1
|
Saha S, Tiwari R, Parameswaran P, Patidar R, Srivastava N, Ranjan N. Fluorescence based metabisulfite sensing: New aspects of ion sensing by a styryl benzothiazolium dye and understanding nitrite interference. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 324:124821. [PMID: 39167898 DOI: 10.1016/j.saa.2024.124821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 07/11/2024] [Accepted: 07/13/2024] [Indexed: 08/23/2024]
Abstract
Detection of specific ions using fluorescent probes has relevance in several areas of therapeutics development and environmental science. Here, we provide new perspectives to the sensing of a styryl benzothiazolium-based fluorescent compound 1 and report that sensing properties are for sulfite ions in general with highest preference for metabisulfite ions (S2O52-) adding to its previously determined role as a bisulfite ion sensor. This probe exhibits its sensing action via an addition reaction in which the styryl double bond gets reduced. The interference studies highlighted that the sequence of addition of nitrite and metabisulfite has a bearing on the overall interference outcome. Spectroscopic studies revealed that the order of preferential sensing of sulfites and sulfide ion is S2O52- > HSO3- > SO32- > S2-. Although this probe displays robust sensing on its own through fluorescence quenching, its fluorescence emission can be enhanced at much lower concentrations in the presence of a G-quadruplex DNA without compromising the outcome of the sensing.
Collapse
Affiliation(s)
- Sayani Saha
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli, New Transit Campus, Lucknow, Uttar Pradesh 226002, India; Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Raebareli, New Transit Campus, Lucknow, Uttar Pradesh 226002, India
| | - Ratnesh Tiwari
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli, New Transit Campus, Lucknow, Uttar Pradesh 226002, India
| | - Preethi Parameswaran
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli, New Transit Campus, Lucknow, Uttar Pradesh 226002, India
| | - Rajesh Patidar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli, New Transit Campus, Lucknow, Uttar Pradesh 226002, India
| | - Nidhi Srivastava
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Raebareli, New Transit Campus, Lucknow, Uttar Pradesh 226002, India
| | - Nihar Ranjan
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli, New Transit Campus, Lucknow, Uttar Pradesh 226002, India.
| |
Collapse
|
2
|
Ahmad M, Verma S, Singla N, Singh Bhadwal S, Kaur S, Singh P, Kumar S. A fluorescent probe with serum albumin as a signal amplifier for real-time sensing of HSO 3- in solution, mitochondria of animal cells and rice roots. J Mater Chem B 2024. [PMID: 39431454 DOI: 10.1039/d4tb01275e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Endogenous release of HSO3- during the enzymatic oxidation of sulfur containing amino acids in mitochondria or insufficiency of sulfite oxidase results in the accumulation of sulfite and thiosulfate in biological fluids affecting mitochondrial homeostasis of brain mitochondria associated with serious clinical symptoms related to neurological disorders. The red fluorescent probe MGQ undergoes self-assembly in water and reveals aggregation induced quenching of fluorescence. MGQ reveals 143-fold and 179-fold increases in fluorescence intensity at 645 nm, respectively, in the presence of HSA and BSA and does not significantly differentiate between two albumins. The detailed studies of MGQ have been performed in the presence of BSA. The presence of other enzymes/proteins and amino acids, viz. pepsin, trypsin, lysozyme, Bromelain, lysine, histidine, hemoglobin, etc., does not affect the fluorescence of MGQ or MGQ-BSA solutions and points to high selectivity towards BSA. The limit of detection for BSA is 10 nM. In PBS buffer, MGQ in the absence of BSA does not react with HSO3- and sluggishly in a 1 : 1 ethanol-water mixture. However, in the confined space of BSA/HSA, MGQ displays a signal amplification, undergoes instantaneous Michael type addition of HSO3- and results in a ratiometric change in fluorescence intensity in ≤1.5 min with the decrease of red fluorescence at 645 nm and emergence of green fluorescence at 515 nm. The LOD for the detection of HSO3- is 4 nM.
Collapse
Affiliation(s)
- Manzoor Ahmad
- Department of Chemistry, Centre for Advanced Studies, Guru Nanak Dev University, Amritsar, Punjab, India.
- Chemistry & Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bangalore, 560064, India
| | - Shagun Verma
- Department of Botanical and Environment Sciences, Centre for Advanced Studies, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Nancy Singla
- Department of Chemistry, Centre for Advanced Studies, Guru Nanak Dev University, Amritsar, Punjab, India.
| | - Siloni Singh Bhadwal
- Department of Botanical and Environment Sciences, Centre for Advanced Studies, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Satwinderjeet Kaur
- Department of Botanical and Environment Sciences, Centre for Advanced Studies, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Prabhpreet Singh
- Department of Chemistry, Centre for Advanced Studies, Guru Nanak Dev University, Amritsar, Punjab, India.
| | - Subodh Kumar
- Department of Chemistry, Centre for Advanced Studies, Guru Nanak Dev University, Amritsar, Punjab, India.
| |
Collapse
|
3
|
Ma J, Zhao M, Kong X, Xie H, Li H, Jiao Z, Zhang Z. An innovative dual-organelle targeting NIR fluorescence probe for detecting hydroxyl radicals in biosystem and inflammation models. Bioorg Chem 2024; 151:107678. [PMID: 39068715 DOI: 10.1016/j.bioorg.2024.107678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/14/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
The hydroxyl radical (OH) is highly reactive and plays a significant role in a number of physiological and pathological processes within biosystems. Aberrant changes in the level of hydroxyl radical are associated with many disorders including tumor, inflammatory and cardiovascular diseases. Thus, detecting reactive oxygen species (ROS) in biological systems and imaging them is highly significant. In this work, a novel fluorescent probe (HR-DL) has been developed, targeting two organelles simultaneously. The probe is based on a coumarin-quinoline structure and exhibits high selectivity and sensitivity towards hydroxyl radicals (OH). When reacting with OH, the hydrogen abstraction process released its long-range π-conjugation and ICT processes, leading to a substantial red-shift in wavelength. This probe has the benefits of good water solubility (in its oxidative state), short response time (within 10 s), and unique dual lysosome/mitochondria targeting capabilities. It has been applied for sensing OH in biosystem and inflammation mice models.
Collapse
Affiliation(s)
- Junyan Ma
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, China; Department of Chemistry, Clemson University, Clemson 29634, SC, United States.
| | - Mingtao Zhao
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, China
| | - Xiangtao Kong
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, China
| | - Hua Xie
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - He Li
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, China
| | - Zilin Jiao
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, China
| | - Zhenxing Zhang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, China; Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
4
|
Ma J, Kong X, Zhao M, Jiao Z, Xie H, Si W, Li H, Zhang Z. A dual-functional NIR fluorescence probe for detecting hypochlorous acid and bisulfite in biosystem. Anal Chim Acta 2024; 1320:342993. [PMID: 39142777 DOI: 10.1016/j.aca.2024.342993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/02/2024] [Accepted: 07/18/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND Bisulfite (HSO3-) serves as a bleaching agent, antioxidant, antimicrobial, and regulator of enzymatic reactions in biosystem. However, abnormal levels of bisulfite can be detrimental to health. Hypochlorous acid (HOCl), which acts as bioactive small molecules, is crucial for maintaining normal biological functions in living organisms. Disruption of its equilibrium can lead to oxidative stress and various diseases. Therefore, it's essential to monitor the fluctuations of HOCl and HSO3- at cellular and in vivo levels to study their physiological and pathological functions. RESULTS This study constructed a novel NIR bifunctional colorimetric fluorescent probe using thienocoumarin-indanedione structures to identify hypochlorite (ClO-) and bisulfite (HSO3-). By using CSO-IO to recognize HSO3- and HOCl, two distinct products were generated, displaying green and blue fluorescence, respectively. This property effectively allows for the simultaneous dual-functional detection of HSO3- (LOD: 113 nM) and HOCl (LOD: 43 nM). SIGNIFICANCE In this work, the biocompatible molecule CSO-IO has been effectively designed to detect HOCl/HSO3- in living cells and zebrafish. As a result, the dual-functional fluorescent probe has the potential to be utilized as a molecular tool to detect HSO3- derived compounds and HOCl simultaneously within the complex biological system.
Collapse
Affiliation(s)
- Junyan Ma
- State Key Laboratory of New Optical Functional Materials, Anyang Normal University, Anyang, Henan, 455000, China; Department of Chemistry, Clemson University, Clemson, 29634, South Carolina, USA.
| | - Xiangtao Kong
- State Key Laboratory of New Optical Functional Materials, Anyang Normal University, Anyang, Henan, 455000, China
| | - Mingtao Zhao
- State Key Laboratory of New Optical Functional Materials, Anyang Normal University, Anyang, Henan, 455000, China
| | - Zilin Jiao
- State Key Laboratory of New Optical Functional Materials, Anyang Normal University, Anyang, Henan, 455000, China
| | - Hua Xie
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Weijie Si
- State Key Laboratory of New Optical Functional Materials, Anyang Normal University, Anyang, Henan, 455000, China
| | - He Li
- State Key Laboratory of New Optical Functional Materials, Anyang Normal University, Anyang, Henan, 455000, China
| | - Zhenxing Zhang
- State Key Laboratory of New Optical Functional Materials, Anyang Normal University, Anyang, Henan, 455000, China; Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
5
|
Tian D, Qi X, Seididamyeh M, Zhang H, Phan A, Zhang Z, Geng X, Sultanbawa Y, Zhang R. A ratiometric fluorescence probe for bisulfite detection in live cells and meat samples. Methods 2024; 225:100-105. [PMID: 38565390 DOI: 10.1016/j.ymeth.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/14/2024] [Accepted: 03/30/2024] [Indexed: 04/04/2024] Open
Abstract
The development of reliable probe technology for the detection of bisulfite (HSO3-) in situ in food and biological samples is contributing significantly to food quality and safety assurance as well as community health. In this work, a responsive probe, EHDI, is developed for ratiometric fluorescence detection of HSO3- in aqueous solution, meat samples, and living cells. The probe is designed based on the HSO3- triggered 1,4-addition of electron deficit C = C bond of EHDI. As a result of this specific 1,4-addition, the π-conjugation system was destructed, resulting in blue shifts of the emission from 687 to 440 nm and absorption from 577 to 355 nm. The probe has good water solubility, high sensitivity and selectivity, allowing it to be used for imaging of HSO3- internalization and production endogenously. The capability of probe EHDI for HSO3- was then validated by traditional HPLC technology, enabling accurately detect HSO3- in beef samples. The successful development of this probe thus offers a new tool for investigating HSO3- in situ in food and biological conditions.
Collapse
Affiliation(s)
- Dihua Tian
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Xin Qi
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Indooroopilly, Queensland 4068, Australia
| | - Maral Seididamyeh
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Indooroopilly, Queensland 4068, Australia
| | - Huayue Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Anh Phan
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Indooroopilly, Queensland 4068, Australia
| | - Zexi Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Xuhui Geng
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Key Laboratory of Deep-sea Composition Detection Technology of Liaoning Province, 457 Zhongshan Road, Dalian 116023, China
| | - Yasmina Sultanbawa
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Indooroopilly, Queensland 4068, Australia.
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland 4072, Australia; ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Indooroopilly, Queensland 4068, Australia.
| |
Collapse
|
6
|
Xu ZY, Wang R, Xiao Q, Luo HQ, Li NB. Taming Janus-Faced Quinoline-Derived Fluorescent Probes for Dual-Channel Distinguishable Visualization of HSO 3- and HClO in Dried Foods and Living Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10097-10105. [PMID: 38630689 DOI: 10.1021/acs.jafc.4c00375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
With the booming development of food manufacturing, developing ideal analytical tools to precisely quantify food additives is highly sought after in the food science field. Herein, a new series of quinoline-derived multifunctional fluorescent probes has been synthesized. Bearing double reactive sites, these compounds display fluorescence response toward both bisulfite (HSO3-) and hypochlorous acid (HClO). Among these compact structures, compound ethyl-2-cyano-3-(6-(methylthio)quinolin-2-yl)acrylate (QTE) was screened out. Probe QTE not only shows ratiometric variation toward HSO3- with little cross talk but also performs turn-off signal toward HClO. In addition, probe QTE has been utilized for bioimaging of HClO in living cells. Furthermore, the HSO3- content in dried food samples has been appraised by QTE with satisfactory results. Meanwhile, relying on the apparent chromaticity change, a flexible dark-box device has been elaborated for chromatic analysis, promoting visualization of HSO3- in the field.
Collapse
Affiliation(s)
- Zi Yi Xu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Rong Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Qi Xiao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
- School of Chemistry and Materials, Nanning Normal University, Nanning 530001, PR China
| | - Hong Qun Luo
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Nian Bing Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| |
Collapse
|
7
|
Shang Z, Wu M, Meng Q, Jiao Y, Zhang Z, Zhang R. A near-infrared fluorescent probe for rapid and on-site detection of sulfur dioxide derivative in biological, food and environmental systems. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133165. [PMID: 38061127 DOI: 10.1016/j.jhazmat.2023.133165] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 02/08/2024]
Abstract
Emission of toxic gaseous sulfur dioxide (SO2) and its derivative bisulfite (HSO3-) from various industrial applications, like food processing, transportation, and the coking process, has raised substantial concerns regarding environmental quality and public health. The probes for specific and sensitive detection of SO2 derivatives plays an essential role in their regulation, and ultimately mitigating their environmental and health implications, but the one that can detect SO2 derivatives onsite by end users remains limited. Herein, we report a new near-infrared fluorescence probe (SL) for rapid and onsite detection of SO2 derivative, HSO3- in industrial wastewater, food samples and for sensing its interaction with biological organisms. The SL is developed through coupling of quinolinium and coumarin moiety through an electron deficit CC bond that can specifically react with HSO3- via a Michael addition. By recording the blue shift of absorption and emission spectra, SL can sensitively detect HSO3- (limit of detection, 38 nM) in aqueous solution within 40 s SL is biocompatible, can be used for evaluating toxicity of SO2 derivatives in living organisms. The preparation of SL-stained test paper allows the colorimetric/fluorometric analysis for quantification of HSO3- onsite in food, river and coking wastewater samples using a smartphone. The successful development of SL not only provides a new tool to investigate HSO3- in biological, food and environmental systems, but also potentially promotes the application of fluorescence technique for rapid and onsite analysis of real-world samples by end users.
Collapse
Affiliation(s)
- Zhuye Shang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning 114051, PR China
| | - Miaomiao Wu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Qingtao Meng
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning 114051, PR China; Key Laboratory of Functional Materials in Universities of Liaoning Province, University of Science and Technology Liaoning, Anshan, Liaoning 114051, PR China.
| | - Yang Jiao
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Zhiqiang Zhang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning 114051, PR China.
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
8
|
Li H, Liu Y, Wang Y, Li J, Li Y, Zhang G, Zhang C, Shuang S, Dong C. A near infrared fluorescence probe with dual-site for hydrogen sulfide and sulfur dioxide detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 305:123523. [PMID: 37857073 DOI: 10.1016/j.saa.2023.123523] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/28/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023]
Abstract
Both hydrogen sulfide (H2S) and sulfur dioxide (SO2) are regarded as double-edged swords. They are toxic gases at high concentration, and at low concentration they are beneficial to the human. Therefore, it is of great significance to develop single chemosensor which enable to detect them with different fluorescence signal changes. In this work, a novel dual-site fluorescence probe (AMN-SSPy) with near infrared emission (675 nm) was designed, which realized quantitative detection for H2S and SO2 by fluorescence enhancement and fluorescence quenching, respectively. AMN-SSPy showed advantages such as excellent selectivity to H2S and SO2, strong anti-interference ability, high sensitivity for H2S (LOD 1.03 µM for H2S and 77.08 µM for SO2) and low toxicity. In addition, AMN-SSPy possessed the capacity to successfully image the endogenous and exogenous H2S, and it was also used to demonstrate that Ca2+ could induce accumulation of H2S in cell and zebrafish. Finally, the rapid detection of SO2 by AMN-SSPy in real samples was also established.
Collapse
Affiliation(s)
- Haoyang Li
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Ying Liu
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Yuhang Wang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Jinshan Li
- Chumin College, Shanxi University, Taiyuan 030006, China
| | - Yang Li
- Chumin College, Shanxi University, Taiyuan 030006, China
| | - Guomei Zhang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Caihong Zhang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China.
| | - Shaomin Shuang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Chuan Dong
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
9
|
Wu H, Xu Q, Yin K, Liu Z, Xie T, Wang L, Li Y, Zhang M, Lv X, Li W, Fan S. Bioimaging and detecting endogenous and exogenous cyanide in foods, living cells and mice based on a turn-on mitochondria-targeted fluorescent probe. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 301:122957. [PMID: 37295383 DOI: 10.1016/j.saa.2023.122957] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/23/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
A novel fluorescent probe, with advanced features including "turn-on" fluorescence response, high sensitivity, good compatibility, and mitochondria-targeting function, has been synthesized based on structural design for detecting and visualizing cyanide in foods and biological systems. An electron-donating triphenylamine group (TPA) was employed as the fluorescent and an electron-accepting 4-methyl-N-methyl-pyridinium iodide (Py) moiety was used as a mitochondria-targeted localization unit, which formed intramolecular charge transfer (ICT) system. The "turn-on" fluorescence response of the probe (TPA-BTD-Py, TBP) toward cyanide is attributed two reasons, one is the insertion of an electron-deficient benzothiadiazole (BTD) group into the conjugated system between TPA and Py, and the other is the inhibition of ICT induced by the nucleophilic addition of CN-. Two active sites for reacting with CN- were involved in TBP molecule and high response sensitivity were observed in tetrahydrofuran solvent containing 3 % H2O. The response time could be reduced to 150 s, the linear range was 0.25-50 μM, and the limit of detection was 0.046 μM for CN- analysis. The TBP probe was successfully applied to the detection of cyanide in food samples prepared in aqueous solution, including the sprouting potato, bitter almond, cassava, and apple seeds. Furthermore, TBP exhibited low cytotoxicity, clear mitochondria-localizing capability in HeLa cells and excellent fluorescence imaging of exogenous and endogenous CN- in living PC12 cells. Moreover, exogenous CN- with intraperitoneal injection in nude mice could be well monitored visually by the "turn-on" fluorescence. Therefore, the strategy based on structural design provided good prospects for optimizing fluorescent probes.
Collapse
Affiliation(s)
- Hai Wu
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Anhui Provincial Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Fuyang Normal University, Fuyang, 236037, PR China; College of Chemistry & Chemical Engineering, Fuyang Normal University, Fuyang, 236037, PR China
| | - Qinqin Xu
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Anhui Provincial Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Fuyang Normal University, Fuyang, 236037, PR China; College of Chemistry & Chemical Engineering, Fuyang Normal University, Fuyang, 236037, PR China
| | - Kun Yin
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Anhui Provincial Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Fuyang Normal University, Fuyang, 236037, PR China; Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, PR China
| | - Zhaoqiang Liu
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Anhui Provincial Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Fuyang Normal University, Fuyang, 236037, PR China
| | - Tian Xie
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Anhui Provincial Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Fuyang Normal University, Fuyang, 236037, PR China; College of Chemistry & Chemical Engineering, Fuyang Normal University, Fuyang, 236037, PR China
| | - Li Wang
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Anhui Provincial Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Fuyang Normal University, Fuyang, 236037, PR China; College of Chemistry & Chemical Engineering, Fuyang Normal University, Fuyang, 236037, PR China
| | - Yuanyuan Li
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Anhui Provincial Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Fuyang Normal University, Fuyang, 236037, PR China; College of Chemistry & Chemical Engineering, Fuyang Normal University, Fuyang, 236037, PR China
| | - Mengjie Zhang
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Anhui Provincial Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Fuyang Normal University, Fuyang, 236037, PR China; College of Chemistry & Chemical Engineering, Fuyang Normal University, Fuyang, 236037, PR China
| | - Xiaojun Lv
- College of Chemistry & Chemical Engineering, Fuyang Normal University, Fuyang, 236037, PR China
| | - Wenyong Li
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Anhui Provincial Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Fuyang Normal University, Fuyang, 236037, PR China.
| | - Suhua Fan
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Anhui Provincial Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Fuyang Normal University, Fuyang, 236037, PR China; College of Chemistry & Chemical Engineering, Fuyang Normal University, Fuyang, 236037, PR China.
| |
Collapse
|
10
|
Wang Q, Sun Y, Ge J, Li L, Lu J, Zhang D, Jin L, Li H, Zhang S. Ratiometric fluorescent nanoprobes based on coumarin dye-functionalized carbon dots for bisulfite detection in living cells and food samples. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
11
|
Li Y, Wang Y, Lei X, Guo K, Ai Q, Zhang F, Chen X, Sun X, Jia TT, Li Y, Niu H, Ye Y. Development of a responsive probe for colorimetric and fluorescent detection of bisulfite in food and animal serum samples in 100% aqueous solution. Food Chem 2023; 407:135146. [PMID: 36502733 DOI: 10.1016/j.foodchem.2022.135146] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/26/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Bisulfite (HSO3-) has the functions of bleaching, antiseptic, antioxidant, inhibiting bacterial growth, and controlling enzymatic reactions in food. However, long-term consumption of foods containing excessive amounts of bisulfite can be harmful to health. In addition, large doses of sulfur dioxide (SO2) can cause diarrhea, hypotension, allergic and asthmatic reactions in susceptible individuals. Therefore, it is urgent and essential to explore some rapid, reliable, and convenient tools to detect HSO3- in food and SO2 gas. Herein, we exploited a fluorescent probe, NPO, to detect HSO3- in 100 % aqueous solution. The probe has the advantages of easy synthesis, excellent water solubility, significant colorimetric change, good selectivity, high sensitivity, and fast response (within 1 min). Probe NPO was successfully applied for testing strips to visualize the behavior of HSO3- and SO2 gas. Moreover, the probe has been used to monitor the behavior of HSO3- in real food samples and animal serum samples.
Collapse
Affiliation(s)
- Yifang Li
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471003, PR China
| | - Yao Wang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471003, PR China.
| | - Xiaoman Lei
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471003, PR China
| | - Kaitong Guo
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471003, PR China
| | - Qian Ai
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471003, PR China
| | - Feifan Zhang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471003, PR China
| | - Xiujin Chen
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471003, PR China
| | - Xiaofei Sun
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471003, PR China
| | - Tong-Tong Jia
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022, PR China
| | - Yashan Li
- College of Resources, Environment and Chemistry, Chuxiong Normal University, Chuxiong 675000, PR China.
| | - Huawei Niu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471003, PR China.
| | - Yong Ye
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, PR China
| |
Collapse
|
12
|
Reversible colorimetric and NIR fluorescent probe for sensing SO 2/H 2O 2 in living cells and food samples. Food Chem 2023; 407:135031. [PMID: 36473352 DOI: 10.1016/j.foodchem.2022.135031] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/04/2022] [Accepted: 11/20/2022] [Indexed: 11/24/2022]
Abstract
Preservative sulfur dioxide (SO2) and bleach hydrogen peroxide (H2O2) were widely used in the food industry, at the same time, they were also a redox pair in biological systems. Therefore, the reversible sensing SO2/H2O2 was of great significance in food safety and biology. In this paper, a colorimetric and NIR fluorescent dual channels response probe (DCA-Bba) for SO2/H2O2 based on chromene-barbiturate was developed. DCA-Bba exhibited a rapid and sensitive recognition of SO2, and the adduct DCA-Bba-HSO3- could detect H2O2 in PBS (with 10 % DMSO, v/v, pH 7.4) solution. The reversible response of DCA-Bba was implemented by HSO3- involved 1,4-addition and H2O2 induced elimination reaction. DCA-Bba showed a strong red fluorescence based on the intramolecular charge transfer (ICT) process, after the recognition of SO2, the fluorescence of the adduct was quenched based on the photoinduced electron transfer (PET) process. And importantly, DCA-Bba had been applied for imaging SO2/H2O2 redox cycles in living cells, as well as could detect the levels of SO2 in white sugar, biscuit, Chinese liquor and red wine samples.
Collapse
|
13
|
Li XH, Han XF, Wu WN, Zhao XL, Wang Y, Fan YC, Xu ZH. Simultaneous detection of lysosomal SO 2 and viscosity using a hemicyanine-based fluorescent probe. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 280:121519. [PMID: 35763947 DOI: 10.1016/j.saa.2022.121519] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
The changes in sulfur dioxide and viscosity of lysosomes are significant indicators in physiological processes and the cell microenvironment. This study aimed to synthesize a hemicyanine-based probe for simultaneous detection of SO2 and viscosity. The probe could not only rationally detect sulfur dioxide in a semi-aqueous solution with high sensitivity (limit of detection = 0.78 μM) and fast response (within 30 s) but also monitor viscosity via fluorescence emission enhancement at 580 nm. Further, the dual-response probe was successfully used to image SO2 and viscosity in the lysosomes of living cells.
Collapse
Affiliation(s)
- Xiao-Hong Li
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo 454000, PR China
| | - Xue-Feng Han
- College of Safety Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, PR China
| | - Wei-Na Wu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo 454000, PR China.
| | - Xiao-Lei Zhao
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo 454000, PR China
| | - Yuan Wang
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo 454000, PR China.
| | - Yun-Chang Fan
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo 454000, PR China
| | - Zhi-Hong Xu
- Key Laboratory of Chemo/Biosensing and Detection, College of Chemical and Materials Engineering, Xuchang University, Xuchang 461000, PR China; College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450052, PR China.
| |
Collapse
|
14
|
Li T, Chen X, Wang K, Hu Z. Small-Molecule Fluorescent Probe for Detection of Sulfite. Pharmaceuticals (Basel) 2022; 15:1326. [PMID: 36355496 PMCID: PMC9699022 DOI: 10.3390/ph15111326] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 04/20/2024] Open
Abstract
Sulfite is widely used as an antioxidant additive and preservative in food and beverages. Abnormal levels of sulfite in the body is related to a variety of diseases. There are strict rules for sulfite intake. Therefore, to monitor the sulfite level in physiological and pathological events, there is in urgent need to develop a rapid, accurate, sensitive, and non-invasive approach, which can also be of great significance for the improvement of the corresponding clinical diagnosis. With the development of fluorescent probes, many advantages of fluorescent probes for sulfite detection, such as real time imaging, simple operation, economy, fast response, non-invasive, and so on, have been gradually highlighted. In this review, we enumerated almost all the sulfite fluorescent probes over nearly a decade and summarized their respective characteristics, in order to provide a unified platform for their standardized evaluation. Meanwhile, we tried to systematically review the research progress of sulfite small-molecule fluorescent probes. Logically, we focused on the structures, reaction mechanisms, and applications of sulfite fluorescent probes. We hope that this review will be helpful for the investigators who are interested in sulfite-associated biological procedures.
Collapse
Affiliation(s)
| | | | - Kai Wang
- Medical Laboratory of Wuxi Children’s Hospital, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Qingyang Road 299, Wuxi 214023, China
| | - Zhigang Hu
- Medical Laboratory of Wuxi Children’s Hospital, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Qingyang Road 299, Wuxi 214023, China
| |
Collapse
|
15
|
Gong W, Zhang C, Zhang X, Shen Y. Mitochondria-targetable colorimetric and far-red fluorescent sensor for rapid detection of SO 2 derivatives in food samples and living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 278:121386. [PMID: 35597160 DOI: 10.1016/j.saa.2022.121386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/01/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Sulfur dioxide (SO2) derivatives are intertwined with many physiological and pathological processes in living systems, and excess intake of them are associated with various diseases. Herein, we have rationally constructed a novel colorimetric and far-red fluorescent probe for HSO3- based on a rhodamine analogue skeleton bearing a 3-quinolinium carboxaldehyde moiety. The novel probe exhibited a significant far-red fluorescence "Turn-on" response to HSO3-, along with obvious color change from reddish to purple via the specific 1,4-nucleophilic addition reaction of HSO3- with the quinolinium moiety in 3-(4-(2-carboxyphenyl)-7-(diethylamino)chromenylium-2-yl)-1-methylquinolin-1-ium hypochlorite trifluoromethanesulfonate (AQCB). The AQCB had excellent water-solubility, and presented rapid response (<15 s),highsensibility(LOD = 49 nM) and selectivity toward HSO3-. In addition, the probe was able to detect the content of HSO3- in food samples with satisfactory results. Furthermore, the probe possessed good cell membrane and could be successfully applied for imaging HSO3- in the mitochondria of living cells.
Collapse
Affiliation(s)
- Wenping Gong
- Hunan Provincial Key Laboratory of Water Treatment Functional Materials, College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde 415000, PR China
| | - Chunxiang Zhang
- Hunan Provincial Key Laboratory of Water Treatment Functional Materials, College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde 415000, PR China.
| | - Xiangyang Zhang
- Hunan Provincial Key Laboratory of Water Treatment Functional Materials, College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde 415000, PR China
| | - Youming Shen
- Hunan Provincial Key Laboratory of Water Treatment Functional Materials, College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde 415000, PR China.
| |
Collapse
|
16
|
Li XH, Yan JL, Wu WN, Zhao XL, Wang Y, Fan YC, Xu ZH. A dual-response fluorescent probe for SO2 and viscosity and imaging application in lysosomes and zebrafish. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Li Y, Sun X, Zhou L, Tian L, Zhong K, Zhang J, Yan X, Tang L. Novel Colorimetric and NIR Fluorescent Probe for Bisulfite/Sulfite Detection in Food and Water Samples and Living Cells Based on the PET Mechanism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10899-10906. [PMID: 35998392 DOI: 10.1021/acs.jafc.2c04571] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Despite their status of being widely used as food additives, bisulfite (HSO3-)/sulfite (SO32-) can pose serious health risks when they are excessively added. Therefore, it is vital to develop a new method for detecting HSO3-/SO32- in foodstuff. In this paper, a benzopyran-benzothiazole derivative (probe DCA-Btl) with near-infrared emission was designed and synthesized by constructing a "push-pull" electronic system. DCA-Btl can selectively recognize HSO3-/SO32- via a colorimetric and fluorescence dual channel in DMF/PBS (1:1, v/v, pH = 8.4), and the emission wavelength of DCA-Btl can reach 710 nm. The fluorescence quenching of DCA-Btl after recognition of HSO3- is attributed to the photoinduced electron transfer (PET) process of the adduct DCA-Btl-HSO3- as evaluated by the DFT/TD-DFT method. In addition, DCA-Btl has many advantages, including a large Stokes shift (95 nm), good anti-interference ability, and little cytotoxicity. What's more, DCA-Btl has been successfully applied for the detection of HSO3-/SO32- in actual water samples and food samples such as sugar, red wine, and biscuits with satisfying results, as well as for fluorescent imaging of HSO3- in living MCF-7 cells.
Collapse
Affiliation(s)
- Yang Li
- College of Chemistry and Materials Engineering, College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, China
| | - Xiaofei Sun
- College of Chemistry and Materials Engineering, College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, China
| | - Lulu Zhou
- College of Chemistry and Materials Engineering, College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, China
| | - Li Tian
- College of Chemistry and Materials Engineering, College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, China
| | - Keli Zhong
- College of Chemistry and Materials Engineering, College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, China
| | - Jinglin Zhang
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing 100048, China
| | - Xiaomei Yan
- College of Laboratory Medicine, Dalian Medical University, Dalian 116044, China
| | - Lijun Tang
- College of Chemistry and Materials Engineering, College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, China
| |
Collapse
|
18
|
Duan N, Yang S. Research Progress on Multifunctional Fluorescent Probes for Biological Imaging, Food and Environmental Detection. Crit Rev Anal Chem 2022; 54:775-817. [PMID: 35849642 DOI: 10.1080/10408347.2022.2098670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
There has been rapid progress in the development of fast, sensitive, cheap and low-cytotoxicity micro-molecule fluorescent probes for application in various fields, including disease diagnosis, food safety and environmental safety. As an analytical tool, dual-function fluorescent probes with dual-emission responses have attracted considerable attention due to their cost-effectiveness and efficiency over single-function sensors. This review primarily describes research progress on multifunctional probes in terms of the reaction type and coordination type, as well as the general design principles of probes. The analytes include reactive oxygen species (ROS), reactive sulfur species (RSS), harmful cations and anions, etc. Multifunctional probes for food, medical and environmental applications are listed for future research. To improve the development of rapid detection methods, trends and strategies in the development of multifunctional fluorescent probes are also discussed.
Collapse
Affiliation(s)
- Ning Duan
- Beijing Key laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing, PR China
| | - Shaoxiang Yang
- Beijing Key laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing, PR China
| |
Collapse
|
19
|
A fluorescent probe for monitoring sulfite in living cells with large Stokes shift and rapid response. Anal Biochem 2022; 654:114800. [DOI: 10.1016/j.ab.2022.114800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 11/18/2022]
|
20
|
Qin J, Kong F, Guo Y, Wang D, Zhang C, Li Y. Rational Construction of a Two-Photon NIR Ratiometric Fluorescent Probe for the Detection of Bisulfite in Live Cells, Tissues, and Foods. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7314-7320. [PMID: 35670208 DOI: 10.1021/acs.jafc.2c02155] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this study, we report a novel ratiometric fluorescent probe with a blue shift of 180 nm based on a D-π-A-A structure. The probe composed of a hydroxyl moiety as a donor, a naphthyl ring as a π bridge, and benzothiazole/hemicyanine as an acceptor has good selectivity and high sensitivity to bisulfite (HSO3-) in aqueous solution. Besides one-photon fluorescence properties, the probe possesses excellent two-photon fluorescence properties and is successfully utilized for fluorescence imaging of HSO3- in MCF-7 cells and rat liver tissues. More importantly, the probe also has practical application potential for measuring the HSO3- content of real food samples.
Collapse
Affiliation(s)
- Jingcan Qin
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, 600 Yi Shan Road, Shanghai 200233, China
| | - Fei Kong
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yuanyuan Guo
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, 600 Yi Shan Road, Shanghai 200233, China
| | - Dongya Wang
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, 600 Yi Shan Road, Shanghai 200233, China
| | - Chuan Zhang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yuehua Li
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, 600 Yi Shan Road, Shanghai 200233, China
| |
Collapse
|
21
|
Zhong K, Yao Y, Sun X, Wang Y, Tang L, Li X, Zhang J, Yan X, Li J. Mitochondria-Targeted Fluorescent Turn-On Probe for Rapid Detection of Bisulfite/Sulfite in Water and Food Samples. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5159-5165. [PMID: 35420802 DOI: 10.1021/acs.jafc.2c00820] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Bisulfite (HSO3-)/Sulfite (SO32-) is widely used as a food additive, but excessive use often leads to serious consequences, so the detection of HSO3-/SO32- is of great importance. In this paper, a novel 1,4-diethylpiperazine-modified coumarin-benzopyran derivative (probe QLP) has been synthesized and characterized. In PBS (10 mM, pH = 7.4), QLP displays good selectivity and is sensitive for HSO3-/SO32- over various analytes with fluorescent "OFF-ON" rapid responding (2 min), long-wavelength emission (600 nm), and a detection limit of 177 nM. With the treatment of HSO3-/SO32-, the color of the QLP solution obviously changes from blue-green to yellow, and the fluorescent color of QLP changes from colorless to amaranth. The fluorescence-enhanced mechanism is qualitatively evaluated by density functional theory calculations using the CAM-B3LYP/6-31G (d) method, which reveals that the photoinduced electron transfer leads to the fluorescence emission of the QLP-SO3H adduct. Importantly, nontoxic QLP can be used to detect HSO3-/SO32- in sugar, natural water samples, and living cells and localized to the mitochondria and monitor the mitochondrial HSO3-/SO32- level.
Collapse
Affiliation(s)
- Keli Zhong
- College of Chemistry and Material Engineering; College of Food Science and Technology, Food Safety Key Lab of Liaoning Province; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Jinzhou 121013, China
| | - Yuan Yao
- College of Chemistry and Material Engineering; College of Food Science and Technology, Food Safety Key Lab of Liaoning Province; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Jinzhou 121013, China
| | - Xiaofei Sun
- College of Chemistry and Material Engineering; College of Food Science and Technology, Food Safety Key Lab of Liaoning Province; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Jinzhou 121013, China
| | - Yutong Wang
- College of Chemistry and Material Engineering; College of Food Science and Technology, Food Safety Key Lab of Liaoning Province; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Jinzhou 121013, China
| | - Lijun Tang
- College of Chemistry and Material Engineering; College of Food Science and Technology, Food Safety Key Lab of Liaoning Province; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Jinzhou 121013, China
| | - Xuepeng Li
- College of Chemistry and Material Engineering; College of Food Science and Technology, Food Safety Key Lab of Liaoning Province; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Jinzhou 121013, China
| | - Jinglin Zhang
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing 100048, China
| | - Xiaomei Yan
- College of Laboratory Medicine, Dalian Medical University, Dalian 116044, China
| | - Jianrong Li
- College of Chemistry and Material Engineering; College of Food Science and Technology, Food Safety Key Lab of Liaoning Province; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Jinzhou 121013, China
| |
Collapse
|
22
|
Shang Z, Liu J, Meng Q, Wang Y, Zhang C, Zhang Z. A near-infrared emitted fluorescence probe for the detection of biosulfite in live zebrafish, mouse and real food samples. Methods 2022; 204:47-54. [PMID: 35447358 DOI: 10.1016/j.ymeth.2022.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 12/12/2022] Open
Abstract
Bisulfite (HSO3-) has been widely used as an important food additive in daily life. Furthermore, a normal amount of HSO3- plays a significant role in biological systems. However, excessive intake of HSO3- will lead to a variety of diseases. Therefore, it is of great significance to develop an efficient fluorescent probe that can be used for detection of HSO3- in biological systems and food samples. In this work, a near-infrared (NIR) emitted fluorescent probe (SZY) based on hemicyanine dye was successfully synthesized and applied to detect HSO3- in several food samples and live animals. The proposed nucleophilic addition sensing mechanism of SZY towards HSO3- has been confirmed by 1H NMR titration, high resolution mass spectrometry (HR-MS) and density functional theory (DFT) theoretical computation. The HSO3--induced nucleophilic reaction with α,β-unsaturated C=C binding of SZY results in the dramatic decline of the UV-vis absorption and remarkable quenching of the fluorescence emission. SZY features the advantages of near infrared emission (centered at 720 nm), high water solubility (in 98% aqueous solution), fast response time (50 s), large Stokes shift (244 nm) and low cytotoxicity. The probe SZY was successfully applied to image of HSO3- in live nude mouse and adult zebrafish. Semi-quantitatively analyzing the HSO3- level by "naked eye" in several food samples including canned fruit, white wine, white sugar and jasmine tea drinks has been realized by the colorimetric method.
Collapse
Affiliation(s)
- Zhuye Shang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, P. R. China
| | - Jianhua Liu
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, P. R. China
| | - Qingtao Meng
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, P. R. China; Key Laboratory for Functional Material, Educational Department of Liaoning Province, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, P. R. China.
| | - Yue Wang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, P. R. China
| | - Cheng Zhang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, P. R. China
| | - Zhiqiang Zhang
- Key Laboratory for Functional Material, Educational Department of Liaoning Province, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, P. R. China
| |
Collapse
|
23
|
Meng Q, Wu M, Shang Z, Zhang Z, Zhang R. Responsive gadolinium(III) complex-based small molecule magnetic resonance imaging probes: Design, mechanism and application. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214398] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
24
|
Hao Y, Li Z, Ding N, Tang X, Zhang C. A new near-infrared fluorescence probe synthesized from IR-783 for detection and bioimaging of hydrogen peroxide in vitro and in vivo. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 268:120642. [PMID: 34857465 DOI: 10.1016/j.saa.2021.120642] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/09/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
A new near-infrared fluorescence probe was developed and synthesized for detection of hydrogen peroxide (H2O2) in vitro and in vivo. Synthesized from IR-783, the probe DBIS was designed to connect 4-(Bromomethyl)benzeneboronic acid pinacol ester as the recognizing moiety to the stable hemicyanine skeleton. Reaction of probe DBIS with H2O2 would result in the oxidation of phenylboronic acid pinacol ester, and thereby release the near-infrared fluorophore HXIS. The background signal of probe DBIS is very low, which is necessary for sensitive detection. Compared with the existing probes for detecting H2O2, the proposed probe DBIS shows excellent optical performance in vitro and in vivo, high selectivity, high sensitivity and good water solubility, as well as near-infrared fluorescence emission 708 nm, with a low detection limit of 0.12 μM. Furthermore, probe DBIS is low cytotoxic, cell membrane permeable, and its applicability has been shown to visualize endogenous H2O2 in mice. In addition, it is the first time that paper chips have been used as carrier to detect H2O2 through fluorescence signals instead of the traditional liquid phase detection mode of fluorescent probes. These superior characteristics of the probe make it have great application potential in biological systems or in vivo related research.
Collapse
Affiliation(s)
- Yitong Hao
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Zhao Li
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China.
| | - Ning Ding
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Xiaojie Tang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Chengxiao Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| |
Collapse
|
25
|
Peng L, Yang Q, Tan L, Zhou L. Double-site-based a smart fluorescent sensor for logical detecting of sulphides and its imaging evaluation of living organisms. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127591. [PMID: 34736215 DOI: 10.1016/j.jhazmat.2021.127591] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/13/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
Thiophenol and hydrosulphite are a group of toxic environmental pollutants, which contaminate land, water and food exhibiting a serious risk to human health. Herein, we reported a xanthene dye-based sensor (DSF) with dual well-known response sites for visual detecting PhSH and HSO3-. Specifically, when DSF reacted with PhSH firstly, the color of the solution changed to blue with bright red fluorescence emission. After added with HSO3-, the color of the solution became yellow, and emitted yellow fluorescence signal. However, DSF was first added with HSO3-, the color of the solution changed to purple with no-fluorescence emission, and then PhSH was added, the color of the solution changed to yellow with a bright yellow fluorescence. Notably, DSF exhibited high sensitivity and selectivity for PhSH and HSO3- detection with a very low detection limits of 2.27 nM and 22.91 nM, respectively. More importantly, DSF could detect PhSH and HSO3- in water, real-food and biological systems. Therefore, the experimental results showed DSF as a robust new logical monitoring tool for the detection of PhSH and HSO3- in water, real-food samples and biological systems.
Collapse
Affiliation(s)
- Longpeng Peng
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Qiaomei Yang
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Libin Tan
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Liyi Zhou
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China.
| |
Collapse
|
26
|
Liu J, Yin H, Shang Z, Gu P, He G, Meng Q, Zhang R, Zhang Z. Sequential detection of hypochlorous acid and sulfur dioxide derivatives by a red-emitting fluorescent probe and bioimaging applications in vitro and in vivo. RSC Adv 2022; 12:15861-15869. [PMID: 35733666 PMCID: PMC9135002 DOI: 10.1039/d2ra01048h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/10/2022] [Indexed: 11/21/2022] Open
Abstract
A red-emitting fluorescence probe (DP) has been successfully developed for the sequential detection of hypochlorous acid (HOCl) and sulfur dioxide derivatives (SO32−/HSO3−) in vitro and in vivo.
Collapse
Affiliation(s)
- Jianhua Liu
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, P. R. China
- College of Pharmacy, Jilin Medical University, Jilin Province, 132001, P. R. China
| | - Haoyuan Yin
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, P. R. China
| | - Zhuye Shang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, P. R. China
| | - Pengli Gu
- School of Forensic Medicine, Xinxiang Medical University, Jinsui Road No. 601, Xinxiang, Henan Province, 453003, P. R. China
| | - Guangjie He
- School of Forensic Medicine, Xinxiang Medical University, Jinsui Road No. 601, Xinxiang, Henan Province, 453003, P. R. China
| | - Qingtao Meng
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, P. R. China
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, 4072, Australia
| | - Zhiqiang Zhang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, P. R. China
| |
Collapse
|
27
|
Shang Z, Liu J, Meng Q, Jia H, Gao Y, Zhang C, Zhang R, Zhang Z. Carbazole-based near-infrared-emitting fluorescence probe for the detection of bisulfite in live animals and real food samples. NEW J CHEM 2022. [DOI: 10.1039/d2nj04647d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A carbazole-based near-infrared (NIR)-emitting fluorescent probe (QPM) was successfully developed for the detection of HSO3− in live animals and in real food samples.
Collapse
Affiliation(s)
- Zhuye Shang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, P. R. China
| | - Jianhua Liu
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, P. R. China
| | - Qingtao Meng
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, P. R. China
- Key Laboratory for Functional Material, Educational Department of Liaoning Province, University of Science and Technology Liaoning, Anshan, Liaoning Province 114051, P. R. China
| | - Hongmin Jia
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, P. R. China
| | - Yun Gao
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, P. R. China
| | - Cheng Zhang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, P. R. China
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, 4072, Australia
| | - Zhiqiang Zhang
- Key Laboratory for Functional Material, Educational Department of Liaoning Province, University of Science and Technology Liaoning, Anshan, Liaoning Province 114051, P. R. China
| |
Collapse
|
28
|
Wang Y, Zhou F, Meng Q, Zhang S, Jia H, Wang C, Zhang R, Zhang Z. A Novel Fluorescence Probe for the Reversible Detection of Bisulfite and Hydrogen Peroxide Pair in Vitro and in Vivo. Chem Asian J 2021; 16:3419-3426. [PMID: 34476907 DOI: 10.1002/asia.202100926] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/25/2021] [Indexed: 12/17/2022]
Abstract
The detection of changes in the reactive oxygen species (ROS)/reactive sulfur species (RSS) couple is important for studying the cellular redox state. Herein, we developed a 1,8-naphthalimide-based fluorescence probe (NI) for the reversible detection of bisulfite (HSO3 - ) and hydrogen peroxide (H2 O2 ) in vitro and in vivo. NI has been designed with a reactive ethylene unit which specifically reacts with HSO3 - by a Michael addition reaction mechanism, resulting in the quenching of yellow fluorescence at 580 nm and the appearing of green fluorescence at 510 nm upon excitation at 500 nm and 430 nm, respectively. The addition product (NI-HSO3 ) could be specifically oxidized to form the original C=C bond of NI, recovering the fluorescence emission and color. The detection limits of NI for HSO3 - and NI-HSO3 for H2 O2 were calculated to be 2.05 μM and 4.23 μM, respectively. The reversible fluorescence response of NI towards HSO3 - /H2 O2 couple can be repeated for at least five times. NI is reliable at a broad pH range (pH 3.0-11.5) and features outstanding selectivity, which enabled its practical applications in biological and food samples. Monitoring the reversible and dynamic inter-conversion between HSO3 - and H2 O2 in vitro and in vivo has been verified by fluorescence imaging in live HeLa cells, adult zebrafish and nude mice. Moreover, NI has been successfully applied to detect of HSO3 - levels in food samples.
Collapse
Affiliation(s)
- Yue Wang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, P. R. China
| | - Fang Zhou
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, P. R. China
| | - Qingtao Meng
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, P. R. China
| | - Songhe Zhang
- Anshan Tumor Hospital, 339 Shenhua Road, Lishan District, Anshan, Liaoning Province, P. R. China
| | - Hongmin Jia
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, P. R. China
| | - Cuiping Wang
- Key Laboratory for Functional Material, Educational Department of Liaoning Province, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, P. R. China
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, 4072, Australia
| | - Zhiqiang Zhang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, P. R. China
| |
Collapse
|
29
|
Liu W, Yang C, Zhang H, Li Z, Yu M. Colorimetric and Ratiometric Fluorescence Detection of HSO 3- With a NIR Fluorescent Dye. J Fluoresc 2021; 31:1567-1574. [PMID: 34338969 DOI: 10.1007/s10895-021-02794-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/26/2021] [Indexed: 12/20/2022]
Abstract
Bisulfite (HSO3-) has been widely used in food and industry, which has brought convenience to human life, but also seriously endangered human health. In this work, the probe PBI was designed and synthesized to detect bisulfite (HSO3-) through nucleophilic addition reaction. The probe PBI showed a selective reaction to HSO3- and can quantitatively detect HSO3-. At the same time, the color of the probe PBI changed significantly, which provided a simple method for the naked eye to identify HSO3-. Finally, it was successfully applied to the fluorescence imaging of HSO3- in living cells.
Collapse
Affiliation(s)
- Wenjie Liu
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Chenchen Yang
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Hongyan Zhang
- Beijing Key Laboratory of Clothing Materials R & D and Assessment, Beijing Engineering Research Center of Textile, Beijing Institute of Fashion Technology, NanofiberBeijing, 100029, China.
| | - Zhanxian Li
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.
| | - Mingming Yu
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
30
|
Chao J, Wang Z, Zhang Y, Huo F, Yin C. A near-infrared fluorescent probe targeting mitochondria for sulfite detection and its application in food and biology. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:3535-3542. [PMID: 34280954 DOI: 10.1039/d1ay00918d] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Sulfur dioxide (SO2) is the main air pollutant in the environment, causing great harm to human health. Abnormal SO2 levels are usually associated with some respiratory diseases, cardiovascular diseases, and neurological disorders (even brain cancer). Therefore, monitoring SO2 levels is helpful to better understand its special physiological and pathological role. Although many fluorescent probes for SO2 have been reported, many of them were not ideal for in vivo imaging due to the short emission wavelength. In this work, a near-infrared fluorescent probe NIR-BN with emission wavelength of 680 nm was constructed by conjugating the benzopyrylium moiety and 6-hydroxy-2-naphthaldehyde. NIR-BN had high selectivity and rapidity for SO2 detection. In addition, the detection limit of NIR-BN was relatively low, which can be used for the determination of sulfite in different sugar samples with high accuracy. Of course, due to the excellent spectral and structural properties of NIR-BN, we have applied NIR-BN to the detection of SO2 in biological systems.
Collapse
Affiliation(s)
- Jianbin Chao
- Scientific Instrument Center, Shanxi University, Taiyuan, 030006, China.
| | - Zhuo Wang
- Scientific Instrument Center, Shanxi University, Taiyuan, 030006, China. and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Yongbin Zhang
- Research Institute of Applied Chemistry, Shanxi University, Taiyuan 030006, China
| | - Fangjun Huo
- Research Institute of Applied Chemistry, Shanxi University, Taiyuan 030006, China
| | - Caixia Yin
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
31
|
Bao X, Cao X, Yuan Y, Zhou B, Huo C. Ultrafast Detection of Sulfur Dioxide Derivatives by a Distinctive "Dual-Positive-Ion" Platform that Features a Doubly Activated but Irreversible Michael Addition Site. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:4903-4910. [PMID: 33861597 DOI: 10.1021/acs.jafc.1c00797] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Sulfur dioxide (SO2) is a gaseous signaling molecule and widely used as a preservative for foods, but its excessive intake is closely related to a series of diseases. Therefore, the development of a potent fluorescence probe for the detection of SO2 in foods and biological systems is of great significance. Herein, we report for the first time a "dual-positive-ion" platform-based fluorescence probe CMQ, designed by a doubly activated but irreversible strategy, which results in its ultrafast response to SO2 within 5 s in pure aqueous solution together with a low detection limit as 15.6 nM. In addition, the probe was successfully applied for imaging of SO2 in mitochondria of living cells and zebrafish and prepared as a reagent kit for convenient and instantaneous quantification of HSO3- in real food samples.
Collapse
Affiliation(s)
- Xiazhen Bao
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Xuehui Cao
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Yong Yuan
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Bo Zhou
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu 730000, China
| | - Congde Huo
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| |
Collapse
|
32
|
Yuan G, Zhou L, Yang Q, Ding H, Tan L, Peng L. Rational Development of a New Reaction-Based Ratiometric Fluorescent Probe with a Large Stokes Shift for Selective Detection of Bisulfite in Tap Water, Real Food Samples, Onion Tissues, and Zebrafish. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:4894-4902. [PMID: 33851836 DOI: 10.1021/acs.jafc.1c00592] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Bisulfite (HSO3-) is usually widely added to tap water and food because it has antibacterial, bleaching, and antioxidant effects. However, its abnormal addition would cause a series of serious diseases related to it. Therefore, development of an effective method for HSO3- detection was of great significance to human health. In this work, a new reaction-based ratiometric fluorescent probe KQ-SO2 was rationally designed, which could be used for the highly selective detection of HSO3- in tap water, real food samples, onion tissues, and zebrafish. Specifically, a positively charged benzo[e]indolium moiety and a carbazole group through a condensation reaction resulted in KQ-SO2, which displayed two well-resolved emission bands separated by 225 nm, fast response (1 min), and high selectivity and sensitivity toward HSO3- upon undergoing the Michael addition reaction, as well as low cytotoxicity in vitro. In addition, KQ-SO2 has been successfully applied for the detection of HSO3- in tap water, real food samples, onion tissues, and zebrafish with satisfactory results. We predict that KQ-SO2 could be used as a powerful tool to reveal the relationship between HSO3- and the human health.
Collapse
Affiliation(s)
- Gangqiang Yuan
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Liyi Zhou
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Qiaomei Yang
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Haiyuan Ding
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Libin Tan
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Longpeng Peng
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| |
Collapse
|
33
|
Li F, Zou L, Xu J, Liu F, Zhang X, Li H, Zhang G, Duan X. A high-performance colorimetric fluorescence sensor based on Michael addition reaction to detect HSO3− in real samples. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113201] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
Responsive small-molecule luminescence probes for sulfite/bisulfite detection in food samples. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116199] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
35
|
Mu X, Zhu J, Yan L, Tang N. A ratiometric fluorescent probe for the rapid and specific detection of HSO 3 - in water samples. LUMINESCENCE 2021; 36:923-927. [PMID: 33458934 DOI: 10.1002/bio.4016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/09/2021] [Accepted: 01/14/2021] [Indexed: 12/15/2022]
Abstract
Hydrosulphite (HSO3 - ), as a common and important chemical reagent, is widely used in everyday life, however excessive use and abuse of HSO3 - can cause potential harmful effects on the environment and in biological health. In this paper, we describe the design and preparation of a colorimetric and ratiometric fluorescence probe for the visual detection of HSO3 - (excitation wavelengths were, respectively, 336 nm and 520 nm). This method showed some advantages including simple preparation, high selectivity, fast response, and significant colour and fluorescence ratio (F450 /F594 ) changes in the presence of HSO3 - . In addition, this probe was used successfully for the detection of HSO3 - in real water samples and showed a good recovery rate range.
Collapse
Affiliation(s)
- Xinyue Mu
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi, China
| | - Jinbiao Zhu
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi, China
| | - Liqiang Yan
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi, China
| | - Ningli Tang
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi, China
| |
Collapse
|
36
|
A Highly Selective Turn-on Fluorescent and Naked-eye Colourimetric Dual-channel Probe for Cyanide Anions Detection in Water Samples. J Fluoresc 2021; 31:437-446. [PMID: 33410088 DOI: 10.1007/s10895-020-02677-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 12/28/2020] [Indexed: 01/17/2023]
Abstract
A highly selective turn-on fluorescent and naked-eye colourimetric dual-channel probe for cyanide anions (CN-) has been designed and characterized. In the mixed solution (DMSO / H2O, 9:1, v / v), only CN- could cause an increase in the UV absorption intensity and the corresponding fluorescence intensity increased, and other anions had no significant effect on the probe. After treatment with cyanide in the probe solution, the solution showed a noticeable colour change, from light yellow to purple. Moreover, a fluorescence spectrophotometer can be used to observe that the fluorescence intensity of the solution is significantly enhanced. The response of the colourimetric and fluorescent dual-channel probe to CN- was attributed to nucleophilic addition, and the mechanism was determined by 1H NMR spectroscopy. In addition, this probe was used to detect CN- in actual water samples, including river water, drinking water, and tap water. The spiked CN- recovery rate is very high (97.2%-100.06%), and analytical precision is also very high (RSD < 2%), which shows its feasibility and reliability for detecting cyanide ions in actual water samples.
Collapse
|
37
|
Song Q, Zhou B, Zhang D, Chi H, Jia H, Zhu P, Zhang Z, Meng Q, Zhang R. A reversible near-infrared fluorescence probe for the monitoring of HSO 3−/H 2O 2-regulated cycles in vivo. NEW J CHEM 2021. [DOI: 10.1039/d1nj03507j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A near-infrared (NIR) fluorescent probe (XC) was constructed for the reversible detection of HSO3−/H2O2 in biosystems. The practical applications of XC were also demonstrated by the quantitative analysis of HSO3− in white wine and sugar samples.
Collapse
Affiliation(s)
- Qiuying Song
- Key Laboratory for Functional Material, Educational Department of Liaoning Province, University of Science and Technology Liaoning, Anshan, Liaoning, 114051, P. R. China
| | - Bo Zhou
- Key Laboratory for Functional Material, Educational Department of Liaoning Province, University of Science and Technology Liaoning, Anshan, Liaoning, 114051, P. R. China
| | - Dongyu Zhang
- Key Laboratory for Functional Material, Educational Department of Liaoning Province, University of Science and Technology Liaoning, Anshan, Liaoning, 114051, P. R. China
| | - Haijun Chi
- Key Laboratory for Functional Material, Educational Department of Liaoning Province, University of Science and Technology Liaoning, Anshan, Liaoning, 114051, P. R. China
| | - Hongmin Jia
- Key Laboratory for Functional Material, Educational Department of Liaoning Province, University of Science and Technology Liaoning, Anshan, Liaoning, 114051, P. R. China
| | - Peixun Zhu
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning, 114051, P. R. China
| | - Zhiqiang Zhang
- Key Laboratory for Functional Material, Educational Department of Liaoning Province, University of Science and Technology Liaoning, Anshan, Liaoning, 114051, P. R. China
| | - Qingtao Meng
- Key Laboratory for Functional Material, Educational Department of Liaoning Province, University of Science and Technology Liaoning, Anshan, Liaoning, 114051, P. R. China
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, 4072, Australia
| |
Collapse
|
38
|
The research progress of organic fluorescent probe applied in food and drinking water detection. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213557] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
39
|
Tian L, Feng H, Dai Z, Zhang R. Resorufin-based responsive probes for fluorescence and colorimetric analysis. J Mater Chem B 2020; 9:53-79. [PMID: 33226060 DOI: 10.1039/d0tb01628d] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The fluorescence imaging technique has attracted increasing attention in the detection of various biological molecules in situ and in real-time owing to its inherent advantages including high selectivity and sensitivity, outstanding spatiotemporal resolution and fast feedback. In the past few decades, a number of fluorescent probes have been developed for bioassays and imaging by exploiting different fluorophores. Among various fluorophores, resorufin exhibits a high fluorescence quantum yield, long excitation/emission wavelength and pronounced ability in both fluorescence and colorimetric analysis. This fluorophore has been widely utilized in the design of responsive probes specific for various bioactive species. In this review, we summarize the advances in the development of resorufin-based fluorescent probes for detecting various analytes, such as cations, anions, reactive (redox-active) sulfur species, small molecules and biological macromolecules. The chemical structures of probes, response mechanisms, detection limits and practical applications are investigated, which is followed by the discussion of recent challenges and future research perspectives. This review article is expected to promote the further development of resorufin-based responsive fluorescent probes and their biological applications.
Collapse
Affiliation(s)
- Lu Tian
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, P. R. China.
| | | | | | | |
Collapse
|
40
|
He X, Xu W, Ding F, Xu C, Li Y, Chen H, Shen J. Reaction-Based Ratiometric and Colorimetric Chemosensor for Bioimaging of Biosulfite in Live Cells, Zebrafish, and Food Samples. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:11774-11781. [PMID: 32886514 DOI: 10.1021/acs.jafc.0c03983] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this work, a reaction-based ratiometric and colorimetric sensor was designed and synthesized for probing bisulfite (HSO3-) by coupling coumarin (CM) with barbituric (BA) moiety. Further tests have shown that CM-BA has high selectivity and sensitivity for the recognition of HSO3-, which can be applied for the detection of HSO3- in environmental and biological systems very effectively. The fluorescence intensity ratios (F462/F568) exhibited an outstanding HSO3--dependent response with ultrafast response time (within 20 s) and a lower detection limit (105 nM). Meanwhile, the color of the CM-BA solution changed from green to colorless during the recognition process, and its fluorescence changed from green to blue. The mechanism of response is confirmed by the density functional theory (DFT) model. In summary, CM-BA has demonstrated low toxicity and good permeability, which can be applied for imaging HSO3- in cells and zebrafish safely and effectively. Besides, this novel sensor CM-BA successfully realized the quantification of the concentration of HSO3- in paper strips and food samples.
Collapse
Affiliation(s)
- Xiaojun He
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Wei Xu
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Feng Ding
- Department of Microbiology & Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Chuchu Xu
- School of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yahui Li
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Hong Chen
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, Luoyang Normal University, Luoyang, Henan 471934, China
| | - Jianliang Shen
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| |
Collapse
|
41
|
Yu X, Li P, Sun Y, Zhou S, Cao D, Liu Z. Discriminable anion sensing properties of 3-pyrenyl-2-pyridyl-acrylonitrile and its methylate. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.107970] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
42
|
|
43
|
Zhou F, Feng H, Li H, Wang Y, Zhang Z, Kang W, Jia H, Yang X, Meng Q, Zhang R. Red-Emission Probe for Ratiometric Fluorescent Detection of Bisulfite and Its Application in Live Animals and Food Samples. ACS OMEGA 2020; 5:5452-5459. [PMID: 32201837 PMCID: PMC7081445 DOI: 10.1021/acsomega.0c00063] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 02/20/2020] [Indexed: 05/05/2023]
Abstract
Key roles of bisulfite (HSO3 -) in food quality assurance and human health necessitate a reliable analytical method for rapid, sensitive, and selective detection of HSO3 -. Herein, a new red-emitting ratiometric fluorescence probe, BIQ, is reported for sensitive and selective detection of HSO3 - in food samples and live animals. Probe BIQ recognizes HSO3 - via a 1,4-nucleophilic addition reaction. As a result of this specific reaction, emission intensities at 625 and 475 nm are dramatically changed, allowing the detection of HSO3 - in a ratiometric fluorescence model in an aqueous solution. The obvious changes of solution color from pink to transparent and fluorescence color from rose-red to cyan allow the detection of HSO3 - by naked eyes. Furthermore, probe BIQ has fast response in color and fluorescence (<2 min), excellent selectivity, and a low detection limit (0.29 μM), which enables its application in HSO3 - detection in food samples and live organisms. The practical applications of probe BIQ are then demonstrated by the visualization of HSO3 - in live animals (zebrafish and nude mouse) as well as the determination of HSO3 - in white wine and sugar.
Collapse
Affiliation(s)
- Fang Zhou
- School
of Chemical Engineering, University of Science
and Technology Liaoning, Anshan, Liaoning 114051, China
| | - Huan Feng
- School
of Chemical Engineering, University of Science
and Technology Liaoning, Anshan, Liaoning 114051, China
| | - Haibo Li
- Shandong
Provincial Key Laboratory of Chemical Energy Storage and Novel Cell
Technology, Department of Chemistry, Liaocheng
University, Liaocheng 252059, China
| | - Yue Wang
- School
of Chemical Engineering, University of Science
and Technology Liaoning, Anshan, Liaoning 114051, China
| | - Zhiqiang Zhang
- School
of Chemical Engineering, University of Science
and Technology Liaoning, Anshan, Liaoning 114051, China
| | - Wenjun Kang
- Shandong
Provincial Key Laboratory of Chemical Energy Storage and Novel Cell
Technology, Department of Chemistry, Liaocheng
University, Liaocheng 252059, China
| | - Hongmin Jia
- School
of Chemical Engineering, University of Science
and Technology Liaoning, Anshan, Liaoning 114051, China
| | - Xinyi Yang
- School
of Chemical Engineering, University of Science
and Technology Liaoning, Anshan, Liaoning 114051, China
| | - Qingtao Meng
- School
of Chemical Engineering, University of Science
and Technology Liaoning, Anshan, Liaoning 114051, China
| | - Run Zhang
- School
of Chemical Engineering, University of Science
and Technology Liaoning, Anshan, Liaoning 114051, China
- Australian
Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane 4072, Australia
| |
Collapse
|
44
|
Wang XB, Li HJ, Chi Z, Zeng X, Wang LJ, Cheng YF, Wu YC. A novel mitochondrial targeting fluorescent probe for ratiometric imaging SO2 derivatives in living cells. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2019.112339] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
45
|
Li NN, Bi CF, Zhang X, Xu CG, Fan CB, Gao WS, Zong ZA, Zuo SS, Niu CF, Fan YH. A bifunctional probe based on naphthalene derivative for absorbance-ratiometic detection of Ag+ and fluorescence “turn-on” sensing of Zn2+ and its practical application in water samples, walnut and living cells. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2019.112299] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
46
|
Chen S, Hou P, Sun J, Wang H, Liu L. Imidazo[1,5-α]pyridine-based fluorescent probe with a large Stokes shift for specific recognition of sulfite. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 225:117508. [PMID: 31499393 DOI: 10.1016/j.saa.2019.117508] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 08/27/2019] [Accepted: 09/02/2019] [Indexed: 06/10/2023]
Abstract
By taking advantage of the intramolecular charge transfer (ICT) process, we presented a novel fluorescent probe IPY-SO2 based on imidazo[1,5-α]pyridine derivative for detecting SO32- with a low detection limit (70 nM). Combining its favorable turn-on fluorescence feature (75-fold), rapid response (5 min), high selectivity, large Stokes shift (174 nm) and low cytotoxicity, IPY-SO2 was successfully applied to imaging SO32 in living MCF-7 cells and zebrafish.
Collapse
Affiliation(s)
- Song Chen
- College of Pharmacy, Qiqihar Medical University, 333 Bukui Street, Qiqihar, Heilongjiang Province 161006, PR China,.
| | - Peng Hou
- College of Pharmacy, Qiqihar Medical University, 333 Bukui Street, Qiqihar, Heilongjiang Province 161006, PR China
| | - Jingwen Sun
- College of Pharmacy, Qiqihar Medical University, 333 Bukui Street, Qiqihar, Heilongjiang Province 161006, PR China
| | - Haijun Wang
- College of Pharmacy, Qiqihar Medical University, 333 Bukui Street, Qiqihar, Heilongjiang Province 161006, PR China
| | - Lei Liu
- College of Pharmacy, Qiqihar Medical University, 333 Bukui Street, Qiqihar, Heilongjiang Province 161006, PR China
| |
Collapse
|
47
|
Han Q, Zhou F, Wang Y, Feng H, Meng Q, Zhang Z, Zhang R. A Redox-Switchable Colorimetric Probe for "Naked-Eye" Detection of Hypochlorous Acid and Glutathione. Molecules 2019; 24:E2455. [PMID: 31277409 PMCID: PMC6651190 DOI: 10.3390/molecules24132455] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/27/2019] [Accepted: 07/03/2019] [Indexed: 12/05/2022] Open
Abstract
We report the development of a new colorimetric probe (L-ol) for investigations of the redox process regulated by hypochlorous acid (HOCl) and glutathione (GSH). The HOCl/GSH redox-switching cycle process was investigated in detail by UV-vis absorption spectroscopy, colorimetric analysis assay and high-resolution mass spectrometry (HRMS). The switchable absorbance responses were attributed to the HOCl-induced oxidation of the p-methoxyphenol unit to the benzoquinone derivative (L-one) and sequential reduction of L-one to hydroquinone (L-ol') by GSH. In phosphate-buffered saline (PBS) buffer, the absorbance of L-ol at 619 nm underwent a remarkable bathochromic-shift, accompanied by a color change from pale yellow to blue in the presence of HOCl. With further addition of GSH, the absorbance of L-one exclusively recovered to the original level. Meanwhile, the blue-colored solution returned to the naive pale yellow color in the presence of GSH. The detection limits for HOCl and GSH were calculated to be 6.3 and 96 nM according to the IUPAC criteria. Furthermore, L-ol-loaded chromatography plates have been prepared and successfully applied to visualize and quantitatively analyze HOCl in several natural waters.
Collapse
Affiliation(s)
- Qian Han
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning 114051, China
- School of Chemistry and Life Science, Anshan Normal University, Anshan 114007, China
| | - Fang Zhou
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning 114051, China
| | - Yue Wang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning 114051, China
| | - Huan Feng
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning 114051, China
| | - Qingtao Meng
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning 114051, China.
| | - Zhiqiang Zhang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning 114051, China.
| | - Run Zhang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning 114051, China.
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane 4072, Australia.
| |
Collapse
|
48
|
Shi J, Shu W, Tian Y, Wu Y, Jing J, Zhang R, Zhang X. A real-time ratiometric fluorescent probe for imaging of SO2 derivatives in mitochondria of living cells. RSC Adv 2019; 9:22348-22354. [PMID: 35519500 PMCID: PMC9066615 DOI: 10.1039/c9ra03207j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 06/20/2019] [Indexed: 12/21/2022] Open
Abstract
A real-time ratiometric fluorescent probe (IN-CZ) for highly selective detection of sulfite was designed and synthesized, which is based on modulating the intramolecular charge transfer (ICT) of the hemicyanine dye platform. The mechanism of using the probe is mainly through the Michael addition that occurs between IN-CZ and sulfite with a detection limit of 2.99 × 10−5 M. IN-CZ displays a fast response (within 1 minute) and is highly selective for SO32−/HSO3− over ROS, biologically relevant ions, biological mercaptans and other reactive species. More importantly, IN-CZ was suitable for ratiometric fluorescence imaging in living cells, by real-time monitoring of SO32−/HSO3− changes in mitochondria targeted in living cells. A real-time ratiometric fluorescent probe (IN-CZ) for highly selective detection of sulfite was designed and synthesized, which is based on modulating the intramolecular charge transfer of the hemicyanine dye platform.![]()
Collapse
Affiliation(s)
- Junwei Shi
- Key Laboratory of Cluster Science of Ministry of Education
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing 100081
| | - Wei Shu
- Key Laboratory of Cluster Science of Ministry of Education
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing 100081
| | - Yong Tian
- Key Laboratory of Cluster Science of Ministry of Education
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing 100081
| | - Yulong Wu
- Key Laboratory of Cluster Science of Ministry of Education
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing 100081
| | - Jing Jing
- Key Laboratory of Cluster Science of Ministry of Education
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing 100081
| | - Rubo Zhang
- Key Laboratory of Cluster Science of Ministry of Education
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing 100081
| | - Xiaoling Zhang
- Key Laboratory of Cluster Science of Ministry of Education
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing 100081
| |
Collapse
|
49
|
Li S, Cao D, Hu Z, Li Z, Meng X, Han X, Ma W. A chemosensor with a paddle structure based on a BODIPY chromophore for sequential recognition of Cu2+ and HSO3−. RSC Adv 2019; 9:34652-34657. [PMID: 35530010 PMCID: PMC9073911 DOI: 10.1039/c9ra08345f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 10/23/2019] [Indexed: 11/21/2022] Open
Abstract
In this study, a highly selective chemosensor ML based on a BODIPY fluorescent chromophore was synthesized for sequential recognition of Cu2+ and HSO3− in a CH3OH/H2O (99 : 1 v/v) system, which contained three recognition sites and its structure characterized by 1H NMR, 13C NMR and ESI-HR-MS. The sensor ML showed an obvious “on–off” fluorescence quenching response toward Cu2+ and the ML-Cu2+ complex showed an “off–on” fluorescence enhancement response toward HSO3−. The detection limit of the sensor ML was 0.36 μM to Cu2+ and 1.4 μM to HSO3−. In addition, the sensor ML showed a 1 : 3 binding stoichiometry to Cu2+ and the recovery rate of ML-Cu2+ complex identifying HSO3− could be over 70%. Sensor ML showed remarkable detection ability in a pH range of 4–8. A highly selective chemosensor based on a BODIPY chromophore for sequential recognition of Cu2+ and HSO3−.![]()
Collapse
Affiliation(s)
- Shengling Li
- School of Chemical Engineering and Technology
- North University of China
- Taiyuan 030051
- P. R. China
| | - Duanlin Cao
- School of Chemical Engineering and Technology
- North University of China
- Taiyuan 030051
- P. R. China
| | - Zhiyong Hu
- School of Chemical Engineering and Technology
- North University of China
- Taiyuan 030051
- P. R. China
- National Demonstration Center for Experimental Comprehenisve Chemical Engineering Education
| | - Zhichun Li
- School of Chemical Engineering and Technology
- North University of China
- Taiyuan 030051
- P. R. China
| | - Xianjiao Meng
- School of Chemical Engineering and Technology
- North University of China
- Taiyuan 030051
- P. R. China
| | - Xinghua Han
- School of Chemical Engineering and Technology
- North University of China
- Taiyuan 030051
- P. R. China
- National Demonstration Center for Experimental Comprehenisve Chemical Engineering Education
| | - Wenbing Ma
- School of Chemical Engineering and Technology
- North University of China
- Taiyuan 030051
- P. R. China
- National Demonstration Center for Experimental Comprehenisve Chemical Engineering Education
| |
Collapse
|
50
|
Yang Y, Wang Y, Feng Y, Cao C, Song X, Zhang G, Liu W. Light-driven visualization of endogenous cysteine, homocysteine, and glutathione using a near-infrared fluorescent probe. J Mater Chem B 2019; 7:7723-7728. [DOI: 10.1039/c9tb01645g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Light-driven visualization of endogenous cysteine, homocysteine, and glutathione using a near-infrared fluorescent probe.
Collapse
Affiliation(s)
- Yang Yang
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Yingzhe Wang
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Yan Feng
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Chen Cao
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Xuerui Song
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Guolin Zhang
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Weisheng Liu
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| |
Collapse
|