1
|
Tagami T. Structural insights into starch-metabolizing enzymes and their applications. Biosci Biotechnol Biochem 2024; 88:864-871. [PMID: 38806254 DOI: 10.1093/bbb/zbae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/13/2024] [Indexed: 05/30/2024]
Abstract
Starch is a polysaccharide produced exclusively through photosynthesis in plants and algae; however, is utilized as an energy source by most organisms, from microorganisms to higher organisms. In mammals and the germinating seeds of plants, starch is metabolized by simple hydrolysis pathways. Moreover, starch metabolic pathways via unique oligosaccharides have been discovered in some bacteria. Each organism has evolved enzymes responsible for starch metabolism that are diverse in their enzymatic properties. This review, focusing on eukaryotic α-glucosidases and bacterial α-glucoside-hydrolyzing enzymes, summarizes the structural aspects of starch-metabolizing enzymes belonging to glycoside hydrolase families 15, 31, and 77 and their application for oligosaccharide production.
Collapse
Affiliation(s)
- Takayoshi Tagami
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| |
Collapse
|
2
|
Fang Y, Dong M, van Leeuwen SS, Dijkhuizen L, Meng X, Liu W. Biochemical characterization of glycoside hydrolase family 31 α-glucosidases from Myceliophthora thermophila for α-glucooligosaccharide synthesis. Int J Biol Macromol 2023; 252:126452. [PMID: 37619677 DOI: 10.1016/j.ijbiomac.2023.126452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/10/2023] [Accepted: 08/20/2023] [Indexed: 08/26/2023]
Abstract
The transglucosidase activity of GH31 α-glucosidases is employed to catalyze the synthesis of prebiotic isomaltooligosaccharides (IMOs) using the malt syrup prepared from starch as substrate. Continuous mining for new GH31 α-glucosidases with high stability and efficient transglucosidase activity is critical for enhancing the supply and quality of IMO preparations. In the present study, two α-glucosidases (MT31α1 and MT31α2) from Myceliophthora thermophila were explored for biochemical characterization. The optimum pH and temperature of MT31α1 and MT31α2 were determined to be pH 4.5 and 65 °C, and pH 6.5 and 60 °C, respectively. Both MT31α1 and MT31α2 were shown to be stable in the pH range of 3.0 to 10.0. MT31α1 displayed a high thermostability, retaining 60 % of activity after incubation for 24 h at 55 °C. MT31α1 is highly active on substrates with all types of α-glucosidic linkages. In contrast, MT31α2 showed preference for substrates with α-(1→3) and α-(1→4) linkages. Importantly, MT31α1 was able to synthesize IMOs and the conversion rate of maltose into the main functional IMOs components reached over 40 %. Moreover, MT31α2 synthesizes glucooligosaccharides with (consecutive) α-(1→3) linkages. Taken together, MT31α1 and MT31α2, showing distinct substrate and product specificity, hold clear potential for the synthesis of prebiotic glucooligosaccharides.
Collapse
Affiliation(s)
- Yu Fang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No.72 Binhai Road, Qingdao 266237, PR China
| | - Meihong Dong
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No.72 Binhai Road, Qingdao 266237, PR China
| | - Sander S van Leeuwen
- Laboratory Medicine, University Medical Center Groningen (UMCG), Hanzeplein 1, 9713 GZ Groningen, the Netherlands
| | - Lubbert Dijkhuizen
- Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands; CarbExplore Research BV, Zernikepark 12, 9747 AN Groningen, the Netherlands
| | - Xiangfeng Meng
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No.72 Binhai Road, Qingdao 266237, PR China.
| | - Weifeng Liu
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No.72 Binhai Road, Qingdao 266237, PR China
| |
Collapse
|
3
|
Zhang S, Ni D, Zhu Y, Xu W, Zhang W, Mu W. A comprehensive review on the properties, production, and applications of functional glucobioses. Crit Rev Food Sci Nutr 2023; 64:13149-13162. [PMID: 37819266 DOI: 10.1080/10408398.2023.2261053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Glucobiose is a range of disaccharides consisting of two glucose molecules, generally including trehalose, kojibiose, sophorose, nigerose, laminaribiose, maltose, cellobiose, isomaltose, and gentiobiose. The difference glycosidic bonds of two glucose molecules result in the diverse molecular structures, physiochemical properties and physiological functions of these glucobioses. Some glucobioses are abundant in nature but have unconspicuous roles on health like maltose, whereas some rare glucobioses display remarkable biological effects. It is unpractical process to extract these rare glucobioses from natural resources, while biological synthesis is a feasible approach. Recently, the production and application of glucobiose have attracted considerable attention. This review provides a comprehensive overview of glucobioses, including their natural sources and physicochemical properties like structure, sweetness, digestive performance, toxicology, and cariogenicity. Specific enzymes used for the production of various glucobioses and fermentation production processes are summarized. Additionally, their versatile functions and broad applications are also introduced.
Collapse
Affiliation(s)
- Shuqi Zhang
- State Key Laboratory of Food Science and Resoruces, Jiangnan University, Wuxi, Jiangsu, China
| | - Dawei Ni
- State Key Laboratory of Food Science and Resoruces, Jiangnan University, Wuxi, Jiangsu, China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Resoruces, Jiangnan University, Wuxi, Jiangsu, China
| | - Wei Xu
- State Key Laboratory of Food Science and Resoruces, Jiangnan University, Wuxi, Jiangsu, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Resoruces, Jiangnan University, Wuxi, Jiangsu, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resoruces, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
4
|
Guo W, Liu D, Li J, Sun W, Sun T, Wang X, Wang K, Liu Q, Tian C. Manipulation of an α-glucosidase in the industrial glucoamylase-producing Aspergillus niger strain O1 to decrease non-fermentable sugars production and increase glucoamylase activity. Front Microbiol 2022; 13:1029361. [PMID: 36338048 PMCID: PMC9633098 DOI: 10.3389/fmicb.2022.1029361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 09/27/2022] [Indexed: 09/25/2023] Open
Abstract
Dextrose equivalent of glucose from starch hydrolysis is a critical index for starch-hydrolysis industry. Improving glucose yield and decreasing the non]-fermentable sugars which caused by transglycosylation activity of the enzymes during the starch saccharification is an important direction. In this study, we identified two key α-glucosidases responsible for producing non-fermentable sugars in an industrial glucoamylase-producing strain Aspergillus niger O1. The results showed the transglycosylation product panose was decreased by more than 88.0% in agdA /agdB double knock-out strains than strain O1. Additionally, the B-P1 domain of agdB was found accountable as starch hydrolysis activity only, and B-P1 overexpression in ΔA ΔB -21 significantly increased glucoamylase activity whereas keeping the glucoamylase cocktail low transglycosylation activity. The total amounts of the transglycosylation products isomaltose and panose were significantly decreased in final strain B-P1-3 by 40.7% and 44.5%, respectively. The application of engineered strains will decrease the cost and add the value of product for starch biorefinery.
Collapse
Affiliation(s)
- Wenzhu Guo
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Dandan Liu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jingen Li
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Wenliang Sun
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Tao Sun
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | | | - Kefen Wang
- Longda Biotechnology Inc., Shandong, China
| | - Qian Liu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Chaoguang Tian
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| |
Collapse
|
5
|
Song W, Li Y, Tong Y, Li Y, Tao J, Rao S, Li J, Zhou J, Liu S. Improving the Catalytic Efficiency of Aspergillus fumigatus Glucoamylase toward Raw Starch by Engineering Its N-Glycosylation Sites and Saturation Mutation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12672-12680. [PMID: 36154122 DOI: 10.1021/acs.jafc.2c04733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Raw starch glucoamylase (RSGA) can degrade the raw starch below the starch gelatinization temperature. In this study, to improve the catalytic activity of raw corn starch, N-glycosylation was introduced into the RSGA from Aspergillus fumigatus through site-directed mutation and the recombinant expression in Komagataella phaffii. Among them, the mutants G101S (N99-L100-S101) and Q113T (N111-S112-T113) increased the specific activity of raw corn starch by 1.19- and 1.21-fold, respectively. The optimal temperature of Q113T decreased from 70 to 60 °C. Notably, the combined mutant G101S/Q113T increased the specific activity toward raw starch by 1.22-fold and reduced the optimal temperature from 70 to 60 °C. Moreover, the mutant Q113M with a 1.5-fold increase in the catalytic activity was obtained via saturation mutation at site 113. Thus, the N-glycosylation site engineering is an efficient method to improve the activity of RSGA toward raw starch.
Collapse
Affiliation(s)
- Weiyan Song
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Yangyang Li
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Yi Tong
- National Engineering Research Center for Corn Deep Processing, Jilin COFCO Biochemical Co. Ltd, Changchun 130033, China
| | - Yi Li
- National Engineering Research Center for Corn Deep Processing, Jilin COFCO Biochemical Co. Ltd, Changchun 130033, China
| | - Jin Tao
- National Engineering Research Center for Corn Deep Processing, Jilin COFCO Biochemical Co. Ltd, Changchun 130033, China
| | - Shengqi Rao
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 214122, China
| | - Jianghua Li
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jingwen Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Song Liu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
6
|
Structural basis for proteolytic processing of Aspergillus sojae α-glucosidase L with strong transglucosylation activity. J Struct Biol 2022; 214:107874. [DOI: 10.1016/j.jsb.2022.107874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/01/2022] [Accepted: 06/03/2022] [Indexed: 11/18/2022]
|
7
|
Ikegaya M, Moriya T, Adachi N, Kawasaki M, Park EY, Miyazaki T. Structural basis of the strict specificity of a bacterial GH31 α-1,3-glucosidase for nigerooligosaccharides. J Biol Chem 2022; 298:101827. [PMID: 35293315 PMCID: PMC9061262 DOI: 10.1016/j.jbc.2022.101827] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/02/2022] [Accepted: 03/02/2022] [Indexed: 11/26/2022] Open
Abstract
Carbohydrate-active enzymes are involved in the degradation, biosynthesis, and modification of carbohydrates and vary with the diversity of carbohydrates. The glycoside hydrolase (GH) family 31 is one of the most diverse families of carbohydrate-active enzymes, containing various enzymes that act on α-glycosides. However, the function of some GH31 groups remains unknown, as their enzymatic activity is difficult to estimate due to the low amino acid sequence similarity between characterized and uncharacterized members. Here, we performed a phylogenetic analysis and discovered a protein cluster (GH31_u1) sharing low sequence similarity with the reported GH31 enzymes. Within this cluster, we showed that a GH31_u1 protein from Lactococcus lactis (LlGH31_u1) and its fungal homolog demonstrated hydrolytic activities against nigerose [α-D-Glcp-(1→3)-D-Glc]. The kcat/Km values of LlGH31_u1 against kojibiose and maltose were 13% and 2.1% of that against nigerose, indicating that LlGH31_u1 has a higher specificity to the α-1,3 linkage of nigerose than other characterized GH31 enzymes, including eukaryotic enzymes. Furthermore, the three-dimensional structures of LlGH31_u1 determined using X-ray crystallography and cryogenic electron microscopy revealed that LlGH31_u1 forms a hexamer and has a C-terminal domain comprising four α-helices, suggesting that it contributes to hexamerization. Finally, crystal structures in complex with nigerooligosaccharides and kojibiose along with mutational analysis revealed the active site residues involved in substrate recognition in this enzyme. This study reports the first structure of a bacterial GH31 α-1,3-glucosidase and provides new insight into the substrate specificity of GH31 enzymes and the physiological functions of bacterial and fungal GH31_u1 members.
Collapse
Affiliation(s)
- Marina Ikegaya
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Toshio Moriya
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki, Japan
| | - Naruhiko Adachi
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki, Japan
| | - Masato Kawasaki
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki, Japan; Department of Materials Structure Science, School of High Energy Accelerator Science, The Graduate University of Advanced Studies (Soken-dai), Tsukuba, Ibaraki, Japan
| | - Enoch Y Park
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, Shizuoka, Japan; Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Takatsugu Miyazaki
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, Shizuoka, Japan; Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan.
| |
Collapse
|
8
|
High yield synthesis of nigerooligosaccharides by transglycosylation catalyzed by α-glucosidase TaAglA from Thermoplasma acidophilum. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
Tagami T, Chen M, Furunaga Y, Kikuchi A, Sadahiro J, Lang W, Okuyama M, Tanaka Y, Iwasaki T, Yao M, Kimura A. Structural insights reveal the second base catalyst of isomaltose glucohydrolase. FEBS J 2021; 289:1118-1134. [PMID: 34665923 DOI: 10.1111/febs.16237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/03/2021] [Accepted: 10/18/2021] [Indexed: 11/28/2022]
Abstract
Glycoside hydrolase family 15 (GH15) inverting enzymes contain two glutamate residues functioning as a general acid catalyst and a general base catalyst, for isomaltose glucohydrolase (IGHase), Glu178 and Glu335, respectively. Generally, a two-catalytic residue-mediated reaction exhibits a typical bell-shaped pH-activity curve. However, IGHase is found to display atypical non-bell-shaped pH-kcat and pH-kcat /Km profiles, theoretically better-fitted to a three-catalytic residue-associated pH-activity curve. We determined the crystal structure of IGHase by the single-wavelength anomalous dispersion method using sulfur atoms and the cocrystal structure of a catalytic base mutant E335A with isomaltose. Although the activity of E335A was undetectable, the electron density observed in its active site pocket did not correspond to an isomaltose but a glycerol and a β-glucose, cryoprotectant, and hydrolysis product. Our structural and biochemical analyses of several mutant enzymes suggest that Tyr48 acts as a second catalytic base catalyst. Y48F mutant displayed almost equivalent specific activity to a catalytic acid mutant E178A. Tyr48, highly conserved in all GH15 members, is fixed by another Tyr residue in many GH15 enzymes; the latter Tyr is replaced by Phe290 in IGHase. The pH profile of F290Y mutant changed to a bell-shaped curve, suggesting that Phe290 is a key residue distinguishing Tyr48 of IGHase from other GH15 members. Furthermore, F290Y is found to accelerate the condensation of isomaltose from glucose by modifying a hydrogen-bonding network between Tyr290-Tyr48-Glu335. The present study indicates that the atypical Phe290 makes Tyr48 of IGHase unique among GH15 enzymes.
Collapse
Affiliation(s)
- Takayoshi Tagami
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Minghao Chen
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Yuta Furunaga
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Asako Kikuchi
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Juri Sadahiro
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Weeranuch Lang
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Masayuki Okuyama
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Yoshikazu Tanaka
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan.,Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Tomohito Iwasaki
- College of Agriculture, Food and Environment Sciences, Rakuno Gakuen University, Ebetsu, Japan
| | - Min Yao
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan.,Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Atsuo Kimura
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| |
Collapse
|
10
|
Qi X, Shao J, Cheng Y, He X, Li Y, Jia H, Yan M. Biocatalytic synthesis of 2-O-α-D-glucopyranosyl-L-ascorbic acid using an extracellular expressed α-glucosidase from Oryza sativa. Biotechnol J 2021; 16:e2100199. [PMID: 34392609 DOI: 10.1002/biot.202100199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/31/2021] [Accepted: 08/12/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND 2-O-α-D-Glucopyranosyl-L-ascorbic acid (AA-2G) is an important derivative of L-ascorbic acid (L-AA), which has the distinct advantages of non-reducibility, antioxidation, and reproducible decomposition into L-AA and glucose. Enzymatic synthesis is a preferred method for AA-2G production over alternative chemical synthesis owing to the regioselective glycosylation reaction. α-Glucosidase, an enzyme classed into O-glycoside hydrolases, might be used in glycosylation reactions to synthesize AA-2G. MAIN METHODS AND MAJOR RESULTS Here, an α-glucosidase from Oryza sativa was heterologously produced in Pichia pastoris GS115 and used for biosynthesis of AA-2G with few intermediates and byproducts. The extracellular recombinant α-glucosidase (rAGL) reached 9.11 U mL-1 after fed-batch cultivation for 102 h in a 5 L fermenter. The specific activity of purified rAGL is 49.83 U mg-1 at 37°C and pH 4.0. The optimal temperature of rAGL was 65°C, and it was stable below 55°C. rAGL was active over the range of pH 3.0-7.0, with the maximal activity at pH 4.0. Under the condition of 37°C, pH 4.0, equimolar maltose and ascorbic acid sodium salt, 8.7 ± 0.4 g L-1 of AA-2G was synthesized by rAGL. CONCLUSIONS AND IMPLICATIONS The production of rAGL in P. pastoris was proved to be beneficial in providing enough enzyme and promoting biocatalytic synthesis of AA-2G. These studies lay the basis for the industrial application of α-glucosidase. GRAPHICAL ABSTRACT LAY SUMMARY 2-O-α-D-Glucopyranosyl-L-ascorbic acid (AA-2G) is an important industrial derivative of L-ascorbic acid (L-AA), which has the distinct advantages of non-reducibility, antioxidation, and reproducible decomposition into L-AA and glucose. In this study, the authors characterized an α-glucosidase from Oryza sativa, which was recombinantly produced in Pichia pastoris GS115, and its potential for AA-2G production via transglycosylation of L-AA was investigated. These studies lay the basis for the industrial application of recombinant α-glucosidase.
Collapse
Affiliation(s)
- Xuelian Qi
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| | - Junlan Shao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| | - Yinchu Cheng
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| | - Xiaoying He
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| | - Yan Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| | - Honghua Jia
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| | - Ming Yan
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| |
Collapse
|
11
|
Kawano A, Matsumoto Y, Terada A, Tonozuka T, Tada S, Kusumoto KI, Yasutake N. Modification of the transglucosylation properties of α-glucosidases from Aspergillus oryzae and Aspergillus sojae via a single critical amino acid replacement. Biosci Biotechnol Biochem 2021; 85:1706-1710. [PMID: 34014266 DOI: 10.1093/bbb/zbab091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/11/2021] [Indexed: 11/14/2022]
Abstract
We constructed enzyme variants of the α-glucosidases from Aspergillus oryzae (AoryAgdS) and Aspergillus sojae (AsojAgdL) by mutating the amino acid residue at position 450. AoryAgdS_H450R acquired the ability to produce considerable amounts of α-1,6-transglucosylation products, whereas AsojAgdL_R450H changed to produce more α-1,3- and α-1,4-transglucosylation products than α-1,6-products. The 450th amino acid residue is critical for the transglucosylation of these α-glucosidases.
Collapse
Affiliation(s)
- Atsushi Kawano
- Research Center for Fundamental Technologies, Showa Sangyo Co., Ltd., Funabashi City, Chiba, Japan
| | - Yuji Matsumoto
- Research Center for Fundamental Technologies, Showa Sangyo Co., Ltd., Funabashi City, Chiba, Japan
| | - Atsushi Terada
- Research Center for Fundamental Technologies, Showa Sangyo Co., Ltd., Funabashi City, Chiba, Japan
| | - Takashi Tonozuka
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, Fuchu City, Tokyo, Japan
| | - Sawaki Tada
- Division of Food Biotechnology, Food Research Institute, National Agriculture and Food Research Organization, Tsukuba City, Ibaraki, Japan
| | - Ken-Ichi Kusumoto
- Division of Food Biotechnology, Food Research Institute, National Agriculture and Food Research Organization, Tsukuba City, Ibaraki, Japan
| | - Nozomu Yasutake
- Research Center for Fundamental Technologies, Showa Sangyo Co., Ltd., Funabashi City, Chiba, Japan
| |
Collapse
|
12
|
Garcia CA, Gardner JG. Bacterial α-diglucoside metabolism: perspectives and potential for biotechnology and biomedicine. Appl Microbiol Biotechnol 2021; 105:4033-4052. [PMID: 33961116 PMCID: PMC8237927 DOI: 10.1007/s00253-021-11322-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/20/2021] [Accepted: 04/26/2021] [Indexed: 12/16/2022]
Abstract
In a competitive microbial environment, nutrient acquisition is a major contributor to the survival of any individual bacterial species, and the ability to access uncommon energy sources can provide a fitness advantage. One set of soluble carbohydrates that have attracted increased attention for use in biotechnology and biomedicine is the α-diglucosides. Maltose is the most well-studied member of this class; however, the remaining four less common α-diglucosides (trehalose, kojibiose, nigerose, and isomaltose) are increasingly used in processed food and fermented beverages. The consumption of trehalose has recently been shown to be a contributing factor in gut microbiome disease as certain pathogens are using α-diglucosides to outcompete native gut flora. Kojibiose and nigerose have also been examined as potential prebiotics and alternative sweeteners for a variety of foods. Compared to the study of maltose metabolism, our understanding of the synthesis and degradation of uncommon α-diglucosides is lacking, and several fundamental questions remain unanswered, particularly with regard to the regulation of bacterial metabolism for α-diglucosides. Therefore, this minireview attempts to provide a focused analysis of uncommon α-diglucoside metabolism in bacteria and suggests some future directions for this research area that could potentially accelerate biotechnology and biomedicine developments. KEY POINTS: • α-diglucosides are increasingly important but understudied bacterial metabolites. • Kinetically superior α-diglucoside enzymes require few amino acid substitutions. • In vivo studies are required to realize the biotechnology potential of α-diglucosides.
Collapse
Affiliation(s)
- Cecelia A Garcia
- Department of Biological Sciences, University of Maryland-Baltimore County, Baltimore, MD, USA
| | - Jeffrey G Gardner
- Department of Biological Sciences, University of Maryland-Baltimore County, Baltimore, MD, USA.
| |
Collapse
|
13
|
Miyazaki T, Park EY. Crystal structure of the Enterococcus faecalis α-N-acetylgalactosaminidase, a member of the glycoside hydrolase family 31. FEBS Lett 2020; 594:2282-2293. [PMID: 32367553 DOI: 10.1002/1873-3468.13804] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/26/2020] [Accepted: 04/28/2020] [Indexed: 12/15/2022]
Abstract
Glycoside hydrolases catalyze the hydrolysis of glycosidic linkages in carbohydrates. The glycoside hydrolase family 31 (GH31) contains α-glucosidase, α-xylosidase, α-galactosidase, and α-transglycosylase. Recent work has expanded the diversity of substrate specificity of GH31 enzymes, and α-N-acetylgalactosaminidases (αGalNAcases) belonging to GH31 have been identified in human gut bacteria. Here, we determined the first crystal structure of a truncated form of GH31 αGalNAcase from the human gut bacterium Enterococcus faecalis. The enzyme has a similar fold to other reported GH31 enzymes and an additional fibronectin type 3-like domain. Additionally, the structure in complex with N-acetylgalactosamine reveals that conformations of the active site residues, including its catalytic nucleophile, change to recognize the ligand. Our structural analysis provides insight into the substrate recognition and catalytic mechanism of GH31 αGalNAcases.
Collapse
Affiliation(s)
- Takatsugu Miyazaki
- Green Chemistry Research Division, Research Institute of Green Science and Technology, Shizuoka University, Japan
| | - Enoch Y Park
- Green Chemistry Research Division, Research Institute of Green Science and Technology, Shizuoka University, Japan
| |
Collapse
|
14
|
Kawano A, Fukui K, Matsumoto Y, Terada A, Tominaga A, Nikaido N, Tonozuka T, Totani K, Yasutake N. Analysis of Transglucosylation Products of Aspergillus niger α-Glucosidase that Catalyzes the Formation of α-1,2- and α-1,3-Linked Oligosaccharides. J Appl Glycosci (1999) 2020; 67:41-49. [PMID: 34354527 PMCID: PMC8311119 DOI: 10.5458/jag.jag.jag-2019_0015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 02/14/2020] [Indexed: 11/18/2022] Open
Abstract
According to whole-genome sequencing, Aspergillus niger produces multiple enzymes of glycoside hydrolases (GH) 31. Here we focus on a GH31 α-glucosidase, AgdB, from A. niger . AgdB has also previously been reported as being expressed in the yeast species, Pichia pastoris ; while the recombinant enzyme (rAgdB) has been shown to catalyze tranglycosylation via a complex mechanism. We constructed an expression system for A. niger AgdB using Aspergillus nidulans . To better elucidate the complicated mechanism employed by AgdB for transglucosylation, we also established a method to quantify glucosidic linkages in the transglucosylation products using 2D NMR spectroscopy. Results from the enzyme activity analysis indicated that the optimum temperature was 65 °C and optimum pH range was 6.0-7.0. Further, the NMR results showed that when maltose or maltopentaose served as the substrate, α-1,2-, α-1,3-, and small amount of α-1,1-β-linked oligosaccharides are present throughout the transglucosylation products of AgdB. These results suggest that AgdB is an α-glucosidase that serves as a transglucosylase capable of effectively producing oligosaccharides with α-1,2-, α-1,3-glucosidic linkages.
Collapse
Affiliation(s)
| | | | | | | | | | - Nozomi Nikaido
- Division of Chemical Engineering and Biotechnology, Department of Engineering for Future Innovation, National Institute of Technology, Ichinoseki College
| | - Takashi Tonozuka
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology
| | - Kazuhide Totani
- Division of Chemical Engineering and Biotechnology, Department of Engineering for Future Innovation, National Institute of Technology, Ichinoseki College
| | | |
Collapse
|
15
|
Franceus J, Dhaene S, Decadt H, Vandepitte J, Caroen J, Van der Eycken J, Beerens K, Desmet T. Rational design of an improved transglucosylase for production of the rare sugar nigerose. Chem Commun (Camb) 2019; 55:4531-4533. [PMID: 30924472 DOI: 10.1039/c9cc01587f] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The sucrose phosphorylase from Bifidobacterium adolescentis (BaSP) can be used as a transglucosylase for the production of rare sugars. We designed variants of BaSP for the efficient synthesis of nigerose from sucrose and glucose, thereby adding to the inventory of rare sugars that can conveniently be produced from bulk sugars.
Collapse
Affiliation(s)
- Jorick Franceus
- Centre for Synthetic Biology (CSB), Department of Biotechnology, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|