1
|
Rao W, Yue Q, Gao S, Lei M, Lin T, Pan X, Hu J, Fan G. Visible-light-driven water-soluble zinc oxide quantum dots for efficient control of citrus canker. PEST MANAGEMENT SCIENCE 2024; 80:3022-3034. [PMID: 38318944 DOI: 10.1002/ps.8010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/24/2024] [Accepted: 02/06/2024] [Indexed: 02/07/2024]
Abstract
BACKGROUND Citrus canker caused by Xanthomonas citri subsp. citri (Xcc) is a devastating bacterial disease that reduces citrus yield and quality, posing a serious threat to the citrus industry. Several conventional chemicals have been used to control citrus canker. However, this approach often leads to the excessive use of chemical agents, can exacerbate environmental pollution and promotes the development of resistant Xcc. Therefore, there is significant interest in the development of efficient and environmentally friendly technologies to control citrus canker. RESULTS In this study, water-soluble ZnO quantum dots (ZnO QDs) were synthesised as an efficient nanopesticide against Xcc. The results showed that the antibacterial activity of ZnO QDs irradiated with visible light [half-maximal effective concentration (EC50) = 33.18 μg mL-1] was ~3.5 times higher than that of the dark-treated group (EC50 = 114.80 μg mL-1). ZnO QDs induced the generation of reactive oxygen species (•OH, •O- 2 and 1O2) under light irradiation, resulting in DNA damage, cytoplasmic destruction, and decreased catalase and superoxide dismutase activities. Transcription analysis showed downregulation of Xcc genes related to 'biofilms, virulence, adhesion' and 'DNA transfer' exposure to ZnO QDs. More importantly, ZnO QDs also promoted the growth of citrus. CONCLUSION This research provides new insights into the photocatalytic antibacterial mechanisms of ZnO QDs and supports the development of more efficient and safer ZnO QDs-based nanopesticides to control citrus canker. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wenhua Rao
- Fujian Engineering Research Center for Green Pest Management, Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
- Fuzhou Scientific Observing and Experimental Station of Crop Pests of Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fujian, China
| | - Qi Yue
- Fujian Engineering Research Center for Green Pest Management, Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, People's Republic of China
| | - Shang Gao
- Fujian Engineering Research Center for Green Pest Management, Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, People's Republic of China
| | - Meiling Lei
- Fujian Engineering Research Center for Green Pest Management, Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, People's Republic of China
| | - Tao Lin
- Fujian Engineering Research Center for Green Pest Management, Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
- Fuzhou Scientific Observing and Experimental Station of Crop Pests of Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fujian, China
| | - Xiaohong Pan
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, People's Republic of China
| | - Jinfeng Hu
- Fujian Engineering Research Center for Green Pest Management, Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
- Fuzhou Scientific Observing and Experimental Station of Crop Pests of Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fujian, China
| | - Guocheng Fan
- Fujian Engineering Research Center for Green Pest Management, Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
- Fuzhou Scientific Observing and Experimental Station of Crop Pests of Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fujian, China
| |
Collapse
|
2
|
Pan X, Cao F, Guo X, Wang Y, Cui Z, Huang T, Hou Y, Guan X. Development of a Safe and Effective Bacillus thuringiensis-Based Nanobiopesticide for Controlling Tea Pests. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7807-7817. [PMID: 38514390 DOI: 10.1021/acs.jafc.4c00833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Mg(OH)2 was used as the nanocarrier of the Bacillus thuringiensis (Bt) Cry1Ac protein, and the synthesized Cry1Ac-Mg(OH)2 composites were regular and uniform nanosheets. Nano-Mg(OH)2 could effectively improve the insecticidal effect of the Cry1Ac protein toward Ectropis obliqua. It could enhance the damage degree of the Cry1Ac protein to intestinal epithelial cells and microvilli, induce and enrich the production of reactive oxygen species (ROS) in the midgut, and enhance the degradation of the Cry1Ac protein into active fragments. Furthermore, an anti-rinsing assay showed that the Cry1Ac-Mg(OH)2 composites were bound to the notch structure of the tea leaf surface. The retention of the Cry1Ac protein increased by 11.45%, and sprayed nano-Mg(OH)2 was rapidly absorbed by different tissues of tea plants. Moreover, nano-Mg(OH)2 and composites did not significantly affect non-target organisms. These results show that nano-Mg(OH)2 can serve as a safe and effective biopesticide carrier, which provides a new approach for stable and efficient Bt preparation.
Collapse
Affiliation(s)
- Xiaohong Pan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection & Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education & Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People's Republic of China
| | - Fang Cao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection & Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education & Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People's Republic of China
| | - Xueping Guo
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection & Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education & Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People's Republic of China
| | - Yilin Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection & Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education & Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People's Republic of China
| | - Ziqi Cui
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection & Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education & Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People's Republic of China
| | - Tianpei Huang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection & Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education & Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People's Republic of China
| | - Youming Hou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection & Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education & Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People's Republic of China
| | - Xiong Guan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection & Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education & Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People's Republic of China
| |
Collapse
|
3
|
Yin J, Su X, Yan S, Shen J. Multifunctional Nanoparticles and Nanopesticides in Agricultural Application. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13071255. [PMID: 37049348 PMCID: PMC10096623 DOI: 10.3390/nano13071255] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 05/27/2023]
Abstract
The unscientific application of pesticides can easily cause a series of ecological environmental safety issues, which seriously restrict the sustainable development of modern agriculture. The great progress in nanotechnology has allowed the continuous development of plant protection strategies. The nanonization and delivery of pesticides offer many advantages, including their greater absorption and conduction by plants, improved efficacy, reduced dosage, delayed resistance, reduced residues, and protection from natural enemies and beneficial insects. In this review, we focus on the recent advances in multifunctional nanoparticles and nanopesticides. The definition of nanopesticides, the types of nanoparticles used in agriculture and their specific synergistic mechanisms are introduced, their safety is evaluated, and their future application prospects, about which the public is concerned, are examined.
Collapse
Affiliation(s)
- Jiaming Yin
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China;
- College of Plant Protection, Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Xiaofeng Su
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Shuo Yan
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China;
| | - Jie Shen
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China;
| |
Collapse
|
4
|
Khan AR, Mustafa A, Hyder S, Valipour M, Rizvi ZF, Gondal AS, Yousuf Z, Iqbal R, Daraz U. Bacillus spp. as Bioagents: Uses and Application for Sustainable Agriculture. BIOLOGY 2022; 11:biology11121763. [PMID: 36552272 PMCID: PMC9775066 DOI: 10.3390/biology11121763] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Food security will be a substantial issue in the near future due to the expeditiously growing global population. The current trend in the agriculture industry entails the extravagant use of synthesized pesticides and fertilizers, making sustainability a difficult challenge. Land degradation, lower production, and vulnerability to both abiotic and biotic stresses are problems caused by the usage of these pesticides and fertilizers. The major goal of sustainable agriculture is to ameliorate productivity and reduce pests and disease prevalence to such a degree that prevents large-scale damage to crops. Agriculture is a composite interrelation among plants, microbes, and soil. Plant microbes play a major role in growth promotion and improve soil fertility as well. Bacillus spp. produces an extensive range of bio-chemicals that assist in plant disease control, promote plant development, and make them suitable for agricultural uses. Bacillus spp. support plant growth by N fixation, P and K solubilization, and phytohormone synthesis, in addition to being the most propitious biocontrol agent. Moreover, Bacilli excrete extracellular metabolites, including antibiotics, lytic enzymes, and siderophores, and demonstrate antagonistic activity against phytopathogens. Bacillus spp. boosts plant resistance toward pathogens by inducing systemic resistance (ISR). The most effective microbial insecticide against insects and pests in agriculture is Bacillus thuringiensis (Bt). Additionally, the incorporation of toxin genes in genetically modified crops increases resistance to insects and pests. There is a constant increase in the identified Bacillus species as potential biocontrol agents. Moreover, they have been involved in the biosynthesis of metallic nanoparticles. The main objective of this review article is to display the uses and application of Bacillus specie as a promising biopesticide in sustainable agriculture. Bacillus spp. strains that are antagonistic and promote plant yield attributes could be valuable in developing novel formulations to lead the way toward sustainable agriculture.
Collapse
Affiliation(s)
- Aimen Razzaq Khan
- Department of Botany, Government College Women University Sialkot, Sialkot 51310, Pakistan
| | - Adeena Mustafa
- Department of Botany, Government College Women University Sialkot, Sialkot 51310, Pakistan
| | - Sajjad Hyder
- Department of Botany, Government College Women University Sialkot, Sialkot 51310, Pakistan
- Correspondence: (S.H.); (M.V.)
| | - Mohammad Valipour
- Department of Engineering and Engineering Technology, Metropolitan State University of Denver, Denver, CO 80217, USA
- Correspondence: (S.H.); (M.V.)
| | - Zarrin Fatima Rizvi
- Department of Botany, Government College Women University Sialkot, Sialkot 51310, Pakistan
| | - Amjad Shahzad Gondal
- Department of Plant Pathology, Bahauddin Zakariya University Multan, Multan 60000, Pakistan
| | - Zubaida Yousuf
- Department of Botany, Lahore College for Women University, Lahore 54000, Pakistan
| | - Rashid Iqbal
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Umar Daraz
- State Key Laboratory of Grassland Agroecosystem, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
5
|
Liu J, Liang YS, Hu T, Zeng H, Gao R, Wang L, Xiao YH. Environmental fate of Bt proteins in soil: Transport, adsorption/desorption and degradation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 226:112805. [PMID: 34592526 DOI: 10.1016/j.ecoenv.2021.112805] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 09/05/2021] [Accepted: 09/16/2021] [Indexed: 05/26/2023]
Abstract
During the production and application of Bacillus thuringiensis (Bt) transgenic crops, large doses of insecticidal Bt toxic proteins are expressed continuously. The multi-interfacial behaviors of Bt proteins entering the environment in multi-media affects their states of existence transformation, transport and fate as well as biological and ecological impacts. Because both soil matrix and organisms will be exposed to Bt proteins to a certain extent, knowledge of the multi-interfacial behaviors and affecting factors of Bt proteins are vital not only for understanding the source-sink distribution mechanisms, predicting their bio-availability, but also for exploring the soil safety and environmental problems caused by the interaction between Bt proteins and soil matrix. This review summarized and analyzed various internal and external factors that affect the adsorption/ desorption and degradation of Bt proteins in the environment, so as to understand the multi-interfacial behaviors of Bt proteins. In addition, the reasons of concentration changes of Bt proteins in soil are discussed. This review will also discuss the existing knowledge of the combined effects of Bt proteins and other pollutants in environment. Finally, discussing the factors that should be considered when assessing the environmental risk of Bt proteins, thus to further improve the understanding of the environmental fate of Bt proteins.
Collapse
Affiliation(s)
- Jiao Liu
- College of Resources and Environment, Hunan Agricultural University and Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Changsha 410128, PR China
| | - Yun-Shan Liang
- College of Resources and Environment, Hunan Agricultural University and Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Changsha 410128, PR China; College of Bioscience and Biotechnology, Hunan Agricultural University and Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha 410128, PR China.
| | - Teng Hu
- College of Resources and Environment, Hunan Agricultural University and Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Changsha 410128, PR China
| | - Hong Zeng
- College of Resources and Environment, Hunan Agricultural University and Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Changsha 410128, PR China
| | - Rong Gao
- College of Resources and Environment, Hunan Agricultural University and Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Changsha 410128, PR China; College of Bioscience and Biotechnology, Hunan Agricultural University and Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha 410128, PR China
| | - Li Wang
- College of Resources and Environment, Hunan Agricultural University and Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Changsha 410128, PR China
| | - Yun-Hua Xiao
- College of Bioscience and Biotechnology, Hunan Agricultural University and Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha 410128, PR China
| |
Collapse
|
6
|
Zhang Y, Zhang A, Li M, He K, Guo S. Nanoparticle-loaded microcapsules providing effective UV protection for Cry1Ac. J Microencapsul 2021; 38:522-532. [PMID: 34615422 DOI: 10.1080/02652048.2021.1990424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AIM To prepare several novel microcapsules using chitosan (Cs) and Alginate (Alg) as coating materials, and nano-ZnO, nano-SiO2, nano-TiO2 as UV protective agents for improving UV resistance of Cry1Ac. METHODS Microcapsules were prepared by the layer-by-layer (LbL) self-assembly technique and electrostatic adsorption. The morphologies were observed by scanning electron microscopy (SEM), and the stability under UV radiation was studied by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and bioassay. RESULTS SEM showed that nano-ZnO and nano-TiO2 could be adsorbed on the negatively charged MC with the outermost layer being Alg, while nano-SiO2 could be adsorbed on the positively charged MC with Cs as the outermost layer. SDS-PAGE and bioassay showed that nano-ZnO and nano-SiO2 could provide effective UV protection after 8 h UV irradiation (p > 0.05), and nano-TiO2 could provide effective UV protection after 4 h UV irradiation (p > 0.05). CONCLUSION The microcapsules loaded with nanoparticles provided excellent UV resistance for Cry1Ac.
Collapse
Affiliation(s)
- Yongjing Zhang
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Aijing Zhang
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Mengyuan Li
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Kanglai He
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shuyuan Guo
- School of Life Science, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
7
|
de Oliveira JL, Fraceto LF, Bravo A, Polanczyk RA. Encapsulation Strategies for Bacillus thuringiensis: From Now to the Future. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:4564-4577. [PMID: 33848162 DOI: 10.1021/acs.jafc.0c07118] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Bacillus thuringiensis (Bt) has been recognized for its high potential in the control of various agricultural pests. Developments in micro/nanotechnology have opened new perspectives for the production of more efficient formulations that can overcome some obstacles associated with its use in the field, such as formulation instability and loss of activity as a result of the degradation of pesticidal protein by its exposure to ultraviolet radiation, among other problems. This review describes current studies and recent discoveries related to Bt and processes for the encapsulation of Bt derivatives, such as Cry pesticidal proteins. Different techniques are described, such as extrusion, emulsion, spray drying, spray cooling, fluidized bed, lyophilization, coacervation, and electrospraying to obtain micro- and nanoparticulate systems. It is noteworthy that products based on microorganisms present less risk to the environment and non-target organisms. However, systematic risk assessment studies of these new Bt biopesticides are necessary, considering issues, such as interactions with other organisms, the formation of toxic secondary metabolites, or the interspecific transfer of genetic material. Given the great potential of these new formulations, a critical assessment is provided for their future use, considering the technological challenges that must be overcome to achieve their large-scale production for efficient agricultural use.
Collapse
Affiliation(s)
- Jhones L de Oliveira
- Department of Agricultural Production Sciences, Faculty of Agronomy and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo 14884-900, Brazil
| | - Leonardo Fernandes Fraceto
- Institute of Science and Technology, São Paulo State University (UNESP), Avenida Três de Março 511, Alto da Boa Vista, Sorocaba, São Paulo 18087-180, Brazil
| | - Alejandra Bravo
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 201, Colonia Chamilpa, Cuernavaca, Morelos 62210, Mexico
| | - Ricardo Antonio Polanczyk
- Department of Agricultural Production Sciences, Faculty of Agronomy and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo 14884-900, Brazil
| |
Collapse
|
8
|
Pan X, Huang T, Fang Y, Rao W, Guo X, Nie D, Zhang D, Cao F, Guan X, Chen Z. Effect of Bacillus thuringiensis biomass and insecticidal activity by cultivation with vegetable wastes. ROYAL SOCIETY OPEN SCIENCE 2021; 8:201564. [PMID: 33959326 PMCID: PMC8074981 DOI: 10.1098/rsos.201564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
Bacillus thuringiensis (Bt) has been regarded as a biopesticide with high efficiency and safety, while it still cannot be popularized and mass-produced because of its high production costs. In the present study, we aimed to develop a cost-effective biopesticide via the secondary use of discharged vegetable wastes as the raw fermentation medium, and the insecticidal activity of Bt strain prepared by this cheap cultivation approach was evaluated. The suitable carbon source, nitrogen source additives and optimal metal ions were screened by the single-factor test, and the optimal combination of additives was determined by orthogonal test and ANOVA analysis. We found that soluble starch (6 g l-1), soya bean meal (6 g l-1), Al3+ (0.4 g l-1) and Fe2+ (0.4 g l-1) were the optimal exogenous additives, and the optimal fermentation conditions were as follows: pH 7.0, temperature of 35°C and aeration of 80 ml/250 ml. Meanwhile, the bioactivity test results showed that the Bt strain prepared by cheap cultivation still exhibited a good insecticidal effect on Helicoverpa armigera compared with the standard LB medium. Collectively, our findings provided a new strategy for vegetable waste utilization with less environmental impact and reduced production cost.
Collapse
Affiliation(s)
- Xiaohong Pan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People's Republic of China
- Key Lab of Biopesticide and Chemical Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People's Republic of China
| | - Tengzhou Huang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People's Republic of China
- Key Lab of Biopesticide and Chemical Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People's Republic of China
| | - Yun Fang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People's Republic of China
- Key Lab of Biopesticide and Chemical Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People's Republic of China
| | - Wenhua Rao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People's Republic of China
- Key Lab of Biopesticide and Chemical Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People's Republic of China
| | - Xueping Guo
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People's Republic of China
- Key Lab of Biopesticide and Chemical Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People's Republic of China
| | - Danyue Nie
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People's Republic of China
- Key Lab of Biopesticide and Chemical Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People's Republic of China
| | - Dingyang Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People's Republic of China
- Key Lab of Biopesticide and Chemical Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People's Republic of China
| | - Fang Cao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People's Republic of China
- Key Lab of Biopesticide and Chemical Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People's Republic of China
| | - Xiong Guan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People's Republic of China
- Key Lab of Biopesticide and Chemical Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People's Republic of China
| | - Zhi Chen
- College of Resources and Environmental Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People's Republic of China
| |
Collapse
|
9
|
Saxena A, Kumar M, Chakdar H, Anuroopa N, Bagyaraj D. Bacillusspecies in soil as a natural resource for plant health and nutrition. J Appl Microbiol 2019; 128:1583-1594. [DOI: 10.1111/jam.14506] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/19/2019] [Accepted: 10/29/2019] [Indexed: 12/14/2022]
Affiliation(s)
- A.K. Saxena
- ICAR‐National Bureau of Agriculturally Important Microorganisms Mau Uttar Pradesh India
| | - M. Kumar
- ICAR‐National Bureau of Agriculturally Important Microorganisms Mau Uttar Pradesh India
| | - H. Chakdar
- ICAR‐National Bureau of Agriculturally Important Microorganisms Mau Uttar Pradesh India
| | - N. Anuroopa
- Centre for Natural Biological Resources and Community Development Bangalore Karnataka India
- Government Science College Nrupathunga Road Bangalore Karnataka India
| | - D.J. Bagyaraj
- Centre for Natural Biological Resources and Community Development Bangalore Karnataka India
| |
Collapse
|