Cyrański
- Faculty of Chemistry, University of Warsaw, Pasteura 1 Street, 02-093 Warsaw, Poland.
| | - Paweł Krysiński
- Faculty of Chemistry, University of Warsaw, Pasteura 1 Street, 02-093 Warsaw, Poland.
| |
Collapse
|