1
|
Li B, Baima Y, De J, Wen D, Liu Y, Basang Z, Jiang N. Hypoxic stress caused apoptosis of MDBK cells by p53/BCL6-mitochondrial apoptosis pathway. Anim Biotechnol 2024; 35:2299241. [PMID: 38178593 DOI: 10.1080/10495398.2023.2299241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Hypoxia is an important characteristic of Tibetan plateau environment. It can lead to apoptosis, but the mechanism of apoptosis caused by hypoxic stress needs further clarification. Here, cattle kidney cell MDBK were used as cell model. The effect of hypoxic stress on apoptosis and its molecular mechanism were explored. MDBK cells were treated with hypoxic stress, apoptosis and mitochondrial apoptotic pathway were significantly increased, and the expression of B-cell lymphoma 6 (BCL6) was significantly decreased. Overexpressing or inhibiting BCL6 demonstrated that BCL6 inhibited the apoptosis. And the increase of apoptosis controlled by hypoxic stress was blocked by BCL6 overexpressing. MDBK cells were treated with hypoxic stress, the expression and the nuclear localization of p53 were significantly increased. Overexpressing or inhibiting p53 demonstrated that hypoxic stress suppressed the expression of BCL6 through p53. Together, these results indicated that hypoxic stress induced the apoptosis of MDBK cells, and BCL6 was an important negative factor for this regulation process. In MDBK cells, hypoxic stress suppressed the expression of BCL6 through p53/BCL6-mitochondrial apoptotic pathway. This study enhanced current understanding of the molecular mechanisms underlying the regulation of apoptosis by hypoxic stress in MDBK cells.
Collapse
Affiliation(s)
- Bin Li
- Institute of Animal Husbandry and Veterinary, Tibet Autonomous Regional Academy of Agricultural Sciences, Tibet, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Tibet, China
| | - Yangjin Baima
- Institute of Animal Husbandry and Veterinary, Tibet Autonomous Regional Academy of Agricultural Sciences, Tibet, China
| | - Ji De
- Institute of Animal Husbandry and Veterinary, Tibet Autonomous Regional Academy of Agricultural Sciences, Tibet, China
| | - Dongxu Wen
- Institute of Animal Husbandry and Veterinary, Tibet Autonomous Regional Academy of Agricultural Sciences, Tibet, China
| | - Yang Liu
- Institute of Animal Husbandry and Veterinary, Tibet Autonomous Regional Academy of Agricultural Sciences, Tibet, China
| | - Zhuzha Basang
- Institute of Animal Husbandry and Veterinary, Tibet Autonomous Regional Academy of Agricultural Sciences, Tibet, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Tibet, China
| | - Nan Jiang
- Institute of Animal Husbandry and Veterinary, Tibet Autonomous Regional Academy of Agricultural Sciences, Tibet, China
- Colleges of Life Science and Technology, Dalian University, Dalian Economic Technological Development Zone, Dalian, China
| |
Collapse
|
2
|
Yu W, Guo J, Mao L, Wang Q, Liu Y, Xu D, Ma J, Luo C. Glucose promotes cell growth and casein synthesis via ATF4/Nrf2-Sestrin2- AMPK-mTORC1 pathway in dairy cow mammary epithelial cells. Anim Biotechnol 2023; 34:3808-3818. [PMID: 37435839 DOI: 10.1080/10495398.2023.2228847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
In the dairy industry, glucose (Glu) is used as bioactive substance to increase milk yield. However, the molecular regulation underneath needs further clarification. Here, the regulation and its molecular mechanism of Glu on cell growth and casein synthesis of dairy cow mammary epithelial cells (DCMECs) were investigated. When Glu was added from DCMECs, both cell growth, β-casein expression and the mechanistic target of rapamycin complex 1 (mTORC1) pathway were increased. Overexpression and silencing of mTOR revealed that Glu promoted cell growth and β-casein expression through the mTORC1 pathway. When Glu was added from DCMECs, both Adenosine 5'-monophosphate-activated protein kinase α (AMPKα) and Sestrin2 (SESN2) expression were decreased. Overexpression and silencing of AMPKα or SESN2 uncovered that AMPKα suppressed cell growth and β-casein synthesis through inhibiting mTORC1 pathway, and SESN2 suppressed cell growth and β-casein synthesis through activating AMPK pathway. When Glu was depleted from DCMECs, both activating transcription factor 4 (ATF4) and nuclear factor (erythroid-derived 2)-like 2 (Nrf2) expression were increased. Overexpression or silencing of ATF4 or Nrf2 demonstrated that Glu depletion promoted SESN2 expression through ATF4 and Nrf2. Together, these results indicate that in DCMECs, Glu promoted cell growth and casein synthesis via ATF4/Nrf2-SESN2-AMPK-mTORC1 pathway.
Collapse
Affiliation(s)
- Wei Yu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, P. R. China
| | - Jinqi Guo
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, P. R. China
| | - Lei Mao
- College of Life Sciences, Shihezi University, Shihezi, P. R. China
| | - Qingzhu Wang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, P. R. China
| | - Yuanyuan Liu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, P. R. China
| | - Dong Xu
- Harbin Weike Biotechnology Co., Ltd, Harbin Veterinary Research Institute, CAAS, Harbin, P. R. China
| | - Jiage Ma
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, P. R. China
- Harbin Weike Biotechnology Co., Ltd, Harbin Veterinary Research Institute, CAAS, Harbin, P. R. China
| | - Chaochao Luo
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, P. R. China
- Taizhou Key Laboratory of Minimally Invasive Interventional Therapy & Artificial Intelligence, Taizhou Branch of Zhejiang Cancer Hospital (Taizhou Cancer Hospital), Taizhou, Zhejiang, China
| |
Collapse
|
3
|
Li B, Khan MZ, Khan IM, Ullah Q, Cisang ZM, Zhang N, Wu D, Huang B, Ma Y, Khan A, Jiang N, Zahoor M. Genetics, environmental stress, and amino acid supplementation affect lactational performance via mTOR signaling pathway in bovine mammary epithelial cells. Front Genet 2023; 14:1195774. [PMID: 37636261 PMCID: PMC10448190 DOI: 10.3389/fgene.2023.1195774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/26/2023] [Indexed: 08/29/2023] Open
Abstract
Mammary glands are known for their ability to convert nutrients present in the blood into milk contents. In cows, milk synthesis and the proliferation of cow mammary epithelial cells (CMECs) are regulated by various factors, including nutrients such as amino acids and glucose, hormones, and environmental stress. Amino acids, in particular, play a crucial role in regulating cell proliferation and casein synthesis in mammalian epithelial cells, apart from being building blocks for protein synthesis. Studies have shown that environmental factors, particularly heat stress, can negatively impact milk production performance in dairy cattle. The mammalian target of rapamycin complex 1 (mTORC1) pathway is considered the primary signaling pathway involved in regulating cell proliferation and milk protein and fat synthesis in cow mammary epithelial cells in response to amino acids and heat stress. Given the significant role played by the mTORC signaling pathway in milk synthesis and cell proliferation, this article briefly discusses the main regulatory genes, the impact of amino acids and heat stress on milk production performance, and the regulation of mTORC signaling pathway in cow mammary epithelial cells.
Collapse
Affiliation(s)
- Bin Li
- Institute of Animal Husbandry and Veterinary, Tibet Autonomous Regional Academy of Agricultural Sciences, Lhasa, China
| | - Muhammad Zahoor Khan
- Liaocheng Research Institute of Donkey High‐Efficiency Breeding and Ecological Feeding, Agricultural Science and Engineering School, Liaocheng University, Liaocheng, China
- Faculty of Veterinary and Animal Sciences, The University of Agriculture, Dera Ismail Khan, Pakistan
| | - Ibrar Muhammad Khan
- Anhui Province Key Laboratory of Embryo Development and Reproduction Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, China
| | - Qudrat Ullah
- Faculty of Veterinary and Animal Sciences, The University of Agriculture, Dera Ismail Khan, Pakistan
| | - Zhuo-Ma Cisang
- Institute of Animal Husbandry and Veterinary, Tibet Autonomous Regional Academy of Agricultural Sciences, Lhasa, China
| | - Nan Zhang
- Tibet Autonomous Region Animal Husbandry Station, Lhasa, China
| | - Dan Wu
- Institute of Animal Husbandry and Veterinary, Tibet Autonomous Regional Academy of Agricultural Sciences, Lhasa, China
| | - Bingjian Huang
- Liaocheng Research Institute of Donkey High‐Efficiency Breeding and Ecological Feeding, Agricultural Science and Engineering School, Liaocheng University, Liaocheng, China
- College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Yulin Ma
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Adnan Khan
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Nan Jiang
- Institute of Animal Husbandry and Veterinary, Tibet Autonomous Regional Academy of Agricultural Sciences, Lhasa, China
| | - Muhammad Zahoor
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
4
|
Chen J, Lin T, Zhang S, Yue X, Liu X, Wu C, Liang Y, Zeng X, Ren M, Chen F, Guan W, Zhang S. Niacin/β-hydroxybutyrate regulates milk fat and milk protein synthesis via the GPR109A/G i/mTORC1 pathway. Food Funct 2023; 14:2642-2656. [PMID: 36866679 DOI: 10.1039/d3fo00127j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
As a crucial receptor of BHBA and niacin, GPR109A is largely expressed in the mammary gland. However, the role of GPR109A in milk synthesis and its underlying mechanism is still largely unknown. In this study, we first investigated the effect of GPR109A agonists (niacin/BHBA) on milk fat and milk protein synthesis in a mouse mammary epithelial cell line (HC11) and PMECs (porcine mammary epithelial cells). The results showed that both niacin and BHBA promote milk fat and milk protein synthesis with the activation of mTORC1 signaling. Importantly, knockdown GPR109A attenuated the niacin-induced increase of milk fat and protein synthesis and the niacin-induced activation of mTORC1 signaling. Furthermore, we found that GPR109A downstream G protein-Gαi and -Gβγ participated in the regulation of milk synthesis and the activation of mTORC1 signaling. Consistent with the finding in vitro, dietary supplementation with niacin increases milk fat and protein synthesis in mice with the activation of GPR109A-mTORC1 signaling. Collectively, GPR109A agonists promote the synthesis of milk fat and milk protein through the GPR109A/Gi/mTORC1 signaling pathway.
Collapse
Affiliation(s)
- Jiaming Chen
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| | - Tongbin Lin
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| | - Shuchang Zhang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| | - Xianhuai Yue
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| | - XingHong Liu
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| | - Caichi Wu
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| | - Yunyi Liang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| | - Xiangfang Zeng
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture and Rural Affairs Feed Industry Center, China Agricultural University, Beijing, China
| | - Man Ren
- College of Animal Science, Anhui Science and Technology University, Anhui Provincial Key Laboratory of Animal Nutritional Regulation and Health, Fengyang, China
| | - Fang Chen
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Wutai Guan
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Shihai Zhang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
5
|
An G, Park J, Lim W, Song G. Folpet promotes apoptosis of bovine mammary epithelial cells via disruption of redox homeostasis and activation of MAPK cascades. Food Chem Toxicol 2023; 175:113709. [PMID: 36889428 DOI: 10.1016/j.fct.2023.113709] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/22/2023] [Accepted: 03/04/2023] [Indexed: 03/08/2023]
Abstract
Folpet, a phthalimide fungicide, is an agrochemical used to prevent fungal diseases in several crops. The toxicity of folpet has been demonstrated in Cyprinus carpio, pigs, and the human respiratory system. However, despite the possibilities of ingestion of folpet through feed, detrimental influences of folpet on dairy cattle have not been documented. Thus, this study aimed to record the harmful effects of folpet on the bovine mammary system and milk production using mammary epithelial cells (MAC-T cells), which play an essential role in the maintenance of yield and quality of milk production. In this study, we first confirmed that folpet exhibited cytotoxicity against MAC-T cells in both 2D and 3D cultures. Folpet treatment caused apoptosis, dysregulated intracellular calcium levels, and mitochondrial membrane potential, leading to cell death. We further demonstrated the induction of oxidative stress upon folpet treatment by assessing reactive oxygen species (ROS) content and lipid peroxidation in MAC-T cells. ROS generation following folpet treatment induced activation of MAPK cascades, including ERK1/2, JNK, and p38 signaling. This is the first report highlighting the detrimental impacts of folpet on bovine mammary glands and, consequently, the dairy industry by elucidating intracellular mechanisms using MAC-T cells.
Collapse
Affiliation(s)
- Garam An
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Junho Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Whasun Lim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
6
|
Luo C, Li N, Wang Q, Li C. Sodium acetate promotes fat synthesis by suppressing TATA element modulatory factor 1 in bovine mammary epithelial cells. ANIMAL NUTRITION 2023; 13:126-136. [PMID: 37123620 PMCID: PMC10130354 DOI: 10.1016/j.aninu.2023.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 01/13/2023]
Abstract
Short-chain fatty acids are important nutrients that regulate milk fat synthesis. They regulate milk synthesis via the sterol regulatory element binding protein 1 (SREBP1) pathway; however, the details are still unknown. Here, the regulation and mechanism of sodium acetate (SA) in milk fat synthesis in bovine mammary epithelial cells (BMECs) were assessed. BMECs were treated with SA supplementation (SA+) or without SA supplementation (SA-), and milk fat synthesis and activation of the SREBP1 pathway were increased (P = 0.0045; P = 0.0042) by SA+ and decreased (P = 0.0068; P = 0.0031) by SA-, respectively. Overexpression or inhibition of SREBP1 demonstrated that SA promoted milk fat synthesis (P = 0.0045) via the SREBP1 pathway. Overexpression or inhibition of TATA element modulatory factor 1 (TMF1) demonstrated that TMF1 suppressed activation of the SREBP1 pathway (P = 0.0001) and milk fat synthesis (P = 0.0022) activated by SA+. Overexpression or inhibition of TMF1 and SREBP1 showed that TMF1 suppressed milk fat synthesis (P = 0.0073) through the SREBP1 pathway. Coimmunoprecipitation analysis revealed that TMF1 interacted with SREBP1 in the cytoplasm and suppressed the nuclear localization of SREBP1 (P = 0.0066). The absence or presence of SA demonstrated that SA inhibited the expression of TMF1 (P = 0.0002) and the interaction between TMF1 and SREBP1 (P = 0.0001). Collectively, our research suggested that TMF1 was a new negative regulator of milk fat synthesis. In BMECs, SA promoted the SREBP1 pathway and milk fat synthesis by suppressing TMF1. This study enhances the current understanding of the regulation of milk fat synthesis and provides new scientific data for the regulation of milk fat synthesis.
Collapse
|
7
|
Gai Z, Wang Y, Wang J, Fu J, Tian L, Li X, Zhao J, Gong G. Downregulation of CASTOR1 Inhibits Heat-Stress-Induced Apoptosis and Promotes Casein and Lipid Synthesis in Mammary Epithelial Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5386-5395. [PMID: 35442666 DOI: 10.1021/acs.jafc.2c00877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Heat stress is one of the most important factors limiting the milk yields of dairy animals. This decline can be attributed to the heat-stress-induced apoptosis of mammary epithelial cells (MECs). The cytosolic arginine sensor for mTORC1 subunit 1 (CASTOR1) is a crucial upstream regulator of the mechanistic target of rapamycin complex 1 (mTORC1) signaling, which has close connections with apoptosis. However, the specific roles of CASTOR1 in regulating the apoptosis and lactation of MECs are still obscure. In the present study, we found that heat stress promotes apoptosis and CASTOR1's expression in HC11 cells. Downregulation of CASTOR1 inhibits heat-stress-induced apoptosis through a ROS-independent pathway. In addition, silencing of CASTOR1 promotes cell proliferation, cell cycle progression, and milk component synthesis, and overexpressing of CASTOR1 reverses these observations. Furthermore, we found that silencing of CASTOR1 contributes to the nuclear transport of SREBP1 and promotes lipid synthesis. This study demonstrates the pivotal roles of CASTOR1 in heat-stress-induced apoptosis and milk component synthesis in MECs.
Collapse
Affiliation(s)
- Zhongchao Gai
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, China
| | - Yujiao Wang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, China
| | - Jie Wang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, China
| | - Jiapeng Fu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, China
| | - Lu Tian
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, China
| | - Xue Li
- Department of Cardiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an 710038, Shaanxi, China
| | - Jieqiong Zhao
- Department of Cardiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an 710038, Shaanxi, China
| | - Guoli Gong
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, China
| |
Collapse
|
8
|
Chen Y, Ma Y, Ji Q, Yang X, Feng X, Yao R, Cheng X, Li T, Wang Y, Wang Z. Intracellular Staphylococcus aureus Infection Decreases Milk Protein Synthesis by Preventing Amino Acid Uptake in Bovine Mammary Epithelial Cells. Front Vet Sci 2021; 8:756375. [PMID: 34869729 PMCID: PMC8636274 DOI: 10.3389/fvets.2021.756375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/22/2021] [Indexed: 11/13/2022] Open
Abstract
Staphylococcus aureus (S. aureus) is one of the main pathogens in cow mastitis, colonizing mammary tissues and being internalized into mammary epithelial cells, causing intracellular infection in the udder. Milk that is produced by cows that suffer from mastitis due to S. aureus is associated with decreased production and changes in protein composition. However, there is limited information on how mastitis-inducing bacteria affect raw milk, particularly with regard to protein content and protein composition. The main purpose of this work was to examine how S. aureus infection affects milk protein synthesis in bovine mammary epithelial cells (BMECs). BMECs were infected with S. aureus, and milk protein and amino acid levels were determined by ELISA after S. aureus invasion. The activity of mTORC1 signaling and the transcription factors NF-κB and STAT5 and the expression of the amino acid transporters SLC1A3 and SLC7A5 were measured by western blot or immunofluorescence and RT-qPCR. S. aureus was internalized by BMECs in vitro, and the internalized bacteria underwent intracellular proliferation. Eight hours after S. aureus invasion, milk proteins were downregulated, and the level of BMECs that absorbed Glu, Asp, and Leu from the culture medium and the exogenous amino acids induced β-casein synthesis declined. Further, the activity of mTORC1 signaling, NF-κB, and STAT5 was impaired, and SLC1A3 and SLC7A5 were downregulated. Eight hours of treatment with 100 nM rapamycin inhibited NF-κB and STAT5 activity, SLC1A3 and SLC7A5 expression, and milk protein synthesis in BMECs. Thus mTORC1 regulates the expression of SLC1A3 and SLC7A5 through NF-κB and STAT5. These findings constitute a model by which S. aureus infection suppresses milk protein synthesis by decreasing amino acids uptake in BMECs.
Collapse
Affiliation(s)
- Yuhao Chen
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China.,School of Life Sciences and Technology, Jining Normal University, Jining, China
| | - Yuze Ma
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Qiang Ji
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Xiaoru Yang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Xue Feng
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Ruiyuan Yao
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Xiaoou Cheng
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Tingting Li
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yanfeng Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Zhigang Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| |
Collapse
|
9
|
Han M, Zhang M. The regulatory mechanism of amino acids on milk protein and fat synthesis in mammary epithelial cells: a mini review. Anim Biotechnol 2021; 34:402-412. [PMID: 34339350 DOI: 10.1080/10495398.2021.1950743] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Mammary epithelial cell (MEC) is the basic unit of the mammary gland that synthesizes milk components including milk protein and milk fat. MECs can sense to extracellular stimuli including nutrients such as amino acids though different sensors and signaling pathways. Here, we review recent advances in the regulatory mechanism of amino acids on milk protein and fat synthesis in MECs. We also highlight how these mechanisms reflect the amino acid requirements of MECs and discuss the current and future prospects for amino acid regulation in milk production.
Collapse
Affiliation(s)
- Meihong Han
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Minghui Zhang
- College of Animal Science, Yangtze University, Jingzhou, China
| |
Collapse
|
10
|
Luo C, Peng W, Kang J, Chen C, Peng J, Wang Y, Tang Q, Xie H, Li Y, Pan X. Glutamine Regulates Cell Growth and Casein Synthesis through the CYTHs/ARFGAP1-Arf1-mTORC1 Pathway in Bovine Mammary Epithelial Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:6810-6819. [PMID: 34096300 DOI: 10.1021/acs.jafc.1c02223] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In the dairy industry, glutamine (Gln) is often used as a feed additive to increase milk yield and quality; however, the molecular regulation underneath needs further clarification. Here, with bovine mammary epithelial cells (BMECs), the effects and mechanisms of Gln on cell growth and casein synthesis were assessed. When Gln was added or depleted from BMECs, both cell growth and β-casein (CSN2) expression were increased or decreased, respectively. Overexpressing or inhibiting the mechanistic target of rapamycin (mTOR) revealed that Gln regulated cell growth and CSN2 synthesis through the mTORC1 pathway. A similar intervention of ADP-ribosylation factor 1 (Arf1) uncovered that Gln activated the mTORC1 pathway through Arf1. We next observed that both guanine nucleotide exchange factors, Cytohesin-1/2/3 (CYTH1/2/3, CYTHs) and ADP-ribosylation factor GTPase activating protein 1 (ARFGAP1), interacted with Arf1. Inhibiting CYTHs or ARFGAP1 showed that Gln supplement or depletion activated or inactivated Arf1 through CYTHs or ARFGAP1, respectively. Collectively, this study demonstrated that Gln positively regulated cell growth and casein synthesis in BMECs, which works through the CYTHs/ARFGAP1-Arf1-mTORC1 pathway. These results greatly enhanced current understanding regarding the regulation of the mTOR pathway and provided new insights for the processes of cell growth and casein synthesis by amino acids, particularly Gln.
Collapse
|
11
|
Dai W, Zhao F, Liu J, Liu H. ASCT2 Is Involved in SARS-Mediated β-Casein Synthesis of Bovine Mammary Epithelial Cells with Methionine Supply. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:13038-13045. [PMID: 31597423 DOI: 10.1021/acs.jafc.9b03833] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The methionine (Met) uptake into mammary cells depends upon the corresponding amino acid (AA) transporters, which play a regulatory role in the mammary protein production beyond transport. Our previous studies have identified that seryl-tRNA synthetase (SARS) could be a novel mediator to regulate essential AA-stimulated casein synthesis in primary bovine mammary epithelial cells (BMECs). However, the regulatory mechanisms of Met in milk protein production in dairy cows remain further clarified. Here, we aimed to investigate the effects of Met on milk protein synthesis in BMECs and explore the underlying mechanism. The effects of Met on the AA transporter, casein synthesis, and the related signaling pathway were evaluated in the BMECs treated with 0.6 mM Met for 6 h combined with or without the inhibition of AA transporter (ASCT2, a neutral AA transporter) activity by the corresponding inhibitor (GPNA). Besides, the effects of SARS on the cells were mainly evaluated in the BMECs treated with 0.6 mM Met for 6 h together with or without SARS knockdown by RNAi interference. The gene expression of AA transporters and pathway-related genes were analyzed by the real-time quantitative polymerase chain reaction method, and the protein expression of related proteins were determined by the western blot assay. Results showed that 0.6 mM Met remarkably enhanced cell growth and β-casein synthesis compared to the supply of other Met concentrations. Among 13 amino acid transporters, 0.6 mM Met highly increased ASCT2 expression. This Met-stimulated ASCT2 expression and the enhanced mammary intracellular Met uptake were both decreased by the addition of 500 μM GPNA, an inhibitor of ASCT2. In the presence of 0.6 mM Met, the inhibition of ASCT2 activity (by GPNA) and SARS expression (by RNAi) both reduced β-casein synthesis. Additionally, 0.6 mM Met increased the gene expression of mTOR, S6K1, 4EBP1, and Akt; in contrast, the inhibition of ASCT2 by GPNA lowered the gene expression of these four genes. Collectively, this work suggests that ASCT2 is involved in the SARS-mediated Met stimulation of β-casein synthesis through enhancing mammary Met uptake and activating the mTOR signaling pathway in BMECs.
Collapse
Affiliation(s)
- Wenting Dai
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Fengqi Zhao
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Department of Animal and Veterinary Sciences, University of Vermont, Burlington, Vermont 05405, United States
| | - Jianxin Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Hongyun Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| |
Collapse
|
12
|
Liu Y, Du X, Huang Z, Zheng Y, Quan N. Sestrin 2 controls the cardiovascular aging process via an integrated network of signaling pathways. Ageing Res Rev 2020; 62:101096. [PMID: 32544433 DOI: 10.1016/j.arr.2020.101096] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 05/03/2020] [Accepted: 06/04/2020] [Indexed: 02/07/2023]
Abstract
As an inevitable biological process, cardiovascular aging is the greatest risk factor for cardiovascular diseases (CVDs). Sestrin 2 (Sesn2), a stress-inducible and age-related protein associated with various stress conditions, plays a pivotal role in slowing this process. It acts as an anti-aging agent, mainly through its antioxidant enzymatic activity and regulation of antioxidant signaling pathways, as well as by activating adenosine monophosphate-activated protein kinase and inhibiting mammalian target of rapamycin complex 1. In this review, we first introduce the biochemical functions of Sesn2 in the cardiovascular aging process, and describe how Sesn2 expression is regulated under various stress conditions. Next, we emphasize the role of Sesn2 signal transduction in a series of age-related CVDs, including hypertension, myocardial ischemia and reperfusion, atherosclerosis, and heart failure, as well as provide potential mechanisms for the association of Sesn2 with CVDs. Finally, we present the potential therapeutic applications of Sesn2-directed therapy and future prospects.
Collapse
Affiliation(s)
- Yunxia Liu
- Cardiovascular Center, First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Xiaoyu Du
- Cardiovascular Center, First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Zhehao Huang
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130031, China
| | - Yang Zheng
- Cardiovascular Center, First Hospital of Jilin University, Changchun, Jilin, 130021, China.
| | - Nanhu Quan
- Cardiovascular Center, First Hospital of Jilin University, Changchun, Jilin, 130021, China.
| |
Collapse
|
13
|
Amino acid transportation, sensing and signal transduction in the mammary gland: key molecular signalling pathways in the regulation of milk synthesis. Nutr Res Rev 2020; 33:287-297. [DOI: 10.1017/s0954422420000074] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AbstractThe mammary gland, a unique exocrine organ, is responsible for milk synthesis in mammals. Neonatal growth and health are predominantly determined by quality and quantity of milk production. Amino acids are crucial maternal nutrients that are the building blocks for milk protein and are potential energy sources for neonates. Recent advances made regarding the mammary gland further demonstrate that some functional amino acids also regulate milk protein and fat synthesis through distinct intracellular and extracellular pathways. In the present study, we discuss recent advances in the role of amino acids (especially branched-chain amino acids, methionine, arginine and lysine) in the regulation of milk synthesis. The present review also addresses the crucial questions of how amino acids are transported, sensed and transduced in the mammary gland.
Collapse
|