1
|
Luo X, Bai L, Huang J, Peng L, Hua J, Luo S. Genome-Wide Association Studies Reveal That the Abietane Diterpene Isopimaric Acid Promotes Rice Growth through Inhibition of Defense Pathways. Int J Mol Sci 2024; 25:9161. [PMID: 39273109 PMCID: PMC11395554 DOI: 10.3390/ijms25179161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/18/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024] Open
Abstract
Plants are an important source for the discovery of novel natural growth regulators. We used activity screening to demonstrate that treatment of Nipponbare seeds with 25 μg/mL isopimaric acid significantly increased the resulting shoot length, root length, and shoot weight of rice seedlings by 11.37 ± 5.05%, 12.96 ± 7.63%, and 27.98 ± 10.88% and that it has a higher activity than Gibberellin A3 (GA3) at the same concentration. A total of 213 inbred lines of different rice lineages were screened, and we found that isopimaric acid had different growth promotional activities on rice seedlings of different varieties. After induction with 25 μg/mL isopimaric acid, 15.02% of the rice varieties tested showed increased growth, while 15.96% of the varieties showed decreased growth; the growth of the remaining 69.02% did not show any significant change from the control. In the rice varieties showing an increase in growth, the shoot length and shoot weight significantly increased, accounting for 21.88% and 31.25%. The root length and weight significantly increased, accounting for 6.25% and 3.13%. Using genome-wide association studies (GWASs), linkage disequilibrium block, and gene haplotype significance analysis, we identified single nucleotide polymorphism (SNP) signals that were significantly associated with the length and weight of shoots on chromosomes 2 and 8, respectively. After that, we obtained 17 candidate genes related to the length of shoots and 4 candidate genes related to the weight of shoots. Finally, from the gene annotation data and gene tissue-specific expression; two genes related to this isopimaric acid regulation phenotype were identified as OsASC1 (LOC_Os02g37080) on chromosome 2 and OsBUD13 (LOC_Os08g08080) on chromosome 8. Subcellular localization analysis indicated that OsASC1 was expressed in the plasma membrane and the nuclear membrane, while OsBUD13 was expressed in the nucleus. Further RT-qPCR analysis showed that the relative expression levels of the resistance gene OsASC1 and the antibody protein gene OsBUD13 decreased significantly following treatment with 25 μg/mL isopimaric acid. These results suggest that isopimaric acid may inhibit defense pathways in order to promote the growth of rice seedlings.
Collapse
Affiliation(s)
- Xiaomeng Luo
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Liping Bai
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Jiaqi Huang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Luying Peng
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Juan Hua
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Shihong Luo
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
2
|
Zhang Y, Zhang K, Bao Z, Hao J, Ma X, Jia C, Liu M, Wei D, Yang S, Qin J. A Novel Preservative Film with a Pleated Surface Structure and Dual Bioactivity Properties for Application in Strawberry Preservation due to Its Efficient Apoptosis of Pathogenic Fungal Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18027-18044. [PMID: 39078084 DOI: 10.1021/acs.jafc.4c04579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Botrytis cinerea (B. cinerea) and Colletotrichum gloeosporioides (C. gloeosporioides) were isolated from the decaying strawberry tissue. The antifungal properties of Monarda didyma essential oil (MEO) and its nanoemulsion were confirmed, demonstrating complete inhibition of the pathogens at concentrations of 0.45 μL/mL (0.37 mg/mL) and 10 μL/mL, respectively. Thymol, a primary component of MEO, was determined as an antimicrobial agent with IC50 values of 34.51 (B. cinerea) and 53.40 (C. gloeosporioides) μg/mL. Hippophae rhamnoides oil (HEO) was confirmed as a potent antioxidant, leading to the development of a thymol-HEO-chitosan film designed to act as an antistaling agent. The disease index and weight loss rate can be reduced by 90 and 60%, respectively, with nutrients also being well-preserved, offering an innovative approach to preservative development. Studies on the antifungal mechanism revealed that thymol could bind to FKS1 to disrupt the cell wall, causing the collapse of mitochondrial membrane potential and a burst of reactive oxygen species.
Collapse
Affiliation(s)
- Yanxin Zhang
- College of Plant Sciences, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases/Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China
| | - Kehan Zhang
- College of Plant Sciences, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases/Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China
| | - Zhenyan Bao
- College of Plant Sciences, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases/Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China
| | - Jianan Hao
- College of Plant Sciences, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases/Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China
| | - Xiaoyun Ma
- College of Plant Sciences, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases/Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China
| | - Chengguo Jia
- College of Plant Sciences, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases/Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China
| | - Mingyuan Liu
- College of Plant Sciences, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases/Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China
| | - Dongsheng Wei
- Department of Biology, Institute of Wood Science, University of Hamburg, Hamburg 21031, Germany
| | - Shengxiang Yang
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, Zhejiang A&F University, Lin'an, Zhejiang 311300, China
| | - Jianchun Qin
- College of Plant Sciences, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases/Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China
- Shenzhen Research Institute of Jilin University, Shenzhen 518066, China
| |
Collapse
|
3
|
Liu S, Xie J, Luan W, Liu C, Chen X, Chen D. Papiliotrema flavescens, a plant growth-promoting fungus, alters root system architecture and induces systemic resistance through its volatile organic compounds in Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108474. [PMID: 38430787 DOI: 10.1016/j.plaphy.2024.108474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/01/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
The current trend in agricultural development is the establishment of sustainable agricultural systems. This involves utilizing and implementing eco-friendly biofertilizers and biocontrol agents as alternatives to conventional fertilizers and pesticides. A plant growth-promoting fungal strain, that could alter root system architecture and promote the growth of Arabidopsis seedlings in a non-contact manner by releasing volatile organic compounds (VOCs) was isolated in this study. 26S rDNA sequencing revealed that the strain was a yeast-like fungus, Papiliotrema flavescens. Analysis of plant growth-promoting traits revealed that the fungus could produce indole-3-acetic acid and ammonia and fix nitrogen. Transcriptome analysis in combination with inhibitor experiments revealed that P. flavescens VOCs triggered metabolic alterations, promoted auxin accumulation and distribution in the roots, and coordinated ethylene signaling, thus inhibiting primary root elongation and inducing lateral root formation in Arabidopsis. Additionally, transcriptome analysis and fungal infection experiments confirmed that pretreatment with P. flavescens stimulated the defense response of Arabidopsis to boost its resistance to the pathogenic fungus Botrytis cinerea. Solid-phase microextraction, which was followed by gas chromatography-mass spectrometry analysis, identified three VOCs (acetoin, naphthalene and indole) with significant plant growth-promoting attributes. Their roles were confirmed using further pharmacological experiments and upregulated expression of auxin- and ethylene-related genes. Our study serves as an essential reference for utilizing P. flavescens as a potential biological fertilizer and biocontrol agent.
Collapse
Affiliation(s)
- Siyue Liu
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jinge Xie
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Wenqi Luan
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Chen Liu
- Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Xiwen Chen
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| | - Defu Chen
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China; Southwest United Graduate School, Kunming, 650092, China.
| |
Collapse
|
4
|
Tan C, Li S, Song J, Zheng X, Zheng H, Xu W, Wan C, Zhang T, Bian Q, Men S. 3,4-Dichlorophenylacetic acid acts as an auxin analog and induces beneficial effects in various crops. Commun Biol 2024; 7:161. [PMID: 38332111 PMCID: PMC10853179 DOI: 10.1038/s42003-024-05848-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 01/23/2024] [Indexed: 02/10/2024] Open
Abstract
Auxins and their analogs are widely used to promote root growth, flower and fruit development, and yield in crops. The action characteristics and application scope of various auxins are different. To overcome the limitations of existing auxins, expand the scope of applications, and reduce side effects, it is necessary to screen new auxin analogs. Here, we identified 3,4-dichlorophenylacetic acid (Dcaa) as having auxin-like activity and acting through the auxin signaling pathway in plants. At the physiological level, Dcaa promotes the elongation of oat coleoptile segments, the generation of adventitious roots, and the growth of crop roots. At the molecular level, Dcaa induces the expression of auxin-responsive genes and acts through auxin receptors. Molecular docking results showed that Dcaa can bind to auxin receptors, among which TIR1 has the highest binding activity. Application of Dcaa at the root tip of the DR5:GUS auxin-responsive reporter induces GUS expression in the root hair zone, which requires the PIN2 auxin efflux carrier. Dcaa also inhibits the endocytosis of PIN proteins like other auxins. These results provide a basis for the application of Dcaa in agricultural practices.
Collapse
Affiliation(s)
- Chao Tan
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, 300071, Tianjin, China
| | - Suxin Li
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, 300071, Tianjin, China
| | - Jia Song
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, 300071, Tianjin, China
| | - Xianfu Zheng
- Zhengzhou ZhengShi Chemical Co., Ltd, 450000, Zhengzhou, China
| | - Hao Zheng
- Zhengzhou ZhengShi Chemical Co., Ltd, 450000, Zhengzhou, China
| | - Weichang Xu
- Zhengzhou ZhengShi Chemical Co., Ltd, 450000, Zhengzhou, China
| | - Cui Wan
- Zhengzhou ZhengShi Chemical Co., Ltd, 450000, Zhengzhou, China
| | - Tan Zhang
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, 300071, Tianjin, China
| | - Qiang Bian
- National Pesticide Engineering Research Center (Tianjin), College of Chemistry, Nankai University, 300071, Tianjin, China.
| | - Shuzhen Men
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, 300071, Tianjin, China.
| |
Collapse
|
5
|
Huang S, Ying Lim S, Lau H, Ni W, Fong Yau Li S. Effect of glycinebetaine on metabolite profiles of cold-stored strawberry revealed by 1H NMR-based metabolomics. Food Chem 2022; 393:133452. [PMID: 35751219 DOI: 10.1016/j.foodchem.2022.133452] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 05/13/2022] [Accepted: 06/08/2022] [Indexed: 11/16/2022]
Abstract
Glycinebetaine (GB) has long been used as a preservative for refrigerated fruits, but the effect of GB on the global metabolites of cold-stored strawberries is still unclear. In this study, the effects of exogenous application of GB on quality-related metabolites of cold-stored strawberries were investigated by nuclear magnetic resonance (NMR)-based metabolomic analysis. The results showed that the application of GB (especially at the concentration of 10 mM) on cold-stored strawberries effectively stabilized the sugars (d-xylose and d-glucose) and amino acids (tyrosine, leucine, and tryptophan) content, and lowered the acid (acetic acid) content as well. Additionally, the GB content in strawberries also increased. This implies that the appropriate concentration of GB is a natural and safe treatment, which could maintain the quality of cold-stored strawberries by regulating levels of quality-related metabolites, and the ingestion of GB-preserved strawberries may serve as a source of methyl-donor supplementation in our daily diet.
Collapse
Affiliation(s)
- Shan Huang
- College of Environmental and Resource Sciences, Zhejiang University, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou, Zhejiang 310058, China; Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Si Ying Lim
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Hazel Lau
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Wuzhong Ni
- College of Environmental and Resource Sciences, Zhejiang University, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou, Zhejiang 310058, China.
| | - Sam Fong Yau Li
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore; NUS Environmental Research Institute (NERI), #02-01, T-Lab Building (TL), 5A Engineering Drive 1, Singapore 117411, Singapore.
| |
Collapse
|
6
|
Chen C, Wu XM, Pan L, Yang YT, Dai HB, Hua B, Miao MM, Zhang ZP. Effects of Exogenous α-Naphthaleneacetic Acid and 24-Epibrassinolide on Fruit Size and Assimilate Metabolism-Related Sugars and Enzyme Activities in Giant Pumpkin. Int J Mol Sci 2022; 23:13157. [PMID: 36361943 PMCID: PMC9656333 DOI: 10.3390/ijms232113157] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 01/02/2024] Open
Abstract
Size is the most important quality attribute of giant pumpkin fruit. Different concentrations and application frequencies of α-naphthaleneacetic acid (NAA) and 24-epibrassinolide (EBR) were sprayed on the leaves and fruits of giant pumpkin at different growth stages to determine their effects and the mechanism responsible for fruit size increase. NAA+EBR application improved source strength, and further analysis indicated that NAA+EBR markedly boosted net photosynthetic rate (Pn), stomatal conductance (Gs), transpiration rate (Tr) and the expression level and activity of galactitol synthetase (GolS), raffinose synthetase (RS), and stachyose synthetase (STS), resulting in an increase in the synthesis of photoassimilate, especially stachyose. Concomitantly, NAA+EBR spray increased stachyose and sucrose contents throughout pumpkin fruit growth and the concentrations of glucose and fructose at 0 and 20 days post-anthesis (DPA) in peduncle phloem sap, implying that such treatment improved the efficiency of assimilate transport from the peduncle to the fruit. Furthermore, it improved the expression and activity of alkaline α-galactosidase (AGA), facilitating assimilate unloading, providing carbon skeletons and energy for fruit growth, and increasing fruit weight by more than 44.1%. Therefore, exogenous NAA and EBR increased source capacity, transportation efficiency, and sink strength, overall promoting the synthesis and distribution of photoassimilate, ultimately increasing fruit size.
Collapse
Affiliation(s)
- Chen Chen
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Xuan-Min Wu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Liu Pan
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Ya-Ting Yang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Hai-Bo Dai
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Bing Hua
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Min-Min Miao
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
| | - Zhi-Ping Zhang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
7
|
Li J, Zhu J, Li H, Ma J, Chen P, Zhou Y. The Effects of NAA on the Tuberous Root Yield and Quality of Rehmannia glutinosa and Its Regulatory Mechanism by Transcriptome and Metabolome Profiling. Curr Issues Mol Biol 2022; 44:3291-3311. [PMID: 35892713 PMCID: PMC9394425 DOI: 10.3390/cimb44080227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 11/16/2022] Open
Abstract
Naphthylacetic acid (NAA) was used to increase the tuberous root yield of Rehmannia glutinosa, but the differences between its NAA-treated and control tuberous roots (NT and CG) and the regulatory mechanism of NAA effect remain unclear. In order to investigate them, NTs and CGs were used as materials, and both yield-related indices were measured; the metabolomics and transcriptomics were used to capture differentially accumulated metabolites (DAM) and to validate them via mining differentially expressed genes (DEGs), respectively. The effects of NAA treatment: increased NT mass per plant by 21.14%, through increasing the number of roots and increasing the mean root diameter; increased catalpol content by 1.2234% (p < 0.05); up-regulated 11DAMs and 596DEGs; and down-regulated 18 DAMs and 517DEGs. In particular, we discovered that NAA regulated its DAMs and biomass via 10 common metabolic pathways, and that the number of NAA-down-regulated DAMs was more than that of NAA-up-regulated DAMs in its tuberous root. Furthermore, HPLC validated the changes of several DAMs and 15 DEGs (4CL, ARF, CCoAOMT, ARGOS, etc.) associated with the yield increase and DAMs were verified by RT-qPCR. This study provided some valuable resources, such as tuberous root indices, key genes, and DAMs of Rehmannia glutinosa in response to NAA for distinguishing the CGs from NTs, and novel insights into the regulatory mechanism of NAA effects on both at the transcriptomic and metabolomic levels, so it will lay a theoretical foundation for NAA-regulated plant yield and quality, and provide references for prohibiting the uses of NAA as a swelling agent in medicinal tuber plants in China.
Collapse
|
8
|
Li L, Chen J, Li Y, Song N, Zhu L, Li Z. Synthesis of fluorescent pink emitting copper nanoparticles and sensitive detection of α-naphthaleneacetic acid. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 224:117433. [PMID: 31390579 DOI: 10.1016/j.saa.2019.117433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 07/15/2019] [Accepted: 07/27/2019] [Indexed: 06/10/2023]
Abstract
Detecting NAA in food has drawn intense attention as it has imposed significant threat to people's health and the growth of food industry. Over the past few years, great importance has been attached to the application of copper nanomaterials as fluorescent probe to food and environmental detection. Here, the simple, rapid, cost effective and water soluble fluorescent copper nanoparticles were synthesized with chemical reduction sonochemical assisted method for highly selective and sensitive detection of α-naphthaleneacetic acid (NAA) by using 2-mercaptobenzothiazole (MBT) as a protecting agent and polyvinylpyrrolidone (PVP) as a stabilizing agent (MBT-PVP CuNPs). The resultant CuNPs has a spherical shape with an average diameter of 10-15 nm and strong fluorescent pink emission characteristic peak at 580 nm upon 334 nm excitation. Interestingly, upon the addition of NAA, the fluorescence of MBT-PVP CuNPs can be effectively quenched for the reason that NAA could interact with MBT via hydrogen bonding and conform copper-NAA clathrate with Cu+ via coordination bond, which shows a good linearity in the range of NAA from 0.5 to 50 μM and with a detection limit of 9.6 nM. Moreover, the prepared probe has good selectivity for NAA detection over other co-existing molecules. It is worth mentioning that this method has been successfully applied to authentic comestible sample analysis and obtained satisfying and promising results, which indicates that this strategy is likely to have a promising application potential for NAA detection in the field of food safety.
Collapse
Affiliation(s)
- Lin Li
- Department of Chemistry, Taiyuan Normal University, Jinzhong 030619, PR China; Humic Acid Engineering and Technology Research Center of Shanxi Province, Jinzhong 030619, PR China.
| | - Juan Chen
- Department of Chemistry, Taiyuan Normal University, Jinzhong 030619, PR China
| | - Yang Li
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 201424, PR China
| | - Nan Song
- Department of Chemistry, Taiyuan Normal University, Jinzhong 030619, PR China
| | - Lulu Zhu
- Department of Chemistry, Taiyuan Normal University, Jinzhong 030619, PR China
| | - Zhiying Li
- Department of Chemistry, Xinzhou Normal University, Xinzhou 034000, PR China.
| |
Collapse
|