1
|
Wang Y, Wang C, Tian Q, Li Y. Recent Research Progress in Oxime Insecticides and Perspectives for the Future. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15077-15091. [PMID: 38920088 DOI: 10.1021/acs.jafc.4c02096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
In recent decades, the unique structural attributes and purported insecticidal properties of oximes have garnered increasing attention. A variety of insecticides, encompassing fluxametamide, fluhexafon, and lepimectin, have been synthesized, all of which incorporate oximes. This review endeavors to encapsulate the insecticidal efficacy, structure-activity correlations, and operative mechanisms of oxime-containing compounds. Furthermore, it delves into the conceptual frameworks underpinning the design of innovative oxime-based insecticides, thereby shedding light on prospective advancements in this field.
Collapse
Affiliation(s)
- Yu Wang
- Key Laboratory of Agri-Food Safety of Anhui Province, Anhui Agricultural University, Hefei 230036, China
| | - Chuxia Wang
- Key Laboratory of Agri-Food Safety of Anhui Province, Anhui Agricultural University, Hefei 230036, China
| | - Qingqiang Tian
- Key Laboratory of Agri-Food Safety of Anhui Province, Anhui Agricultural University, Hefei 230036, China
| | - Yahui Li
- Key Laboratory of Agri-Food Safety of Anhui Province, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
2
|
Zhang W, Zhang J, Yan C, Gan X. Discovery of Novel N-Phenyltriazinone Derivatives Containing Oxime Ether or Oxime Ester Moieties as Promising Protoporphyrinogen IX Oxidase Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12946-12955. [PMID: 38809794 DOI: 10.1021/acs.jafc.4c00272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Protoporphyrinogen IX oxidase (PPO, EC 1.3.3.4) is one of the most important targets for the discovery of green herbicides. In order to find novel PPO inhibitors with a higher herbicidal activity, a series of novel N-phenyltriazinone derivatives containing oxime ether and oxime ester groups were designed and synthesized based on the strategy of pharmacophore and scaffold hopping. Bioassay results revealed that some compounds showed herbicidal activities; especially, compound B16 exhibited broad-spectrum and excellent 100% herbicidal effects to Echinochloa crusgalli, Digitaria sanguinalis, Setaria faberii, Abutilon juncea, Amaranthus retroflexus, and Portulaca oleracea at a concentration of 37.5 g a.i./ha, which were comparable to trifludimoxazin. Nicotiana tabacum PPO (NtPPO) enzyme inhibitory assay indicated that B16 showed an excellent enzyme inhibitory activity with a value of 32.14 nM, which was similar to that of trifludimoxazin (31.33 nM). Meanwhile, compound B16 revealed more safety for crops (rice, maize, wheat, peanut, soybean, and cotton) than trifludimoxazin at a dose of 150 g a.i./ha. Moreover, molecular docking and molecular dynamics simulation further showed that B16 has a very strong and stable binding to NtPPO. It indicated that B16 can be used as a potential PPO inhibitor and herbicide candidate for application in the field.
Collapse
Affiliation(s)
- Wei Zhang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Jiahui Zhang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Chaohui Yan
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Xiuhai Gan
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| |
Collapse
|
3
|
Wen H, Du J, Wang Y, Lv M, Ding H, Liu H, Xu H. Construction and Single-Crystal Structures of N-Isoxazolin-5-ylcarbonylindole Derivatives, and Their Pesticidal Activities and Toxicology Study. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6913-6920. [PMID: 38517181 DOI: 10.1021/acs.jafc.3c07015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
To explore natural product-based pesticide candidates, a series of indole derivatives containing the isoxazoline skeleton at the N-1 position were synthesized by 1,3-dipolar [2 + 3] cycloaddition reaction. Their structures were characterized by melting points (mp), infrared (IR) spectra, proton nuclear magnetic resonance spectra (1H NMR), carbon-13 nuclear magnetic resonance spectra (13C NMR), and high resolution mass spectrometry (HRMS). The single-crystal structures of five compounds were presented. Against Tetranychus cinnabarinus Boisduval, compound 3b showed greater than 3.8-fold acaricidal activity of indole and good control effects under glasshouse conditions. Against Aphis citricola Van der Goot, compounds 3b and 3q exhibited 48.3- and 36.8-fold aphicidal activity of indole and 6-methylindole, respectively. Particularly, compound 3b showed good bioactivities against T. cinnabarinus and A. citricola. Against Eriosoma lanigerum Hausmann, compound 3h and 3i showed 2.1 and 1.9 times higher aphicidal activity compared to indole. Furthermore, the construction of the epidermal cuticle layer of 3b-treated carmine spider mites was distinctly damaged, which ultimately led to their death.
Collapse
Affiliation(s)
- Houpeng Wen
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi China
| | - Jiawei Du
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi China
| | - Yanyan Wang
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi China
| | - Min Lv
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi China
- School of Marine Sciences, Ningbo University, Ningbo 315211, Zhejiang China
| | - Haixia Ding
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi China
| | - Huqi Liu
- College of Life Science, Northwest A&F University, Yangling 712100, Shaanxi China
| | - Hui Xu
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi China
- School of Marine Sciences, Ningbo University, Ningbo 315211, Zhejiang China
| |
Collapse
|
4
|
Amperayani KR, Varadhi G, Oruganti B, Parimi UD. Molecular dynamics and absolute binding free energy studies of piperine derivatives as potential inhibitors of SARS-CoV-2 main protease. J Biomol Struct Dyn 2023; 41:13696-13706. [PMID: 36995111 DOI: 10.1080/07391102.2023.2193987] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 02/12/2023] [Indexed: 03/31/2023]
Abstract
The work presents a library of piperine derivatives as potential inhibitors of the main protease protein (Mpro) functionality using Docking Studies, Molecular Dynamics (MD) Simulations and Absolute Binding Free-Energy calculations. 342 ligands were selected for this work and docked with Mpro protein. Among all the ligands studied, PIPC270, PIPC299, PIPC252, PIPC63, PIPC311 were the top five docked conformations having significant hydrogen bonding and hydrophobic interactions inside the active pocket of Mpro. These top five ligands were subjected to MD simulations for 100 ns using GROMACS. Root Mean Square Deviation (RMSD), Root Mean Square Fluctuation (RMSF), Radius of Gyration (Rg), Solvent Accessible Surface Area (SASA) and hydrogen bond analysis revealed that the ligands bounded to protein remain stable without significant deviations during the course of MD simulations. Absolute binding free energy (ΔGb) was calculated for theses complexes and found that the ligand PIPC299 shows the prevalent binding affinity with binding free-energy of about -113.05 Kcal/mol. Thus, these molecules can be further tested by in vitro and in vivo studies on Mpro. This study lays a path to explore the new functionality of piperine derivatives as novel drug like molecules.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Karteek Rao Amperayani
- Department of Organic Chemistry, Gayatri Vidya Parishad College for Degree and PG Courses (Autonomous), Visakhapatnam, Andhra Pradesh, India
| | - Govinda Varadhi
- Department of Organic Chemistry, Gayatri Vidya Parishad College for Degree and PG Courses (Autonomous), Visakhapatnam, Andhra Pradesh, India
| | - Baswanth Oruganti
- Department of Chemistry, SRM University-AP, Mangalagiri, Andhra Pradesh, India
| | - Uma Devi Parimi
- Department of Organic Chemistry, Gayatri Vidya Parishad College for Degree and PG Courses (Autonomous), Visakhapatnam, Andhra Pradesh, India
| |
Collapse
|
5
|
Xu J, Lv M, Fang S, Wang Y, Wen H, Zhang S, Xu H. Exploration of Synergistic Pesticidal Activities, Control Effects and Toxicology Study of a Monoterpene Essential Oil with Two Natural Alkaloids. Toxins (Basel) 2023; 15:toxins15040240. [PMID: 37104178 PMCID: PMC10142011 DOI: 10.3390/toxins15040240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 03/29/2023] Open
Abstract
With the increasing development of pest resistances, it is not easy to achieve satisfactory control effects by using only one agrochemical. Additionally, although the alkaloid matrine (MT) isolated from Sophora flavescens is now utilized as a botanical pesticide in China, in fact, its pesticidal activities are much lower in magnitude than those of commercially agrochemicals. To improve its pesticidal activities, here, the joint pesticidal effects of MT with another alkaloid oxymatrine (OMT) (isolated from S. flavescens) and the monoterpene essential oil 1,8-cineole (CN) (isolated from the eucalyptus leaves) were investigated in the laboratory and greenhouse conditions. Moreover, their toxicological properties were also studied. Against Plutella xylostella, when the mass ratio of MT and OMT was 8/2, good larvicidal activity was obtained; against Tetranychus urticae, when the mass ratio of MT and OMT was 3/7, good acaricidal activity was obtained. Especially when MT and OMT were combined with CN, the significant synergistic effects were observed: against P. xylostella, the co-toxicity coefficient (CTC) of MT/OMT (8/2)/CN was 213; against T. urticae, the CTC of MT/OMT (3/7)/CN was 252. Moreover, the activity changes over time of two detoxification enzymes, carboxylesterase (CarE) and glutathione S-transferase (GST) of P. xylostella treated with MT/OMT (8/2)/CN, were observed. In addition, by scanning electron microscope (SEM), the toxicological study suggested that the acaricidal activity of MT/OMT (3/7)/CN may be related to the damage of the cuticle layer crest of T. urticae.
Collapse
Affiliation(s)
- Jianwei Xu
- College of Plant Protection, Northwest A&F University, Xianyang 712100, China
| | - Min Lv
- College of Plant Protection, Northwest A&F University, Xianyang 712100, China
- Correspondence: author: (M.L.); (H.X.)
| | - Shanshan Fang
- College of Plant Protection, Northwest A&F University, Xianyang 712100, China
| | - Yanyan Wang
- College of Plant Protection, Northwest A&F University, Xianyang 712100, China
| | - Houpeng Wen
- College of Plant Protection, Northwest A&F University, Xianyang 712100, China
| | - Shaoyong Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, China
| | - Hui Xu
- College of Plant Protection, Northwest A&F University, Xianyang 712100, China
- Correspondence: author: (M.L.); (H.X.)
| |
Collapse
|
6
|
Li T, Lv M, Wen H, Wang J, Wang Z, Xu J, Fang S, Xu H. High Value-Added Application of Natural Plant Products in Crop Protection: Construction and Pesticidal Activities of Piperine-Type Ester Derivatives and Their Toxicology Study. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:16126-16134. [PMID: 36525582 DOI: 10.1021/acs.jafc.2c06136] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
To discover new potential pesticide candidates, recently, structural modification of natural bioactive products has received much attention. In this work, a series of new piperine-type ester derivatives were regio- and stereoselectively synthesized based on a natural alkaloid piperine isolated from Piper nigrum. Their structures were characterized by IR, mp, 1H NMR (13C NMR), and high-resolution mass spectrometry (HRMS). Against Tetranychus cinnabarinus Boisduval (Acari: Tetranychidae), compounds 4e, 4f, 4u, and 4v displayed the most significant acaricidal activity with LC50 values of 0.155, 0.117, 0.177, and 0.164 mg/mL, respectively. Particularly, compound 4f showed >120-fold higher acaricidal activity than piperine (LC50: 14.198 mg/mL). Notably, the acaricidal activity of 4f was equivalent to that of the commercial acaricide spirodiclofen (LC50: 0.115 mg/mL). Additionally, against Eriosoma lanigerum Hausmann (Hemiptera: Aphididae), compounds 4w and 4b' showed 1.8-fold aphicidal activity of piperine. Furthermore, via the scanning electron microscope (SEM) imaging method, the obvious destruction of the construction of the cuticle layer of 4f-treated T. cinnabarinus was observed. Compound 4f could be further studied as a lead acaricidal agent.
Collapse
Affiliation(s)
- Tianze Li
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Min Lv
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Houpeng Wen
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jingru Wang
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhen Wang
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jianwei Xu
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Shanshan Fang
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hui Xu
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
- School of Marine Sciences, Ningbo University, Ningbo 315211 Zhejiang, China
| |
Collapse
|
7
|
Kula K, Łapczuk A, Sadowski M, Kras J, Zawadzińska K, Demchuk OM, Gaurav GK, Wróblewska A, Jasiński R. On the Question of the Formation of Nitro-Functionalized 2,4-Pyrazole Analogs on the Basis of Nitrylimine Molecular Systems and 3,3,3-Trichloro-1-Nitroprop-1-Ene. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238409. [PMID: 36500503 PMCID: PMC9739753 DOI: 10.3390/molecules27238409] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022]
Abstract
Experimental and theoretical studies on the reaction between (E)-3,3,3-trichloro-1-nitroprop-1-ene and N-(4-bromophenyl)-C-arylnitrylimine were performed. It was found that the title process unexpectedly led to 1-(4-bromophenyl)-3-phenyl-5-nitropyrazole instead of the expected Δ2-pyrazoline molecular system. This was the result of a unique CHCl3 elimination process. The observed mechanism of transformation was explained in the framework of the molecular electron density theory (MEDT). The theoretical results showed that both of the possible channels of [3 + 2] cycloaddition were favorable from a kinetic point of view, due to which the creation of 1-(4-bromophenyl)-3-aryl-4-tricholomethyl-5-nitro-Δ2-pyrazoline was more probable. On the other hand, according to the experimental data, the presented reactions occurred with full regioselectivity.
Collapse
Affiliation(s)
- Karolina Kula
- Department of Organic Chemistry and Technology, Cracow University of Technology, Warszawska 24, 31-155 Krakow, Poland
- Correspondence: (K.K.); (A.Ł.); (R.J.)
| | - Agnieszka Łapczuk
- Department of Organic Chemistry and Technology, Cracow University of Technology, Warszawska 24, 31-155 Krakow, Poland
- Correspondence: (K.K.); (A.Ł.); (R.J.)
| | - Mikołaj Sadowski
- Department of Organic Chemistry and Technology, Cracow University of Technology, Warszawska 24, 31-155 Krakow, Poland
| | - Jowita Kras
- Department of Organic Chemistry and Technology, Cracow University of Technology, Warszawska 24, 31-155 Krakow, Poland
| | - Karolina Zawadzińska
- Department of Organic Chemistry and Technology, Cracow University of Technology, Warszawska 24, 31-155 Krakow, Poland
| | - Oleg M. Demchuk
- Faculty of Medicine, The John Paul II Catholic University of Lublin, Konstantynow 1J, 20-708 Lublin, Poland
| | - Gajendra Kumar Gaurav
- Sustainable Process Integration Laboratory—SPIL, NETME Centre, Faculty of Mechanical Engineering, Brno University of Technology—VUT Brno, Technická 2896/2, 616-69 Brno, Czech Republic
| | - Aneta Wróblewska
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Radomir Jasiński
- Department of Organic Chemistry and Technology, Cracow University of Technology, Warszawska 24, 31-155 Krakow, Poland
- Correspondence: (K.K.); (A.Ł.); (R.J.)
| |
Collapse
|
8
|
Jiang Z, Shi D, Li H, He D, Zhu K, Li J, Zi Y, Xu Z, Huang J, Duan H, Yang Q. Rational Design and Identification of Novel Piperine Derivatives as Multichitinase Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10326-10336. [PMID: 35960858 DOI: 10.1021/acs.jafc.2c03751] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Asian corn borer (Ostrinia furnacalis) is one of the most destructive pests in agriculture. Three chitinases OfChtI, OfChtII, and OfChi-h are regarded as potential targets for discovering novel agrochemicals to control O. furnacalis. In this study, piperine (Ki = 43.78∼83.03 μM) was first shown to exhibit inhibitory activities against all three chitinases. Subsequently, 19 novel piperine derivatives were rationally designed based on the conserved aromatic residues of three chitinases and then synthesized. Among them, Compound 5k (Ki = 11.78∼22.82 μM) was identified as the most effective multichitinase inhibitor and indeed displayed higher insecticidal activity against O. furnacalis than dual- or single-chitinase inhibitors. Molecular mechanism studies clarified that Compound 5k interacted with two conserved TRP and TYR of three chitinases in identical modes through hydrogen bonds, hydrophobic, and π-π interactions. Moreover, the microinjection experiment indicated that Compound 5k exhibited substantial sublethal effects against O. furnacalis by regulating its growth and development. This study provides evidence of multichitinase inhibitors to be applied in the control of O. furnacalis.
Collapse
Affiliation(s)
- Zhiyang Jiang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Dongmei Shi
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Huilin Li
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Danchan He
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection and Shenzhen Agricultural Genome Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Kai Zhu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Jingyi Li
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Yunjiang Zi
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Zhijian Xu
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jiaxing Huang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Hongxia Duan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Qing Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection and Shenzhen Agricultural Genome Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
9
|
Yan Y, Li M, Liu M, Huang M, Cao L, Li W, Zhang X. Sc(OTf)
3
‐Catalyzed Dearomative [3+2] Annulation of 5‐Aminoisoxazoles with Quinone Imine Ketals or Quinone Monoacetals. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yingkun Yan
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu China
- University of Chinese Academy of Sciences Beijing China
| | - Min Li
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu China
- University of Chinese Academy of Sciences Beijing China
| | - Min Liu
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu China
- University of Chinese Academy of Sciences Beijing China
| | - Min Huang
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu China
- University of Chinese Academy of Sciences Beijing China
| | - Lianyi Cao
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu China
- University of Chinese Academy of Sciences Beijing China
| | - Wenzhe Li
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu China
- University of Chinese Academy of Sciences Beijing China
| | - Xiaomei Zhang
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu China
- University of Chinese Academy of Sciences Beijing China
| |
Collapse
|
10
|
Kong Y, Boggu PR, Park GM, Kim YS, An SH, Kim IS, Jung YH. Total Synthesis of Eliglustat via Diastereoselective Amination of Chiral para-Methoxycinnamyl Benzyl Ether. Molecules 2022; 27:molecules27082603. [PMID: 35458801 PMCID: PMC9029353 DOI: 10.3390/molecules27082603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/07/2022] [Accepted: 04/14/2022] [Indexed: 11/29/2022] Open
Abstract
Eliglustat (Cerdelga®, Genzyme Corp. Cambridge, MA, USA) is an approved drug for a non-neurological type of Gaucher disease. Herein, we describe the total synthesis of eliglustat 1 starting from readily available 1,4-benzodioxan-6-carbaldehyde via Sharpless asymmetric dihydroxylation and diastereoselective amination of chiral para-methoxycinnamyl benzyl ethers using chlorosulfonyl isocyanate as the key steps. Notably, the reaction between syn-1,2-dibenzyl ether 6 and chlorosulfonyl isocyanate in the mixture of toluene and hexane (10:1) afforded syn-1,2-amino alcohol 5 at a 62% yield with a diastereoselectivity > 20:1. This observation can be explained by competition between the SNi and the SN1 mechanisms, leading to the retention of stereochemistry.
Collapse
|
11
|
Natural-product-based pesticides: Semisynthesis, structural elucidation, and evaluation of new cholesterol-matrine conjugates as pesticidal agents. Bioorg Med Chem Lett 2021; 50:128350. [PMID: 34478839 DOI: 10.1016/j.bmcl.2021.128350] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 08/19/2021] [Accepted: 08/26/2021] [Indexed: 11/21/2022]
Abstract
To develop new potential pesticide candidates from low value-added natural bioactive products, a series of new cholesterol-matrine conjugates (I(a-e)-IV(a-e)) were prepared from two lead compounds cholesterol and matrine. Against Mythimna separata Walker, compound IVa exhibited 3.0 and 2.6 folds promising insecticidal activity of cholesterol and matrine, respectively; against Aphis citricola Van der Goot, compound IVd showed 4.3 and 2.2 folds potent aphicidal activity of their precursors; notably, it also showed good control effects in the greenhouse; against Plutella xylostella Linnaeus at a dose of 20 μg/nymph, compound IIIe exhibited 2.8 and 2.0 folds oral toxicity of cholesterol and matrine, respectively. Compounds IIIe, IVd and IVe can be used as the leads for further structural optimization as the insecticidal and aphicidal agents.
Collapse
|
12
|
Xu H, Zhang K, Lv M, Hao M. Construction of Cholesterol Oxime Ether Derivatives Containing Isoxazoline/Isoxazole Fragments and Their Agricultural Bioactive Properties/Control Efficiency. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8098-8109. [PMID: 34278787 DOI: 10.1021/acs.jafc.1c01884] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
To explore natural-product-based pesticidal candidates and high value-added application of cholesterol in agriculture, oximinoether derivatives of cholesterol-containing isoxazoline/isoxazole fragments (I-1∼I-16 and II-1∼II-18) were semiprepared by structural optimization of cholesterol. Their structures were characterized by optical rotation, high-resolution mass spectrometry (HRMS), IR, and 1H NMR spectroscopy. Particularly, the Z configurations of oxime fragments at the C-7 position of target compounds were undoubtedly determined by X-ray crystallography. Against Mythimna separata Walker, compounds 3e, I-8, I-14, and II-3 showed 2.4-2.7-fold growth inhibitory activity of the precursor cholesterol. Against Plutella xylostella Linnaeus, compounds I-6, I-7, and I-9 showed 2.4-2.7-fold oral toxicity of cholesterol. Against Aphis citricola Van der Goot, compounds 2e and II-15 exhibited 4.9 and 5.8-fold aphicidal activity of cholesterol, respectively. Notably, they showed good control effects (3.0-5.0-fold promising control efficiency of 1) against A. citricola in the greenhouse. Structure-activity relationships (SARs) suggested that the C-3 hydroxyl group and the C-7 position of cholesterol are two important modification sites. It will pave the way for future structural optimization and application of cholesterol derivatives as potential pesticidal agents in agriculture.
Collapse
Affiliation(s)
- Hui Xu
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
- School of Marine Sciences, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Kong Zhang
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Min Lv
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Meng Hao
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
13
|
Han Q, Wu N, Li HL, Zhang JY, Li X, Deng MF, Zhu K, Wang JE, Duan HX, Yang Q. A Piperine-Based Scaffold as a Novel Starting Point to Develop Inhibitors against the Potent Molecular Target OfChtI. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7534-7544. [PMID: 34185539 DOI: 10.1021/acs.jafc.0c08119] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The insect chitinase OfChtI from the agricultural pest Ostrinia furnacalis (Asian corn borer) is a promising target for green insecticide design. OfChtI is a critical chitinolytic enzyme for the cuticular chitin degradation at the stage of molting. In this study, piperine, a natural amide compound isolated from black pepper, Piper nigrum L., was discovered for the first time to have inhibitory activity toward OfChtI. The compound-enzyme interaction was presumed to take place between the piperine benzo[d][1,3] dioxole skeleton and subsite -1 of the substrate-binding pocket of OfChtI. Hence, on the basis of the deduced inhibitory mechanism and crystal structure of the substrate-binding cavity of OfChtI, compounds 5a-f were designed and synthesized by introducing a butenolide scaffold into the lead compound piperine. The enzymatic activity assay indicated that compounds 5a-f (Ki = 1.03-2.04 μM) exhibited approximately 40-80-fold higher inhibitory activity than the lead compound piperine (I) (Ki = 81.45 μM) toward OfChtI. The inhibitory mechanism of the piperonyl butenolide compounds was elucidated by molecular dynamics, which demonstrated that the introduced butenolide skeleton improved the binding affinity to OfChtI. Moreover, the in vivo activity assay indicated that these compounds also displayed moderate insecticidal activity toward O. furnacalis. This work introduces the natural product piperine as a starting point for the development of novel insecticides targeting OfChtI.
Collapse
Affiliation(s)
- Qing Han
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, People's Republic of China
| | - Nan Wu
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| | - Hui-Lin Li
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, People's Republic of China
| | - Jing-Yu Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, People's Republic of China
| | - Xiang Li
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, People's Republic of China
| | - Ming-Fei Deng
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, People's Republic of China
| | - Kai Zhu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, People's Republic of China
| | - Jin-E Wang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, People's Republic of China
| | - Hong-Xia Duan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, People's Republic of China
| | - Qing Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection and Shenzhen Agricultural Genome Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| |
Collapse
|
14
|
Gonçalves IL, Machado das Neves G, Porto Kagami L, Eifler-Lima VL, Merlo AA. Discovery, development, chemical diversity and design of isoxazoline-based insecticides. Bioorg Med Chem 2020; 30:115934. [PMID: 33360575 DOI: 10.1016/j.bmc.2020.115934] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/09/2020] [Accepted: 12/03/2020] [Indexed: 12/29/2022]
Abstract
Isoxazoline is a 5-membered heterocycle present in the active compounds of many commercial veterinary anti-ectoparasitic products. The molecular target of isoxazolines is the inhibition of GABA-gated chloride channels in insects. These facts have inspired the use of the isoxazoline scaffold in the design of novel insecticide compounds. The main strategies used for isoxazoline synthesis are either the 1,3-dipolar cycloaddition between a nitrile oxide and an alkene or the reaction between hydroxylamine and an α,β-unsaturated carbonyl compound. This review highlights the utilization of isoxazoline as insecticide: its mode of action, its commercial preparations and its consideration in the design of novel insecticides. Similarity analyses were performed with 235 isoxazoline derivatives in three different cheminformatic approaches - chemical property correlations, similarity network and compound clustering. The cheminformatic methodologies are interesting tools to use in evaluating the similarity between commercial isoxazolines and to clarify the main features explored within their derivatives.
Collapse
Affiliation(s)
- Itamar Luís Gonçalves
- Laboratório de Síntese Orgânica Medicinal - LaSOM, Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Avenida Ipiranga, 2752, Porto Alegre-RS 90610-000, Brazil
| | - Gustavo Machado das Neves
- Laboratório de Síntese Orgânica Medicinal - LaSOM, Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Avenida Ipiranga, 2752, Porto Alegre-RS 90610-000, Brazil
| | - Luciano Porto Kagami
- Laboratório de Síntese Orgânica Medicinal - LaSOM, Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Avenida Ipiranga, 2752, Porto Alegre-RS 90610-000, Brazil
| | - Vera Lucia Eifler-Lima
- Laboratório de Síntese Orgânica Medicinal - LaSOM, Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Avenida Ipiranga, 2752, Porto Alegre-RS 90610-000, Brazil
| | - Aloir Antonio Merlo
- Institute of Chemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, 91501970 RS, Brazil.
| |
Collapse
|
15
|
Zhang RB, Yu SY, Liang L, Ismail I, Wang DW, Li YH, Xu H, Wen X, Xi Z. Design, Synthesis, and Molecular Mechanism Studies of N-Phenylisoxazoline-thiadiazolo[3,4- a]pyridazine Hybrids as Protoporphyrinogen IX Oxidase Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:13672-13684. [PMID: 33155804 DOI: 10.1021/acs.jafc.0c05955] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Protoporphyrinogen oxidase (PPO, EC 1.3.3.4) is an important target for green agrochemical discovery. Herein, a novel N-phenylisoxazoline-thiadiazolo[3,4-a]pyridazine herbicidal active scaffold was designed by the scaffold hybridization strategy. Systematic structural optimization enabled the discovery of a series of derivatives with excellent weed control at 9.375-150 g ai/ha by the post-emergent application. Some derivatives exhibited improved Nicotiana tabacum PPO (NtPPO)-inhibitory activity than fluthiacet-methyl. Of these, 2b, with Ki = 21.8 nM, displayed higher weed control than fluthiacet-methyl at the rate of 12-75 g ai/ha, and selective to maize at 75 g ai/ha. In planta, 2b was converted into a bioactive metabolite 5 (Ki = 4.6 nM), which exhibited 4.6-fold more potency than 2b in inhibiting the activity of NtPPO. Molecular dynamics simulation explained that 5 formed stronger π-π interaction with Phe392 than that of 2b. This work not only provides a promising lead compound for weed control in maize fields but is also helpful to understand the molecular mechanism and basis of the designed hybrids.
Collapse
Affiliation(s)
- Rui-Bo Zhang
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Pesticide Engineering Research Center, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Shu-Yi Yu
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Pesticide Engineering Research Center, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Lu Liang
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Pesticide Engineering Research Center, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Ismail Ismail
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Pesticide Engineering Research Center, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Da-Wei Wang
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Pesticide Engineering Research Center, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yong-Hong Li
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Pesticide Engineering Research Center, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Han Xu
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Pesticide Engineering Research Center, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Xin Wen
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Pesticide Engineering Research Center, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Zhen Xi
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Pesticide Engineering Research Center, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
16
|
Huang X, Li T, Shan X, Lu R, Hao M, Lv M, Sun Z, Xu H. High Value-Added Use of Citrus Industrial Wastes in Agriculture: Semisynthesis and Anti-Tobacco Mosaic Virus/Insecticidal Activities of Ester Derivatives of Limonin Modified in the B Ring. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12241-12251. [PMID: 33103899 DOI: 10.1021/acs.jafc.0c05588] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Globally, the citrus industry produces various wastes, which contain a great deal of limonoids. In order for the sustainable development of the citrus industry, and considering the diverse bioactivities of limonoids, a series of ester derivatives were constructed by structural modification of limonin in the B ring. Furthermore, two seven-membered lactone derivatives of limonin and obacunone with a novel skeleton in the B ring were obtained by the Baeyer-Villiger oxidation rearrangement. The steric structures of six key compounds 3a, 3b, 4m, 4n, 6, and 7 were determined by X-ray crystallography. It demonstrated that the molar ratio of 3a (7α-isomer) and 3b (7β-isomer) depended on the mixed solvents in the reduction system. The anti-tobacco mosaic virus (TMV) activities under three different modes of action for most of the tested compounds were as the following sequence: inactivation effect > protection effect > curative effect. It was noteworthy that compound 4aa displayed the most potent anti-TMV/insect growth inhibitory activities, which indicated that the introduction of the phenylacryloyloxy group at the C-7β position of limonin could significantly improve its agricultural biological activities. This study will pave the way for future value-added application of citrus industrial wastes and provide strong evidence for the discovery of sustainable biopesticides based on limonoids.
Collapse
Affiliation(s)
- Xiaobo Huang
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi Province, China
| | - Tianze Li
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi Province, China
| | - Xijie Shan
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi Province, China
| | - Rongfei Lu
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi Province, China
| | - Meng Hao
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi Province, China
| | - Min Lv
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi Province, China
| | - Zhiqiang Sun
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi Province, China
| | - Hui Xu
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi Province, China
- School of Marine Sciences, Ningbo University, Ningbo 315211, Zhejiang Province, China
| |
Collapse
|
17
|
Versatile approach to densely substituted isoxazolines and pyrazolines: Focus on a quaternary carbon center as a constitutive feature. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.151958] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
18
|
Hao M, Sun Z, Xu J, Lv M, Xu H. Semisynthesis and Pesticidal Activities of Derivatives of the Diterpenoid Andrographolide and Investigation on the Stress Response of Aphis citricola Van der Goot (Homoptera: Aphididae). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:4131-4143. [PMID: 32162924 DOI: 10.1021/acs.jafc.9b08242] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
To discover natural-product-based pesticides, 7β-oxycarbonylandrographolide derivatives were stereoselectively constructed from a labdane diterpenoid andrographolide. Among them, 2'-(n)Pr-1',3'-dioxin-7β-oxy(m-Cl)benzoylandrographolide (IIc), 2'-(n)Pr-1',3'-dioxin-7β-oxyacetylandrographolide (IIf), 2'-(p-Me)Ph-1',3'-dioxin-7β-oxy(o-Cl)benzoylandrographolide (Vb), and 2'-(p-Me)Ph-1',3'-dioxin-7β-oxy(m-Cl)benzoylandrographolide (Vc) against Mythimna separata displayed the most promising growth inhibitory activity; 2'-(n)Pr-1',3'-dioxin-7β-oxy(o-Cl)benzoylandrographolide (IIb: LC50 = 0.406 mg/mL) and IIc (LC50 = 0.415 mg/mL) exhibited the most pronounced acaricidal activity (andrographolide; LC50: 5.106 mg/mL) and good control effects against Tetranychus cinnabarinus; compounds Ic, IIe, and Va-c (LD50 = 0.035-0.039 μg/nymph) showed potent aphicidal activity (andrographolide: LD50 = 0.178 μg/nymph), and compounds IIe and Vb showed good control effects against Aphis citricola. Moreover, it was found that Hsp70 of A. citricola was an important gene involved in stress response to andrographolide and its derivatives.
Collapse
Affiliation(s)
- Meng Hao
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Zhiqiang Sun
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Jianwei Xu
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Min Lv
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Hui Xu
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province 712100, China
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province 315211, China
| |
Collapse
|
19
|
Discovery of γ-lactam derivatives containing 1,3-benzodioxole unit as potential anti-phytopathogenic fungus agents. Bioorg Med Chem Lett 2019; 30:126826. [PMID: 31836441 DOI: 10.1016/j.bmcl.2019.126826] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/12/2019] [Accepted: 11/14/2019] [Indexed: 11/24/2022]
Abstract
A series of γ-lactam analogs containing 1,3-benzodioxole moiety were designed, and these derivatives were synthesized from the lead compound of lactam via a structural diversity-oriented synthesis, their structures were confirmed by 1HNMR,13CNMR, ESI-MS spectrum. Their antifungal activities were evaluated against four serious and typically crop-threatening agricultural fungi, including Rhizoctonia solani, Alternaria tenuis Nees, Gloeosporium theae-sinensis, and Fusarium graminearum. Some of these derivatives exhibited activity against Alternaria tenuis Nees higher than that of commercial fungicides carbendazim, such as compounds 7a, 7b, and 7i, compared with the blank control, some of these derivatives showed good antifungal activities against Gloeosporium theae-sinensis and Fusarium graminearum. The systematic study provides evidences for further structural modification and application of lactam analogues as antifungal agents for agriculture.
Collapse
|
20
|
Wang DW, Zhang RB, Yu SY, Liang L, Ismail I, Li YH, Xu H, Wen X, Xi Z. Discovery of Novel N-Isoxazolinylphenyltriazinones as Promising Protoporphyrinogen IX Oxidase Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:12382-12392. [PMID: 31635461 DOI: 10.1021/acs.jafc.9b04844] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Protoporphyrinogen oxidase (PPO, EC 1.3.3.4) is a promising target for herbicide discovery. Search for new compounds with novel chemotypes is a key objective for agrochemists. Here, we describe the discovery and systematic SAR-based structure optimization of novel N-isoxazolinylphenyltriazinones 5-9 as PPO inhibitors. The in vivo herbicidal activity and in vitro Nicotiana tabacum PPO (NtPPO) inhibitory activity were explored in detail. A number of the new synthetic compounds displayed strong PPO inhibitory activity with Ki values in the nanomolar range. Some compounds exhibited excellent and broad-spectrum weed control at the rate of 9.375-37.5 g ai/ha by postemergence application and showed improved monocotyledonous weed control compared to saflufenacil. Most promisingly, ethyl 3-(2-chloro-5-(3,5-dimethyl-2,6-dioxo-4-thioxo-1,3,5-triazinan-1-yl)-4-fluorophenyl)-5-methyl-4,5-dihydroisoxazole-5-carboxylate, 5a, with a Ki value of 4.9 nM, displayed over 2- and 6-fold higher potency than saflufenacil (Ki = 10 nM) and trifludimoxazin (Ki = 31 nM), respectively. Moreover, 5a showed excellent and broad-spectrum weed control against 32 kinds of weeds at 37.5-75 g ai/ha. Rice exhibited relative tolerance to 5a at 150 g ai/ha by postemergence application, indicating that 5a could be a potential herbicide candidate for weed control in paddy fields.
Collapse
Affiliation(s)
- Da-Wei Wang
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Pesticide Engineering Research Center, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry , Nankai University , Tianjin 300071 , P. R. China
| | - Rui-Bo Zhang
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Pesticide Engineering Research Center, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry , Nankai University , Tianjin 300071 , P. R. China
| | - Shu-Yi Yu
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Pesticide Engineering Research Center, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry , Nankai University , Tianjin 300071 , P. R. China
| | - Lu Liang
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Pesticide Engineering Research Center, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry , Nankai University , Tianjin 300071 , P. R. China
| | - Ismail Ismail
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Pesticide Engineering Research Center, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry , Nankai University , Tianjin 300071 , P. R. China
| | - Yong-Hong Li
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Pesticide Engineering Research Center, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry , Nankai University , Tianjin 300071 , P. R. China
| | - Han Xu
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Pesticide Engineering Research Center, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry , Nankai University , Tianjin 300071 , P. R. China
| | - Xin Wen
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Pesticide Engineering Research Center, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry , Nankai University , Tianjin 300071 , P. R. China
| | - Zhen Xi
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Pesticide Engineering Research Center, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry , Nankai University , Tianjin 300071 , P. R. China
| |
Collapse
|
21
|
Xu H, Xu M, Sun Z, Li S. Preparation of Matrinic/Oxymatrinic Amide Derivatives as Insecticidal/Acaricidal Agents and Study on the Mechanisms of Action against Tetranychus cinnabarinus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:12182-12190. [PMID: 31609606 DOI: 10.1021/acs.jafc.9b05092] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In continuation of our program to develop natural-product-based pesticidal candidates, matrinic/oxymatrinic amides were obtained through structural optimization of matrine. N'-(4-Fluoro)phenyl-N-(4-bromo)phenylsulfonyloxymatrinic amide (IIm) showed potent insecticidal activity against Mythimna separata. N-(Un)substituted phenylsulfonylmatrinic acids (3a-c) exhibited promising acaricidal activity against Tetranychus cinnabarinus. By qRT-PCR analysis of nAChR subunits and AChE genes and determination of AChE activity of (un)treated T. cinnabarinus, it suggested that the open lactam ring of matrine and carboxyl group and (4-methyl)phenylsulfonyl of N-(4-methyl)phenylsulfonylmatrinic acid (3b) were necessary for action with α2, α4, α5, and β3 nAChR subunits; compound 3b was an inhibitor of AChE in T. cinnabarinus, and AChE was one possible target of action in T. cinnabarinus against 3b; and compound 3b may be an antagonist of nAChR and AChE in T. cinnabarinus.
Collapse
Affiliation(s)
- Hui Xu
- Research Institute of Pesticidal Design & Synthesis, College of Plant Protection/Chemistry and Pharmacy , Northwest A&F University , Yangling , Shaanxi Province 712100 , China
- School of Pharmacy , Liaocheng University , Liaocheng , Shandong Province 252059 , China
| | - Ming Xu
- Research Institute of Pesticidal Design & Synthesis, College of Plant Protection/Chemistry and Pharmacy , Northwest A&F University , Yangling , Shaanxi Province 712100 , China
| | - Zhiqiang Sun
- Research Institute of Pesticidal Design & Synthesis, College of Plant Protection/Chemistry and Pharmacy , Northwest A&F University , Yangling , Shaanxi Province 712100 , China
| | - Shaochen Li
- Research Institute of Pesticidal Design & Synthesis, College of Plant Protection/Chemistry and Pharmacy , Northwest A&F University , Yangling , Shaanxi Province 712100 , China
| |
Collapse
|
22
|
Heterocyclic lactam derivatives containing piperonyl moiety as potential antifungal agents. Bioorg Med Chem Lett 2019; 29:126661. [PMID: 31515187 DOI: 10.1016/j.bmcl.2019.126661] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 08/08/2019] [Accepted: 09/01/2019] [Indexed: 12/19/2022]
Abstract
To study the novel functionalized heterocyclic molecules with highly potential biological activity, two series of heterocyclic lactam derivatives containing the piperonyl moiety were designed and synthesized. The newly obtained compounds have been identified on the basis of analytical spectral data, including 1H NMR, 13C NMR, and ESI-MS. The target compounds were evaluated for their potential antifungal activities in vitro against twelve species of the plant pathogen fungi (Sclerotinia sclerotiorum, Rhizoctonia solani, Rap Sclerotinia stemrot, Fusarium graminearum, Phomopsis adianticola, Pestallozzia theae, Pestalotiopsis guepinii, Alternaria tenuis Nees, Monilinia fructicola, Colletotrichum gloeosporioides, Phytophthora capsici, Magnaporthe oryzae). Preliminary bioassays suggested that all prepared compounds I1-14 displayed broad-spectrum and moderate antifungal activities compared with the positive control hymexazol, especially for Sclerotinia sclerotiorum, Rap Sclerotinia stemrot, and Monilinia fructicola. In particular, the inhibition rate of compound I9 exhibited good inhibition activity reached 95.16% against Sclerotinia sclerotiorum, and compounds I5, I12 against Phytophthora capsici were 93.44%, 91.25%. Further studies revealed that compounds I5 (IC50 = 19.13 µM) and I12 (IC50 = 9.12 µM) exhibited obviously antifungal activities against Phytophthora capsici, which were better than that of commercial agricultural fungicide hymexazol (IC50 = 325.45 µM). Therefore, these target compounds could be further studied and explored as a lead skeleton for discovery of novel antifungal agents.
Collapse
|
23
|
Quijia CR, Chorilli M. Characteristics, Biological Properties and Analytical Methods of Piperine: A Review. Crit Rev Anal Chem 2019; 50:62-77. [DOI: 10.1080/10408347.2019.1573656] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Christian Rafael Quijia
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| |
Collapse
|