1
|
Ham YH, Chin ML, Pan G, Wang S, Pavlović NM, Chan W. Positive Feedback Mechanism in Aristolochic Acid I Exposure-Induced Anemia and DNA Adduct Formation: Implications for Balkan Endemic Nephropathy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18155-18161. [PMID: 39088813 DOI: 10.1021/acs.jafc.4c03508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
Balkan endemic nephropathy (BEN) is a chronic kidney disease that predominantly affects inhabitants of rural farming communities along the Danube River tributaries in the Balkans. Long-standing research has identified dietary exposure to aristolochic acids (AAs) as the principal toxicological cause. This study investigates the pathophysiological role of anemia in BEN, noting its earlier and more severe manifestation in BEN patients compared to those with other chronic kidney diseases. Utilizing a mouse model, our research demonstrates that prolonged exposure to aristolochic acid I (AA-I) (the most prevalent AA variant) leads to significant red blood cell depletion through DNA damage, such as DNA adduct formation in bone marrow, prior to observable kidney function decline. Furthermore, in vitro experiments with kidney cells exposed to lowered oxygen and pH conditions mimicking an anemia environment show enhanced DNA adduct formation, suggesting increased AA-I mutagenicity and carcinogenicity. These findings indicate for the first time a positive feedback mechanism of AA-induced anemia, DNA damage, and kidney impairment in BEN progression. These results not only advance our understanding of the underlying mechanisms of BEN but also highlight anemia as a potential target for early BEN diagnosis and therapy.
Collapse
Affiliation(s)
- Yat-Hing Ham
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Man-Lung Chin
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Guanrui Pan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Shuangshuang Wang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | | | - Wan Chan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
2
|
Guo W, Kwok HC, Griffith SM, Nagl S, Milovanović D, Pavlović M, Pavlović NM, Yu JZ, Dedon PC, Chan W. Combustion-Derived Pollutants Linked with Kidney Disease in Low-Lying Flood-Affected Areas in the Balkans. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11301-11308. [PMID: 38900968 DOI: 10.1021/acs.est.4c02848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Tens of thousands of people in southern Europe suffer from Balkan endemic nephropathy (BEN), and four times as many are at risk. Incidental ingestion of aristolochic acids (AAs), stemming from the ubiquitousAristolochia clematitis(birthwort) weed in the region, leads to DNA adduct-induced toxicity in kidney cells, the primary cause of BEN. Numerous cofactors, including toxic organics and metals, have been investigated, but all have shown small contributions to the overall BEN relative to non-BEN village distribution gradients. Here, we reveal that combustion-derived pollutants from wood and coal burning in Serbia also contaminate arable soil and test as plausible causative factors of BEN. Using a GC-MS screening method, biomass-burning-derived furfural and coal-burning-derived medium-chain alkanes were detected in soil samples from BEN endemic areas levels at up to 63-times and 14-times higher, respectively, than in nonendemic areas. Significantly higher amounts were also detected in colocated wheat grains. Coexposure studies with cultured kidney cells showed that these pollutants enhance DNA adduct formation by AA, - the cause of AA nephrotoxicity and carcinogenicity. With the coincidence of birthwort-derived AAs and the widespread practice of biomass and coal burning for household cooking and heating purposes and agricultural burning in rural low-lying flood-affected areas in the Balkans, these results implicate combustion-derived pollutants in promoting the development of BEN.
Collapse
Affiliation(s)
- Wanlin Guo
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Hong Ching Kwok
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Stephen M Griffith
- Department of Atmospheric Sciences, National Taiwan University, Taipei 10617, Taiwan
| | - Stefan Nagl
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | | | - Miljana Pavlović
- Department of Anatomy, Faculty of Medicine, University of Niš, Niš 18000, Serbia
| | - Nikola M Pavlović
- Kidneya Therapeutics, Klare Cetkin 11, Belgrade 11070, Serbia
- Center for Multidisciplinary Studies, University of Niš, Niš 18106, Serbia
| | - Jian Zhen Yu
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Peter C Dedon
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Wan Chan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
3
|
Wang C, Liu Y, Han J, Li W, Sun J, Wang Y. Detection and Removal of Aristolochic Acid in Natural Plants, Pharmaceuticals, and Environmental and Biological Samples: A Review. Molecules 2023; 29:81. [PMID: 38202664 PMCID: PMC10779802 DOI: 10.3390/molecules29010081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/17/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Aristolochic acids (AAs) are a toxic substance present in certain natural plants. Direct human exposure to these plants containing AAs leads to a severe and irreversible condition known as aristolochic acid nephropathy (AAN). Additionally, AAs accumulation in the food chain through environmental mediators can trigger Balkan endemic nephropathy (BEN), an environmental variant of AAN. This paper presents a concise overview of the oncogenic pathways associated with AAs and explores the various routes of environmental exposure to AAs. The detection and removal of AAs in natural plants, drugs, and environmental and biological samples were classified and summarized, and the advantages and disadvantages of the various methods were analyzed. It is hoped that this review can provide effective insights into the detection and removal of AAs in the future.
Collapse
Affiliation(s)
- Changhong Wang
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (C.W.); (Y.L.); (J.H.)
| | - Yunchao Liu
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (C.W.); (Y.L.); (J.H.)
| | - Jintai Han
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (C.W.); (Y.L.); (J.H.)
| | - Wenying Li
- College of Geography and Environment, Shandong Normal University, Jinan 250000, China;
| | - Jing Sun
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (C.W.); (Y.L.); (J.H.)
| | - Yinan Wang
- Key Laboratory of Fine Chemicals in Universities of Shandong, Jinan Engineering Laboratory for Multi-Scale Functional Materials, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| |
Collapse
|
4
|
Au CK, Ham YH, Chan W. Bioaccumulation and DNA Adduct Formation of Aristolactam I: Unmasking a Toxicological Mechanism in the Pathophysiology of Aristolochic Acid Nephropathy. Chem Res Toxicol 2023; 36:322-329. [PMID: 36757010 DOI: 10.1021/acs.chemrestox.2c00415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Prolonged exposure to aristolochic acid (AA) through AA-containing herbal medicines or AA-tainted food is putting a large portion of the global population at risk of developing renal fibrosis and tumors of the upper urinary tract. In an effort to better understand the organotropic property of AA, we studied the cytotoxicity, absorption, oxidative-stress inducing potential, and DNA adduct formation capability of aristolactam I (ALI), one of the major urinary metabolites of aristolochic acid I (AAI) in human cells. Despite ALI having a slightly lower cytotoxicity than that of AAI, the analysis revealed, for the first time, that ALI is bioaccumulated 900 times more than that of AAI inside cultured kidney cells. Furthermore, ALI induced a significantly larger glutathione depletion than that of AAI in the exposed cells. Together with the formation of ALI-DNA adduct at a reasonably high abundance, results of this study unmasked a previously disregarded causative role of ALI in the organotropic tumor-targeting property of AA.
Collapse
Affiliation(s)
- Chun-Kit Au
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Yat-Hing Ham
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Wan Chan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
5
|
Wang X, Lu Q, Dou L, Liu M, Li P, Yu W, Yu X, Wang Z, Wen K. Broad-specificity indirect competitive enzyme-linked immunosorbent assay for aristolochic acids: Computer-aided hapten design and molecular mechanism of antibody recognition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:159941. [PMID: 36347294 DOI: 10.1016/j.scitotenv.2022.159941] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/19/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Long-term dietary exposure of aristolochic acids (AAs)-contaminated food proved to be one of the main culprits of Endemic Nephropathy, renal failure; and urothelial cancer. The antibodies utilized in immunoassays for AAs suffer from low affinity and failure of recognition to the family of AAs. This study, we prepared a broad-specificity monoclonal antibody (mAb) 5H5 with highly and uniform affinity for AAs by help of computational chemistry fully exposing the AAs common structures of methoxy and hydroxyl groups. The mAb 5H5 exhibited half inhibitory concentrations of AAA, AAB, AAC, AAD were 0.03, 0.06, 0.05, 0.03 ng/mL. To explain the broad-specificity profile of mAb 5H5, molecular docking was performed. Results shown that multiple conformations of AAs can be flexibly oriented in the spacious cavity of single-chain variable fragment antibody (scFv) 5H5 and the specific hydron bonds were formed by ASN62 and GLY64 of scFV 5H5 to the nitro group of AAs which gave an explanation of the high cross-reactivity of mAb 5H5. The ELISA based on the broad-specificity mAb 5H5with detection limits of 0.04-0.11 μg/kg and 0.02-0.06 μg/kg for four AAs in flour and soil samples, respectively. The study provided a promising method for the family of AAs in environmental and food samples.
Collapse
Affiliation(s)
- Xiaonan Wang
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, 100193 Beijing, People's Republic of China
| | - Qingpeng Lu
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, 100193 Beijing, People's Republic of China
| | - Leina Dou
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, 100193 Beijing, People's Republic of China
| | - Minggang Liu
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, 100193 Beijing, People's Republic of China
| | - Peipei Li
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, 100193 Beijing, People's Republic of China
| | - Wenbo Yu
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, 100193 Beijing, People's Republic of China
| | - Xuezhi Yu
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, 100193 Beijing, People's Republic of China
| | - Zhanhui Wang
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, 100193 Beijing, People's Republic of China
| | - Kai Wen
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, 100193 Beijing, People's Republic of China.
| |
Collapse
|
6
|
Zhang J, Wang Y, Wang C, Li K, Tang W, Sun J, Wang X. Uptake, Translocation, and Fate of Carcinogenic Aristolochic Acid in Typical Vegetables in Soil-Plant Systems. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238271. [PMID: 36500364 PMCID: PMC9739334 DOI: 10.3390/molecules27238271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022]
Abstract
When Aristolochia plants wilt and decay, aristolochic acids (AAs) are released into the soil, causing soil contamination. It has been demonstrated that aristolochic acid can be accumulated and enriched in crops through plant uptake. However, there is a lack of systematic studies on the migration and accumulation of AAs in a realistic simulated soil environment. In this study, Aristolochia herbal extracts were mixed with soil for growing three typical vegetables: lettuce, celery, and tomato. The contents of AAs in the above-mentioned plants were determined by an established highly sensitive LC-MS/MS method to study the migration and accumulation of AAs. We found that AAs in the soil can be transferred and accumulated in plants. AAs first entered the roots, which were more likely to accumulate AAs, and partially entered the above-ground parts. This further confirms that AAs can enter the food chain through plants and can have serious effects on human health. It was also shown that plants with vigorous growth and a large size absorbed AAs from the soil at a faster rate. The more AAs present in the soil, the more they accumulated in the plant.
Collapse
Affiliation(s)
- Jinghe Zhang
- Key Laboratory of Fine Chemicals in Universities of Shandong, Jinan Engineering Laboratory for Multi-Scale Functional Materials, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yinan Wang
- Key Laboratory of Fine Chemicals in Universities of Shandong, Jinan Engineering Laboratory for Multi-Scale Functional Materials, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Correspondence: (Y.W.); or (X.W.)
| | - Changhong Wang
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Kan Li
- School of Computer Science and Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Weifang Tang
- School of Computer Science and Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Jing Sun
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Xikui Wang
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Correspondence: (Y.W.); or (X.W.)
| |
Collapse
|
7
|
Das S, Thakur S, Korenjak M, Sidorenko VS, Chung FFL, Zavadil J. Aristolochic acid-associated cancers: a public health risk in need of global action. Nat Rev Cancer 2022; 22:576-591. [PMID: 35854147 DOI: 10.1038/s41568-022-00494-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/15/2022] [Indexed: 11/09/2022]
Abstract
Aristolochic acids (AAs) are a group of naturally occurring compounds present in many plant species of the Aristolochiaceae family. Exposure to AA is a significant risk factor for severe nephropathy, and urological and hepatobiliary cancers (among others) that are often recurrent and characterized by the prominent mutational fingerprint of AA. However, herbal medicinal products that contain AA continue to be manufactured and marketed worldwide with inadequate regulation, and possible environmental exposure routes receive little attention. As the trade of food and dietary supplements becomes increasingly globalized, we propose that further inaction on curtailing AA exposure will have far-reaching negative effects on the disease trends of AA-associated cancers. Our Review aims to systematically present the historical and current evidence for the mutagenicity and carcinogenicity of AA, and the effect of removing sources of AA exposure on cancer incidence trends. We discuss the persisting challenges of assessing the scale of AA-related carcinogenicity, and the obstacles that must be overcome in curbing AA exposure and preventing associated cancers. Overall, this Review aims to strengthen the case for the implementation of prevention measures against AA's multifaceted, detrimental and potentially fully preventable effects on human cancer development.
Collapse
Affiliation(s)
- Samrat Das
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer WHO, Lyon, France
| | - Shefali Thakur
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer WHO, Lyon, France
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
- Faculty of Science, Charles University, Prague, Czech Republic
| | - Michael Korenjak
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer WHO, Lyon, France
| | - Viktoriya S Sidorenko
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Felicia Fei-Lei Chung
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer WHO, Lyon, France.
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Petaling Jaya, Malaysia.
| | - Jiri Zavadil
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer WHO, Lyon, France.
| |
Collapse
|
8
|
Li W, Zhang J, Yu X, Meng F, Huang J, Zhang L, Wang S. Aristolochic acid I exposure decreases oocyte quality. Front Cell Dev Biol 2022; 10:838992. [PMID: 36036003 PMCID: PMC9402977 DOI: 10.3389/fcell.2022.838992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
Oocyte quality is a determinant of a successful pregnancy. The final step of oocyte development is oocyte maturation, which is susceptible to environmental exposures. Aristolochic acids (AAs), widely existing in Aristolochia and Asarum plants that have been used in traditional medicine, can result in a smaller ovary and fewer superovulated oocytes after in vivo exposure to mice. However, whether AAs affect oocyte maturation and the underlying mechanism(s) are unclear. In this study, we focused on the effect of Aristolochic acid I (AAI), a major compound of AAs, on the maturation of in vitro cultured mouse oocytes. We showed that AAI exposure significantly decreased oocyte quality, including elevated aneuploidy, accompanied by aberrant chiasma patterns and spindle organization, and decreased first polar body extrusion and fertilization capability. Moreover, embryo development potential was also dramatically decreased. Further analyses revealed that AAI exposure significantly decreased mitochondrial membrane potential and ATP synthesis and increased the level of reactive oxygen species (ROS), implying impaired mitochondrial function. Insufficient ATP supply can cause aberrant spindle assembly and excessive ROS can cause premature loss of sister chromatid cohesion and thus alterations in chiasma patterns. Both aberrant spindles and changed chiasma patterns can contribute to chromosome misalignment and thus aneuploidy. Therefore, AAI exposure decreases oocyte quality probably via impairing mitochondrial function.
Collapse
Affiliation(s)
- Weidong Li
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
- Advanced Medical Research Institute, Shandong University, Jinan, Shandong, China
| | - Jiaming Zhang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaoxia Yu
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fei Meng
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ju Huang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Liangran Zhang
- Advanced Medical Research Institute, Shandong University, Jinan, Shandong, China
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Shunxin Wang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, China
- *Correspondence: Shunxin Wang,
| |
Collapse
|
9
|
Qiqi L, Junlin H, Xuemei C, Yi H, Fangfang L, Yanqing G, Yan Z, Lamptey J, Zhuxiu C, Fangfei L, Yingxiong W, Xinyi M. Fetal exposure of Aristolochic Acid I undermines ovarian reserve by disturbing primordial folliculogenesis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 236:113480. [PMID: 35397442 DOI: 10.1016/j.ecoenv.2022.113480] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/27/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
The primordial follicle pool established in early life determines the ovarian reserve in the female reproductive lifespan. Premature exhaustion of primordial follicles contributes to primary ovarian insufficiency (POI), that is dependent by the initial size of the primordial follicle pool and by the rate of its activation and depletion. AAI, a powerful nephrotoxin with carcinogenic potential, is present in the Aristolochiaceae species, which can release AAI into soil as a persistent pollutant. In order to assess the potential risk of Aristolochic Acid I (AAI) exposure on mammalian oogenesis, we uncovered its adverse effect on primordial folliculogenesis in the neonatal mouse ovary and its effect on female fertility in adulthood. Pregnant mice were orally administrated with doses of AAI without hepatic or renal toxicity during late-gestation. Ovaries from offspring of administered female displayed gross aberrations during primordial folliculogenesis. Also, unenclosed oocytes in germ-cell cysts showed increased DNA damage. Furthermore, several key factors, including NANOS3, SOX9, KLF4, that govern early gonad's differentiation were abnormally expressed in the exposed ovary, while the follicle formation was partially restored by knockdown of Nanos3 or sox9. In adulthood, these aberrations evolved into a significant reduction in offspring number and impaired ovarian reserve. Together, our results show that AAI influences primordial folliculogenesis and, importantly, affected female fertility. This study shows that administration of drugs herbs or consumption of vegetables that contain AAs during pregnancy may adversely influence the fertility of offspring.
Collapse
Affiliation(s)
- Liu Qiqi
- College of Basic Medicine, Chongqing Medical University, Chongqing 400016, PR China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China
| | - He Junlin
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing 400016, PR China
| | - Chen Xuemei
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing 400016, PR China
| | - Hong Yi
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing 400016, PR China
| | - Li Fangfang
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing 400016, PR China
| | - Geng Yanqing
- College of Basic Medicine, Chongqing Medical University, Chongqing 400016, PR China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China
| | - Zhang Yan
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing 400016, PR China
| | - Jones Lamptey
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China
| | - Chen Zhuxiu
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing 400016, PR China
| | - Liu Fangfei
- College of Basic Medicine, Chongqing Medical University, Chongqing 400016, PR China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China
| | - Wang Yingxiong
- College of Basic Medicine, Chongqing Medical University, Chongqing 400016, PR China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China
| | - Mu Xinyi
- College of Basic Medicine, Chongqing Medical University, Chongqing 400016, PR China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
10
|
Thangavelu M, Ismail A, Zakaria A, Elmansy H, Shahrour W, Prowse O, Kotb A. Aristolochic acid: What urologists should know. Arch Ital Urol Androl 2022; 94:123-125. [PMID: 35352538 DOI: 10.4081/aiua.2022.1.123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 01/19/2022] [Indexed: 11/22/2022] Open
Abstract
To the Editor, Aristolochic acid is one of major causes for upper tract urothelial carcinoma, especially in younger population. While it is mentioned as a cause in guidelines, little is actually known about the toxin by urologists. We are aiming in our letter to provide some direct and clear information to ourselves that would help us to know more about that toxin and how it can adversely affect our patients [...].
Collapse
Affiliation(s)
| | - Asmaa Ismail
- Northern Ontario School of Medicine, Thunder Bay, Ontario.
| | - Ahmed Zakaria
- Northern Ontario School of Medicine, Thunder Bay, Ontario.
| | - Hazem Elmansy
- Northern Ontario School of Medicine, Thunder Bay, Ontario.
| | - Walid Shahrour
- Northern Ontario School of Medicine, Thunder Bay, Ontario.
| | - Owen Prowse
- Northern Ontario School of Medicine, Thunder Bay, Ontario.
| | - Ahmed Kotb
- Northern Ontario School of Medicine, Thunder Bay, Ontario.
| |
Collapse
|
11
|
Qu M, Xu H, Chen J, Xu B, Li Z, Ma B, Guo L, Ye Q, Xie J. Differential comparison of genotoxic effects of aristolochic acid I and II in human cells by the mass spectroscopic quantification of γ-H2AX. Toxicol In Vitro 2022; 81:105349. [DOI: 10.1016/j.tiv.2022.105349] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/17/2022] [Accepted: 03/14/2022] [Indexed: 11/29/2022]
|
12
|
Drăghia LP, Lukinich-Gruia AT, Oprean C, Pavlović NM, Păunescu V, Tatu CA. Aristolochic acid I: an investigation into the role of food crops contamination, as a potential natural exposure pathway. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:4163-4178. [PMID: 33796971 DOI: 10.1007/s10653-021-00903-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 03/19/2021] [Indexed: 06/12/2023]
Abstract
Aristolochic acid I (AAI) is a potent nephrotoxic and carcinogenic compound produced by plants of the Aristolochiaceae family and thoroughly investigated as a main culprit in the etiology of Balkan endemic nephropathy (BEN). So far, the AAI exposure was demonstrated to occur through the consumption of Aristolochia clematitis plants as traditional remedies, and through the contamination of the surrounding environment in endemic areas: soil, food and water contamination. Our study investigated for the first time the level of AAI contamination in 141 soil and vegetable samples from two cultivated gardens in non-endemic areas, A. clematitis being present in only one of the gardens. We developed and validated a simple and sensitive ultra-high-performance liquid chromatography-ion trap mass spectrometry method for qualitative and quantitative AAI analysis. The results confirmed the presence of AAI at nanogram levels in soil and vegetable samples collected from the non-endemic garden, where A. clematitis grows. These findings provide additional evidence that the presence of A. clematitis can cause food crops and soil contamination and unveil the pathway through which AAI could move from A. clematitis to other plant species via a common matrix: the soil. Another issue regarding the presence of AAI, in a non-endemic BEN area from Romania, could underlie a more widespread environmental exposure to AAI and explain certain BEN-like cases in areas where BEN has not been initially described.
Collapse
Affiliation(s)
- Lavinia Paula Drăghia
- Department of Functional Sciences, University of Medicine and Pharmacy 'Victor Babes', Eftimie Murgu Sq. 2, 300041, Timisoara, Romania.
- Department of Chemistry and Toxicology, OncoGen Centre, County Hospital 'Pius Branzeu', Blvd. Liviu Rebreanu 156, 300736, Timisoara, Romania.
| | - Alexandra Teodora Lukinich-Gruia
- Department of Chemistry and Toxicology, OncoGen Centre, County Hospital 'Pius Branzeu', Blvd. Liviu Rebreanu 156, 300736, Timisoara, Romania.
| | - Camelia Oprean
- Department of Chemistry and Toxicology, OncoGen Centre, County Hospital 'Pius Branzeu', Blvd. Liviu Rebreanu 156, 300736, Timisoara, Romania
- Department of Environmental and Food Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy 'Victor Babes', Eftimie Murgu Sq. 2, 300041, Timisoara, Romania
| | | | - Virgil Păunescu
- Department of Functional Sciences, University of Medicine and Pharmacy 'Victor Babes', Eftimie Murgu Sq. 2, 300041, Timisoara, Romania
- Department of Chemistry and Toxicology, OncoGen Centre, County Hospital 'Pius Branzeu', Blvd. Liviu Rebreanu 156, 300736, Timisoara, Romania
| | - Călin Adrian Tatu
- Department of Functional Sciences, University of Medicine and Pharmacy 'Victor Babes', Eftimie Murgu Sq. 2, 300041, Timisoara, Romania
- Department of Chemistry and Toxicology, OncoGen Centre, County Hospital 'Pius Branzeu', Blvd. Liviu Rebreanu 156, 300736, Timisoara, Romania
| |
Collapse
|
13
|
Chen R, You X, Cao Y, Masumura K, Ando T, Hamada S, Horibata K, Wan J, Xi J, Zhang X, Honma M, Luan Y. Benchmark dose analysis of multiple genotoxicity endpoints in gpt delta mice exposed to aristolochic acid I. Mutagenesis 2021; 36:87-94. [PMID: 33367723 DOI: 10.1093/mutage/geaa034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/24/2020] [Indexed: 11/12/2022] Open
Abstract
As the carcinogenic risk of herbs containing aristolochic acids (AAs) is a global health issue, quantitative evaluation of toxicity is needed for the regulatory decision-making and risk assessment of AAs. In this study, we selected AA I (AAI), the most abundant and representative compound in AAs, to treat transgenic gpt delta mice at six gradient doses ranging from 0.125 to 4 mg/kg/day for 28 days. AAI-DNA adduct frequencies and gpt gene mutation frequencies (MFs) in the kidney, as well as Pig-a gene MFs and micronucleated reticulocytes (MN-RETs) frequencies in peripheral blood, were monitored. The dose-response (DR) relationship data for these in vivo genotoxicity endpoints were quantitatively evaluated using an advanced benchmark dose (BMD) approach with different critical effect sizes (CESs; i.e., BMD5, BMD10, BMD50 and BMD100). The results showed that the AAI-DNA adduct frequencies, gpt MFs and the MN-RETs presented good DR relationship to the administrated doses, and the corresponding BMDL100 (the lower 90% confidence interval of the BMD100) values were 0.017, 0.509 and 3.9 mg/kg/day, respectively. No positive responses were observed in the Pig-a MFs due to bone marrow suppression caused by AAI. Overall, we quantitatively evaluated the genotoxicity of AAI at low doses for multiple endpoints for the first time. Comparisons of BMD100 values across different endpoints provide a basis for the risk assessment and regulatory decision-making of AAs and are also valuable for understanding the genotoxicity mechanism of AAs.
Collapse
Affiliation(s)
- Ruixue Chen
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinyue You
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiyi Cao
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kenichi Masumura
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Tonomachi, Kawasaki-ku, Kawasaki City, Kanagawa, Japan
| | - Tomoko Ando
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Tonomachi, Kawasaki-ku, Kawasaki City, Kanagawa, Japan
| | - Shuichi Hamada
- Tokyo Laboratory BoZo Research Center Inc., Hanegi, Setagaya, Tokyo, Japan
| | - Katsuyoshi Horibata
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Tonomachi, Kawasaki-ku, Kawasaki City, Kanagawa, Japan
| | - Jingjing Wan
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Xi
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinyu Zhang
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Masamitsu Honma
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Tonomachi, Kawasaki-ku, Kawasaki City, Kanagawa, Japan
| | - Yang Luan
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
14
|
Guo W, Zhang J, Sun Z, Orem WH, Tatu CA, Radulović NS, Milovanović D, Pavlović NM, Chan W. Analysis of Polycyclic Aromatic Hydrocarbons and Phthalate Esters in Soil and Food Grains from the Balkan Peninsula: Implication on DNA Adduct Formation by Aristolochic Acid I and Balkan Endemic Nephropathy. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:9024-9032. [PMID: 34125507 DOI: 10.1021/acs.est.1c00648] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Balkan endemic nephropathy (BEN) is a chronic tubulointerstitial nephropathy affecting residents of rural farming areas in many Balkan countries. Although it is generally believed that BEN is an environmental disease caused by multiple geochemical factors with much attention on aristolochic acids (AAs), its etiology remains controversial. In this study, we tested the hypothesis that environmental contamination and subsequent food contamination by polycyclic aromatic hydrocarbons (PAHs) and phthalate esters are AA toxicity factors and important to BEN development. We identified significantly higher concentrations of phenanthrene, anthracene, diethyl phthalate (DEP), dibutyl phthalate (DBP), and benzyl butyl phthalate (BBP) in both maize and wheat grain samples collected from endemic villages than from nonendemic villages. Other PAHs and phthalate esters were also detected at higher concentrations in the soil samples from endemic villages. Subsequent genotoxicity testing of cultured human kidney cells showed an alarming phenomenon that phenanthrene, DEP, BBP, and DBP can interact synergistically with AAs to form elevated levels of AA-DNA adducts, which are associated with both the nephrotoxicity and carcinogenicity of AAs, further increasing their disease risks. This study provides direct evidence that prolonged coexposure to these environmental contaminants via dietary intake may lead to greater toxicity and accelerated development of BEN.
Collapse
Affiliation(s)
- Wanlin Guo
- Department of Chemistry and Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 000000, Hong Kong
| | - Jiayin Zhang
- Department of Chemistry and Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 000000, Hong Kong
| | - Zhihan Sun
- Department of Chemistry and Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 000000, Hong Kong
| | - William H Orem
- U.S. Geological Survey, Reston, Virginia 20192, United States
| | - Calin A Tatu
- Department of Immunology, University of Medicine and Pharmacy ″Victor Babes″ Timisoara, Pta. E. Murgu No.2, 300041 Timisoara, Romania
| | - Niko S Radulović
- Faculty of Sciences and Mathematics, University of Niš, 18000 Niš, Serbia
| | | | | | - Wan Chan
- Department of Chemistry and Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 000000, Hong Kong
| |
Collapse
|
15
|
Zhang Y, Han Y, Dong C, Li C, Liang T, Ling G, Nie H. Rapid characterization and pharmacokinetic study of aristolochic acid analogues using ion mobility mass spectrometry. Anal Bioanal Chem 2021; 413:4247-4253. [PMID: 33950274 DOI: 10.1007/s00216-021-03371-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 04/22/2021] [Indexed: 10/21/2022]
Abstract
Aristolochic acid analogues (AAAs), naturally existing in herbal Aristolochia and Asarum genera, were once widely used in traditional pharmacopeias because of their anti-inflammatory properties, but lately they were identified as potential nephrotoxins and mutagens. A method for rapid characterization of AAAs in serum was developed using ion mobility spectrometry coupled with mass spectrometry (IMS-MS). Five AAAs, containing four aristolochic acids and one aristolactam, were separated and identified within milliseconds. AAAs were separated in gas phase based on the difference of their ion mobility (K0), and then identified based on their K0 values, m/z, and product ions from MS/MS. Quantitative analysis of AAAs was performed using an internal standard with a satisfactory sensitivity. Limits of detection (signal-to-noise = 3) and quantification (signal-to-noise = 10) were 1-5 ng/mL and 3-8 ng/mL, respectively. The method was validated and successfully applied to the pharmacokinetics study of AAAs in rats, offering a promising way for fast screening and evaluation of AAAs in biological samples.
Collapse
Affiliation(s)
- Yanfen Zhang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Yehua Han
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China.
| | - Chenglong Dong
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Chen Li
- Department of Orthopaedics, Tianjin Hospital, Tianjin, 300211, China
| | - Tuo Liang
- Department of Cardiology, Beijing Friendship Hospital, Capital Medical University, Beijing, 10050, China
| | - Guannan Ling
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Honggang Nie
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
16
|
Li W, Yao YN, Wu L, Wang L, Hu B. Contactless electrospray ionization mass spectrometry for direct detection of analytes in living organisms. JOURNAL OF MASS SPECTROMETRY : JMS 2021; 56:e4539. [PMID: 32677755 DOI: 10.1002/jms.4539] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/26/2020] [Accepted: 05/11/2020] [Indexed: 06/11/2023]
Abstract
In this study, we developed contactless electrospray ionization mass spectrometry (ESI-MS) for in vivo analysis of living organisms in different applications. The in vivo sampling and direct analysis processess of living organisms were integrated into an operation that only requires the organism close to MS inlet that was applied to a high voltage. Living plants and animals were directly induced to generate spray ionization. Direct detection and in vivo monitoring of metabolites and chemical residues in various living organisms were successfully demonstrated. Analysis of a single sample could be completed within 30 s. Overall, contactless ESI-MS provides an attractive in vivo method to straightforward investigation of living organisms.
Collapse
Affiliation(s)
- Wen Li
- Institute of Laboratory Animal Science, Jinan University, Guangzhou, China
| | - Ya-Nan Yao
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University, Guangzhou, China
| | - Lin Wu
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University, Guangzhou, China
| | - Lei Wang
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, and JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, Jinan University, Guangzhou, China
| | - Bin Hu
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University, Guangzhou, China
| |
Collapse
|
17
|
Chan CK, Chan KKJ, Liu N, Chan W. Quantitation of Protein Adducts of Aristolochic Acid I by Liquid Chromatography-Tandem Mass Spectrometry: A Novel Method for Biomonitoring Aristolochic Acid Exposure. Chem Res Toxicol 2021; 34:144-153. [PMID: 33410325 DOI: 10.1021/acs.chemrestox.0c00454] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Emerging evidence suggests that chronic exposure to aristolochic acids (AAs) is one of the etiological pathways leading to chronic kidney disease (CKD). Due to the traditional practice of herbal medicine and AA-containing plants being used extensively as medicinal herbs, over 100 million East Asians are estimated to be at risk of AA poisoning. Given that the chronic nephrotoxicity of AAs only manifests itself after decades of exposure, early diagnosis of AA exposure could allow for timely intervention and disease risk reduction. However, an early detection method is not yet available, and diagnosis can only be established at the end stage of CKD. The goal of this study was to develop a highly sensitive and selective method to quantitate protein adducts of aristolochic acid I (AAI) as a biomarker of AA exposure. The method entails the release of protein-bound aristolactam I (ALI) by heat-assisted alkaline hydrolysis, extraction of ALI, addition of internal standard, and quantitation by liquid chromatography-tandem mass spectrometric analysis. Accuracy and precision of the method were critically evaluated using a synthetic ALI-containing glutathione adduct. The validated method was subsequently used to detect dose-dependent formation of ALI-protein adducts in human serum albumin exposed to AAI and in proteins isolated from the tissues and sera of AAI-exposed rats. Our time-dependent study showed that ALI-protein adducts remained detectable in rats even at 28 days postdosing. It is anticipated that the developed method will fill the technical gap in diagnosing AA intoxication and facilitate the biomonitoring of human exposures to AAs.
Collapse
Affiliation(s)
- Chi-Kong Chan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Kwan-Kit Jason Chan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Ning Liu
- Central Laboratory, The Second Hospital of Jilin University, Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, China
| | - Wan Chan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
18
|
Dedı Ková A, Bárta F, Martínek V, Kotalík K, Dušková Š, Mráz J, Arlt VM, Stiborová M, Hodek P. In Vivo Metabolism of Aristolochic Acid I and II in Rats Is Influenced by Their Coexposure. Chem Res Toxicol 2020; 33:2804-2818. [PMID: 32894017 DOI: 10.1021/acs.chemrestox.0c00198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The plant extract aristolochic acid (AA), containing aristolochic acid I (AAI) and II (AAII) as major components, causes aristolochic acid nephropathy and Balkan endemic nephropathy, unique renal diseases associated with upper urothelial cancer. Differences in the metabolic activation and detoxification of AAI and AAII and their effects on the metabolism of AAI/AAII mixture in the plant extract might be of great importance for an individual's susceptibility in the development of AA-mediated nephropathies and malignancies. Here, we investigated in vivo metabolism of AAI and AAII after ip administration to Wistar rats as individual compounds and as AAI/AAII mixture using high performance liquid chromatography/electrospray ionization mass spectrometry. Experimental findings were supported by theoretical calculations using density functional theory. We found that exposure to AAI/AAII mixture affected the generation of their oxidative and reductive metabolites formed during Phase I biotransformation and excreted in rat urine. Several Phase II metabolites of AAI and AAII found in the urine of exposed rats were also analyzed. Our results indicate that AAI is more efficiently metabolized in rats in vivo than AAII. Whereas AAI is predominantly oxidized during in vivo metabolism, its reduction is the minor metabolic pathway. In contrast, AAII is mainly metabolized by reduction. The oxidative reaction only occurs if aristolactam II, the major reductive metabolite of AAII, is enzymatically hydroxylated, forming aristolactam Ia. In AAI/AAII mixture, the metabolism of AAI and AAII is influenced by the presence of both AAs. For instance, the reductive metabolism of AAI is increased in the presence of AAII while the presence of AAI decreased the reductive metabolism of AAII. These results suggest that increased bioactivation of AAI in the presence of AAII also leads to increased AAI genotoxicity, which may critically impact AAI-mediated carcinogenesis. Future studies are needed to explain the underlying mechanism(s) for this phenomenon.
Collapse
Affiliation(s)
- Alena Dedı Ková
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, 12840 Prague, Czech Republic
| | - František Bárta
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, 12840 Prague, Czech Republic
| | - Václav Martínek
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, 12840 Prague, Czech Republic
| | - Kevin Kotalík
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, 12840 Prague, Czech Republic
| | - Šárka Dušková
- Centre of Occupational Health, National Institute of Public Health, Šrobárova 48, 100 42 Prague 10, Czech Republic
| | - Jaroslav Mráz
- Centre of Occupational Health, National Institute of Public Health, Šrobárova 48, 100 42 Prague 10, Czech Republic
| | - Volker Manfred Arlt
- Department of Analytical, Environmental and Forensic Sciences Division, King's College London, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Marie Stiborová
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, 12840 Prague, Czech Republic
| | - Petr Hodek
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, 12840 Prague, Czech Republic
| |
Collapse
|
19
|
Au CK, Zhang J, Chan CK, Li C, Liu G, Pavlović NM, Yao J, Chan W. Determination of Aristolochic Acids in Vegetables: Nephrotoxic and Carcinogenic Environmental Pollutants Contaminating a Broad Swath of the Food Supply and Driving Incidence of Balkan Endemic Nephropathy. Chem Res Toxicol 2020; 33:2446-2454. [DOI: 10.1021/acs.chemrestox.0c00229] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | | | | | - Cui Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
| | - Guorui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
| | | | - Jing Yao
- Department of Mathematics, Southern University of Science and Technology, Shenzhen 518055, China
| | | |
Collapse
|
20
|
Chan CK, Tung KK, Pavlović NM, Chan W. Remediation of aristolochic acid-contaminated soil by an effective advanced oxidation process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 720:137528. [PMID: 32143041 DOI: 10.1016/j.scitotenv.2020.137528] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 02/19/2020] [Accepted: 02/22/2020] [Indexed: 06/10/2023]
Abstract
Aristolochic acids (AAs) are persistent soil pollutants in the agricultural fields of the Balkan Peninsula that are endemic for Aristolochia clematitis L. This class of carcinogenic and nephrotoxic phytotoxins is taken up by crops through root absorption and contaminates staple foods across the peninsula. Human exposure to AAs via dietary intake has recently been recognized as a cause of Balkan endemic nephropathy. For the sake of public health, human exposure to AAs from all sources should be minimized in a timely manner. However, currently, there is no available remediation method to remove AAs from soil. In this study, we developed the first soil remediation method for AAs using Fenton's reagent (FR), a combination of ferrous ion and hydrogen peroxide, and optimized factors, including pH, temperature, time, and dose of FR, to achieve the best degradation performance. The maximum AA degradation efficiency was found to be >97% in soil with 500 μg kg-1 of AAs. We anticipate that this developed method, mediated via Fenton reaction, will be useful to effectively eliminate AAs from the Balkan farmlands.
Collapse
Affiliation(s)
- Chi-Kong Chan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Ka-Ki Tung
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | | | - Wan Chan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| |
Collapse
|
21
|
Zhang Y, ShiYang X, Zhang Y, Li Y, Shi X, Xiong B. Exposure to aristolochic acid I compromises the maturational competency of porcine oocytes via oxidative stress-induced DNA damage. Aging (Albany NY) 2020; 11:2241-2252. [PMID: 31004078 PMCID: PMC6520013 DOI: 10.18632/aging.101911] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 04/05/2019] [Indexed: 12/23/2022]
Abstract
Aristolochic acid (AA) is a class of carcinogenic and nephrotoxic nitrophenanthrene carboxylic acids naturally found in Aristolochia plants. These plants have been widely used as herbal medicines and also enter the human food chain as the persistent soil pollutants. It has been known that AA exposure is implicated in multiple cancer types, kidney failure and ovarian dysfunction. However, whether AA exposure would influence the oocyte quality has not yet determined. Here, we document that AAI has the negative effects on the competency of oocyte maturation and fertilization. We show that AAI exposure leads to the oocyte meiotic failure via impairing the meiotic apparatus, displaying a prominently defective spindle assembly, actin dynamics and mitochondrial integrity. AAI exposure also causes the abnormal distribution of cortical granules and ovastacin, which is consistent with the observation that fewer sperm bound to the zona pellucida surrounding the unfertilized AAI-exposed eggs, contributing to the fertilization failure. In addition, AAI exposure induces the increased levels of ROS, DNA damage and early apoptosis in porcine oocytes. Collectively, we demonstrate that AAI exposure perturbs the oocyte meiotic progression and fertilization capacity via disruption of both nuclear maturation and cytoplasmic maturation of oocyte, which might be caused by the excessive oxidative stress-induced DNA damage and apoptosis.
Collapse
Affiliation(s)
- Yu Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiayan ShiYang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuwei Zhang
- Research Center of Combine Traditional Chinese and Western Medicine, Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yu Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoyan Shi
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Bo Xiong
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
22
|
Chan CK, Chan KKJ, Pavlović NM, Chan W. Liquid chromatography-tandem mass spectrometry analysis of aristolochic acids in soil samples collected from Serbia: Link to Balkan endemic nephropathy. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34 Suppl 1:e8547. [PMID: 31392776 DOI: 10.1002/rcm.8547] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/04/2019] [Accepted: 07/30/2019] [Indexed: 06/10/2023]
Abstract
RATIONALE Over the past six decades, residents of farming villages in multiple countries of the Balkan peninsula have been suffering from a unique type of chronic renal disease, Balkan endemic nephropathy (BEN). It was speculated that environmental pollution by aristolochic acids (AAs) produced naturally by Aristolochia clematitis L., a weed that grows in the area, was causing the disease. However, the human exposure pathway to this class of phytotoxin remains obscure. Knowledge of the sink and stability of AAs in the environment would assist in the formulation of policy reducing exposure risk. METHODS Using our newly developed liquid chromatography/tandem mass spectrometry method of high sensitivity and selectivity, we analysed over 130 soil samples collected from cultivation fields in southern Serbia for the presence of AAs. The environmental stability of AAs was also investigated by incubating soil samples spiked with AAs at various temperatures. RESULTS The analysis detected AA-I in over two-fifths of the tested samples at sub-μg/kg to μg/kg levels, with higher concentrations observed in more acidic farmland soil. Furthermore, analysis of soil samples incubated at various temperatures revealed half-lives of over 2 months, indicating that AAs are relatively resistant to degradation. CONCLUSIONS Cultivation soil in southern Serbia is being extensively contaminated with AAs released from the decomposition of A. clematitis weeds. Since AAs are resistant to degradation, it is possible that AAs could have been taken up by root absorption and transported to the edible part of food crops. Prolonged exposure to AA-contaminated food grown from polluted soil could be one of the main aetiological mechanisms of BEN observed in the area.
Collapse
Affiliation(s)
- Chi-Kong Chan
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - K K Jason Chan
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | | | - Wan Chan
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
23
|
Wang X, Giusti A, Ny A, de Witte PA. Nephrotoxic Effects in Zebrafish after Prolonged Exposure to Aristolochic Acid. Toxins (Basel) 2020; 12:toxins12040217. [PMID: 32235450 PMCID: PMC7232444 DOI: 10.3390/toxins12040217] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 12/19/2022] Open
Abstract
With the aim to explore the possibility to generate a zebrafish model of renal fibrosis, in this study the fibrogenic renal effect of aristolochic acid I (AAI) after immersion was assessed. This compound is highly nephrotoxic able to elicit renal fibrosis after exposure of rats and humans. Our results reveal that larval zebrafish at 15 days dpf (days post-fertilization) exposed for 8 days to 0.5 µM AAI showed clear signs of AKI (acute kidney injury). The damage resulted in the relative loss of the functional glomerular filtration barrier. Conversely, we did not observe any deposition of collagen, nor could we immunodetect α-SMA, a hallmark of myofibroblasts, in the tubules. In addition, no increase in gene expression of fibrogenesis biomarkers after whole animal RNA extraction was found. As zebrafish have a high capability for tissue regeneration possibly impeding fibrogenic processes, we also used a tert−/− zebrafish line exhibiting telomerase deficiency and impaired tissue homeostasis. AAI-treated tert−/− larvae displayed an increased sensitivity towards 0.5 µM AAI. Importantly, after AAI treatment a mild collagen deposition could be found in the tubules. The outcome implies that sustained AKI induced by nephrotoxic compounds combined with defective tert−/− stem cells can produce a fibrotic response.
Collapse
|
24
|
Au CK, Chan CK, Tung KK, Zhang J, Chan W. Quantitation of DNA Adducts of Aristolochic Acids in Repair-Deficient Cells: A Mechanistic Study of the DNA Repair Mechanism. Chem Res Toxicol 2020; 33:1323-1327. [DOI: 10.1021/acs.chemrestox.0c00004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Chun-Kit Au
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Chi-Kong Chan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Ka-Ki Tung
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Jiayin Zhang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Wan Chan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
25
|
Zhang J, Chan CK, Ham YH, Chan W. Identifying Cysteine, N-Acetylcysteine, and Glutathione Conjugates as Novel Metabolites of Aristolochic Acid I: Emergence of a New Detoxification Pathway. Chem Res Toxicol 2020; 33:1374-1381. [DOI: 10.1021/acs.chemrestox.9b00488] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jiayin Zhang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Chi-Kong Chan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Yat-Hing Ham
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Wan Chan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
26
|
Sorkin BC, Kuszak AJ, Bloss G, Fukagawa NK, Hoffman FA, Jafari M, Barrett B, Brown PN, Bushman FD, Casper S, Chilton FH, Coffey CS, Ferruzzi MG, Hopp DC, Kiely M, Lakens D, MacMillan JB, Meltzer DO, Pahor M, Paul J, Pritchett-Corning K, Quinney SK, Rehermann B, Setchell KD, Sipes NS, Stephens JM, Taylor DL, Tiriac H, Walters MA, Xi D, Zappalá G, Pauli GF. Improving natural product research translation: From source to clinical trial. FASEB J 2020; 34:41-65. [PMID: 31914647 PMCID: PMC7470648 DOI: 10.1096/fj.201902143r] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/12/2019] [Accepted: 10/21/2019] [Indexed: 12/28/2022]
Abstract
While great interest in health effects of natural product (NP) including dietary supplements and foods persists, promising preclinical NP research is not consistently translating into actionable clinical trial (CT) outcomes. Generally considered the gold standard for assessing safety and efficacy, CTs, especially phase III CTs, are costly and require rigorous planning to optimize the value of the information obtained. More effective bridging from NP research to CT was the goal of a September, 2018 transdisciplinary workshop. Participants emphasized that replicability and likelihood of successful translation depend on rigor in experimental design, interpretation, and reporting across the continuum of NP research. Discussions spanned good practices for NP characterization and quality control; use and interpretation of models (computational through in vivo) with strong clinical predictive validity; controls for experimental artefacts, especially for in vitro interrogation of bioactivity and mechanisms of action; rigorous assessment and interpretation of prior research; transparency in all reporting; and prioritization of research questions. Natural product clinical trials prioritized based on rigorous, convergent supporting data and current public health needs are most likely to be informative and ultimately affect public health. Thoughtful, coordinated implementation of these practices should enhance the knowledge gained from future NP research.
Collapse
Affiliation(s)
- Barbara C. Sorkin
- Office of Dietary Supplements, National Institutes of Health (NIH), Bethesda, MD, US
| | - Adam J. Kuszak
- Office of Dietary Supplements, National Institutes of Health (NIH), Bethesda, MD, US
| | - Gregory Bloss
- National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, US
| | | | | | | | | | - Paula N. Brown
- British Columbia Institute of Technology, Burnaby, British Columbia, Canada
| | | | - Steven Casper
- Office of Dietary Supplement Programs, Center for Food Safety and Applied Nutrition, Food and Drug Administration (FDA), Hyattsville, MD, US
| | - Floyd H. Chilton
- Department of Nutritional Sciences and the BIO5 Institute, University of Arizona, Tucson, AZ, US
| | | | - Mario G. Ferruzzi
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, US
| | - D. Craig Hopp
- National Center for Complementary and Integrative Health, NIH, Bethesda, MD, US
| | - Mairead Kiely
- Cork Centre for Vitamin D and Nutrition Research, School of Food and Nutritional Sciences, University College Cork, Ireland
| | - Daniel Lakens
- Eindhoven University of Technology, Eindhoven, Netherlands
| | | | | | | | - Jeffrey Paul
- Drexel Graduate College of Biomedical Sciences, College of Medicine, Evanston, IL, US
| | | | | | - Barbara Rehermann
- National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, US
| | | | - Nisha S. Sipes
- National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, US
| | | | | | - Hervé Tiriac
- University of California, San Diego, La Jolla, CA, US]
| | - Michael A. Walters
- Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, MN, US
| | - Dan Xi
- Office of Cancer Complementary and Alternative Medicine, National Cancer Institute, NIH, Shady Grove, MD, US
| | | | - Guido F. Pauli
- CENAPT and PCRPS, University of Illinois at Chicago College of Pharmacy, Chicago, IL, US
| |
Collapse
|
27
|
Sidorenko VS. Biotransformation and Toxicities of Aristolochic Acids. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1241:139-166. [PMID: 32383120 DOI: 10.1007/978-3-030-41283-8_9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Environmental and iatrogenic exposures contribute significantly to human diseases, including cancer. The list of known human carcinogens has recently been extended by the addition of aristolochic acids (AAs). AAs occur primarily in Aristolochia herbs, which are used extensively in folk medicines, including Traditional Chinese Medicine. Ingestion of AAs results in chronic renal disease and cancer. Despite importation bans imposed by certain countries, herbal remedies containing AAs are readily available for purchase through the internet. With recent advancements in mass spectrometry, next generation sequencing, and the development of integrated organs-on-chips, our knowledge of cancers associated with AA exposure, and of the mechanisms involved in AA toxicities, has significantly improved. DNA adduction plays a central role in AA-induced cancers; however, significant gaps remain in our knowledge as to how cellular enzymes promote activation of AAs and how the reactive species selectively bind to DNA and kidney proteins. In this review, I describe pathways for AAs biotransformation, adduction, and mutagenesis, emphasizing novel methods and ideas contributing to our present understanding of AA toxicities in humans.
Collapse
Affiliation(s)
- Viktoriya S Sidorenko
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
28
|
Ouyang L, Zhang Q, Ma G, Zhu L, Wang Y, Chen Z, Wang Y, Zhao L. New Dual-Spectroscopic Strategy for the Direct Detection of Aristolochic Acids in Blood and Tissue. Anal Chem 2019; 91:8154-8161. [PMID: 31140784 DOI: 10.1021/acs.analchem.9b00442] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Aristolochic acids (AAs) contained in herbal plants are implicated in multiple organ injuries and have a high mutational burden in upper tract urothelial cancers. The currently available techniques for monitoring AAs include LC (liquid chromatography) and LC/MS (mass spectrometry), but the application of these approaches are limited due to the complex sample preparation and derivatization steps. Therefore, there is an urgent need to develop efficient methods for identifying and quantifying AAs. Here, we present a new dual-spectroscopic approach for the direct detection of AAs from blood and tissue samples; the detection of aristolochic acid I (AAI) is performed by surface-enhanced Raman spectroscopy (SERS), and its bioproduct, aristololactam (AAT), is detected by fluorescence spectroscopy based on their distinctive spectral response. Furthermore, a graphene assisted enrichment coupled with a magnetic retrieval strategy was developed to enhance SERS sensitivity toward AAI. Our method was successfully applied to directly determine both AAI and AAT from the blood, liver, and kidney of rats. The potential for real-world application was demonstrated by continuously monitoring AAI and AAT in rat blood and tissues after AAI feeding. The results showed that AAI was gradually metabolized to AAT and transported to different organs. It was found that the metabolism of AAI took place in the kidney, but AAT residue was detected in both liver and kidney, which might be related to long-term toxicity and gene mutation. The proposed dual-spectroscopic strategy is applicable to long-term toxicology research and to the direct diagnosis of AAI-induced organ injury.
Collapse
Affiliation(s)
- Lei Ouyang
- School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica , Huazhong University of Science and Technology , Wuhan 430074 , China.,Shenzhen Institute of Huazhong University of Science and Technology , Shenzhen 518000 , China
| | - Qian Zhang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , China
| | - Guina Ma
- Radiology Department, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , China
| | - Lihua Zhu
- School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica , Huazhong University of Science and Technology , Wuhan 430074 , China.,Shenzhen Institute of Huazhong University of Science and Technology , Shenzhen 518000 , China
| | - Youqin Wang
- Department of Pediatric, Renmin Hospital , Hubei University of Medicine , Shiyan 442000 , China
| | - Zhilin Chen
- Department of Infectious Diseases, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , China
| | - Yuling Wang
- Department of Molecular Sciences , Macquarie University , Sydney , NSW 2109 , Australia
| | - Lei Zhao
- Department of Infectious Diseases, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , China
| |
Collapse
|
29
|
Aristolochic Acids: Newly Identified Exposure Pathways of this Class of Environmental and Food-Borne Contaminants and its Potential Link to Chronic Kidney Diseases. TOXICS 2019; 7:toxics7010014. [PMID: 30893813 PMCID: PMC6468885 DOI: 10.3390/toxics7010014] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/13/2019] [Accepted: 03/14/2019] [Indexed: 11/17/2022]
Abstract
Aristolochic acids (AAs) are nitrophenanthrene carboxylic acids naturally produced by Aristolochia plants. These plants were widely used to prepare herbal remedies until AAs were observed to be highly nephrotoxic and carcinogenic to humans. Although the use of AA-containing Aristolochia plants in herbal medicine is prohibited in countries worldwide, emerging evidence nevertheless has indicated that AAs are the causative agents of Balkan endemic nephropathy (BEN), an environmentally derived disease threatening numerous residents of rural farming villages along the Danube River in countries of the Balkan Peninsula. This perspective updates recent findings on the identification of AAs in food as a result of the root uptake of free AAs released from the decayed seeds of Aristolochia clematitis L., in combination with their presence and fate in the environment. The potential link between AAs and the high prevalence of chronic kidney diseases in China is also discussed.
Collapse
|
30
|
Li W, Yao YN, Wu L, Hu B. Detection and Seasonal Variations of Huanglongbing Disease in Navel Orange Trees Using Direct Ionization Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:2265-2271. [PMID: 30735376 DOI: 10.1021/acs.jafc.8b06427] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Citrus greening disease [Huanglongbing (HLB)] is the most destructive disease of citrus. In this work, we have established a metabolite-based mass spectrometry (MS) method for rapid detection of HLB in navel orange trees. Without sample pretreatment, characteristic mass spectra can be directly obtained from the raw plant samples using the direct MS method. The whole detection process can be accomplished within 1 min. By monitoring and comparisons of the healthy and infected plants throughout a whole year, characteristic MS peaks of metabolites are found to be specific responses from infected plants and, thus, could be used as biomarkers for detection of HLB. Therefore, HLB could be directly detected in the asymptomatic samples, such as stems, using this metabolite-based direct MS method. In addition, principal component analysis and partial least squares discriminant analysis modes of metabolites from healthy and infected trees were established for investigating differentiation and seasonal variations of HLB in leaves, veins, and stems, providing valuable information for understanding the HLB in different seasons.
Collapse
|
31
|
Liu Y, Chan CK, Jin L, Wong SK, Chan W. Quantitation of DNA Adducts in Target and Nontarget Organs of Aristolochic Acid I-Exposed Rats: Correlating DNA Adduct Levels with Organotropic Activities. Chem Res Toxicol 2019; 32:397-399. [DOI: 10.1021/acs.chemrestox.8b00359] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Chan CK, Liu Y, Pavlović NM, Chan W. Etiology of Balkan Endemic Nephropathy: An Update on Aristolochic Acids Exposure Mechanisms. Chem Res Toxicol 2018; 31:1109-1110. [DOI: 10.1021/acs.chemrestox.8b00291] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|