1
|
Zhou L, Cai X, Wang Y, Yang J, Wang Y, Deng J, Ye D, Zhang L, Liu Y, Ma S. Chemistry and biology of natural stilbenes: an update. Nat Prod Rep 2025; 42:359-405. [PMID: 39711130 DOI: 10.1039/d4np00033a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Covering: 2009 up to the end of 2023Stilbenes, an emblematic group of polyphenols, have attracted the attention of numerous researchers owing to their intriguing polycyclic architectures and diverse bioactivities. In this updated review, natural stilbenes were analysed, especially oligomeric stilbenes, which are an emblematic group of polyphenols that harbor intriguing polycyclic architectures and diverse bioactivities compared with those previously anticipated. Oligomeric stilbenes with unique skeletons comprise a large majority of natural stilbenes owing to their structural changes and different substitutions on the phenyl rings. These compounds can be promising sources of lead compounds for studying new drugs and medicines. In addition, the exploration of unusual structures of oligomeric stilbenes such as polyflavanostilbenes A and B, analysing their absolute stereochemistry, and improving their yield using synthetic biology methods have recently gained interest. This review provides a systematic overview of 409 new stilbenes, which were isolated and identified over time from January 2009 to December 2023, focusing on the classification and biomimetic syntheses of oligomeric stilbenes, in addition to presenting meaningful insights into their structural diversity and biological activities, which will inspire further investigations of biological activities, structure-activity relationships, and screening of drug candidates.
Collapse
Affiliation(s)
- Lipeng Zhou
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Xinyu Cai
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ying Wang
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing 100050, China
| | - Jianbo Yang
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing 100050, China
| | - Yadan Wang
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing 100050, China
| | - Jialing Deng
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Danni Ye
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Lanzhen Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Yue Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Shuangcheng Ma
- Chinese Pharmacopoeia Commission, Beijing 100061, China.
| |
Collapse
|
2
|
Martiniakova M, Sarocka A, Penzes N, Biro R, Kovacova V, Mondockova V, Sevcikova A, Ciernikova S, Omelka R. Protective Role of Dietary Polyphenols in the Management and Treatment of Type 2 Diabetes Mellitus. Nutrients 2025; 17:275. [PMID: 39861406 PMCID: PMC11767469 DOI: 10.3390/nu17020275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/09/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
Type 2 diabetes mellitus (T2DM), a serious metabolic disorder, is a worldwide health problem due to the alarming rise in prevalence and elevated morbidity and mortality. Chronic hyperglycemia, insulin resistance, and ineffective insulin effect and secretion are hallmarks of T2DM, leading to many serious secondary complications. These include, in particular, cardiovascular disorders, diabetic neuropathy, nephropathy and retinopathy, diabetic foot, osteoporosis, liver damage, susceptibility to infections and some cancers. Polyphenols such as flavonoids, phenolic acids, stilbenes, tannins, and lignans constitute an extensive and heterogeneous group of phytochemicals in fresh fruits, vegetables and their products. Various in vitro studies, animal model studies and available clinical trials revealed that flavonoids (e.g., quercetin, kaempferol, rutin, epicatechin, genistein, daidzein, anthocyanins), phenolic acids (e.g., chlorogenic, caffeic, ellagic, gallic acids, curcumin), stilbenes (e.g., resveratrol), tannins (e.g., procyanidin B2, seaweed phlorotannins), lignans (e.g., pinoresinol) have the ability to lower hyperglycemia, enhance insulin sensitivity and improve insulin secretion, scavenge reactive oxygen species, reduce chronic inflammation, modulate gut microbiota, and alleviate secondary complications of T2DM. The interaction between polyphenols and conventional antidiabetic drugs offers a promising strategy in the management and treatment of T2DM, especially in advanced disease stages. Synergistic effects of polyphenols with antidiabetic drugs have been documented, but also antagonistic interactions that may impair drug efficacy. Therefore, additional research is required to clarify mutual interactions in order to use the knowledge in clinical applications. Nevertheless, dietary polyphenols can be successfully applied as part of supportive treatment for T2DM, as they reduce both obvious clinical symptoms and secondary complications.
Collapse
Affiliation(s)
- Monika Martiniakova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 94901 Nitra, Slovakia; (R.B.); (V.K.)
| | - Anna Sarocka
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 94901 Nitra, Slovakia; (A.S.); (N.P.); (V.M.)
| | - Noemi Penzes
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 94901 Nitra, Slovakia; (A.S.); (N.P.); (V.M.)
| | - Roman Biro
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 94901 Nitra, Slovakia; (R.B.); (V.K.)
| | - Veronika Kovacova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 94901 Nitra, Slovakia; (R.B.); (V.K.)
| | - Vladimira Mondockova
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 94901 Nitra, Slovakia; (A.S.); (N.P.); (V.M.)
| | - Aneta Sevcikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, 84505 Bratislava, Slovakia; (A.S.); (S.C.)
| | - Sona Ciernikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, 84505 Bratislava, Slovakia; (A.S.); (S.C.)
| | - Radoslav Omelka
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 94901 Nitra, Slovakia; (A.S.); (N.P.); (V.M.)
| |
Collapse
|
3
|
Ma W, Ren H, Meng X, Liu S, Du K, Fang S, Chang Y. A review of the ethnopharmacology, phytochemistry, pharmacology, pharmacokinetics and quality control of Paeonia lactiflora Pall. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118616. [PMID: 39053710 DOI: 10.1016/j.jep.2024.118616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/13/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Paeonia lactiflora Pall. (called Shaoyao in China) is a common herb cultivated all over the world. In some Asian and European countries, such as China, Japan, South Korea and Britain, P. lactiflora has a long history of ethnomedical uses, which is widely used to relieve pain, treat gynecological diseases, anti-infection and so on. It is attributed to the extensive pharmacological activities of total glucosides of P. lactiflora. Up to now, it is still commonly used in clinical medicine. THE AIM OF THE REVIEW The paper aims to make a comprehensive review on the botanical characterization and distribution, ethnopharmacology, phytochemistry, biosynthesis pathway, pharmacology, pharmacokinetics and quality control of P. lactiflora, so as to provide new insights and scientific evidence for the subsequent research. MATERIALS AND METHODS The information of P. lactiflora was obtained from books related to traditional Chinese medicine and electronic databases, including Scifinder, PubMed, Web of Science, CNKI and Google Scholar. RESULTS P. lactiflora is a kind of herb with a long history and it is used for medicine, food and ornamental, and shows high utilization value. There are 200 compounds have been identified from it, including terpenoids, flavonoids, polyphenols, organic acids and others, among those paeoniflorin, a monoterpenoid glycoside, has multiple activities and is currently the focus of pharmacological research. A great deal of pharmacological experiments supported the anti-inflammatory, anti-oxidant, hepatoprotective, neuroprotective, antibacterial, antitumor, dermatosis treating and other effects of P. lactiflora. In addition, evaluating the quality of P. lactiflora is essential to safe use of drug in humans. CONCLUSIONS The chemical components of P. lactiflora are diverse and have a wide range of activities. Modern pharmacological studies have provided reliable evidence for the traditional efficacy, such as suppressing liver yang, regulating menstruation and relieving pain. However, there are still some problems to be solved, such as part of the pharmacological mechanism has not been clarified and the biosynthetic pathway of cage-like monoterpenoids remains poorly defined. In addition, further studies on compounds other than paeoniflorin are clearly warranted. It is hoped that P. lactiflora will serve the clinic better in the future.
Collapse
Affiliation(s)
- Wenjing Ma
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Haishuo Ren
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xue Meng
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Suyi Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Kunze Du
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shiming Fang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Yanxu Chang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
4
|
Eftekhari Mahabadi S, Khalifeh R, Ghods R, Wieland LS, Ghelman R, Shojaii A, Zareian A, Hosseini Yekta N. Innovative Statistical Model Uncover Effective Herbal Medicines Among Personalized Treatment Plans in Persian Medicine: A Small-Scale Study in Type 2 Diabetes. JOURNAL OF INTEGRATIVE AND COMPLEMENTARY MEDICINE 2024; 30:1217-1230. [PMID: 39084626 PMCID: PMC11659467 DOI: 10.1089/jicm.2024.0180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Objectives: In holistic medicine, developing personalized treatment plans is challenging due to the multitude of possible therapy combinations. This study introduces the use of a statistical approach to identify the most effective herbal medicines prescribed in Persian medicine (PM) in a small-scale sample of patients with type 2 diabetes mellitus (T2DM). Methods: This prospective observational cohort study was conducted with 47 patients with T2DM referred to Behesht Clinic in Tehran, Iran. A physician prescribed individualized PM treatment for T2DM and related systemic issues. The fasting blood sugar (FBS) level of each patient was recorded at initial and two follow-up visits, with visit intervals and treatment modifications determined by patient health status. Patients who completed two follow-up visits were included in the final analysis (n = 27). Data were analyzed using R software. A general linear model was assumed for the mean response, along with an exponential covariance pattern model, to manage irregularly timed measurements. Results: Two fitted models showed that, after adjusting for confounders, the use of the "Diabetes Capsule" significantly reduced the average FBS by 17.14 mmol/L (p = 0.046). For each unit increase in the consumption of "Diabetes Capsule" or "Hab-e-Amber Momiai," the average FBS decreased by 15.22 mmol/L (p = 0.015) and 14.14 mmol/L (p = 0.047), respectively. Conclusion: It is possible to observe which medications are most effective, even when treatments are applied in a holistic and personalized fashion. Preliminary studies such as these may identify promising products for testing in clinical trials conducted under standardized conditions, to inform initial choices for future personalized treatments.
Collapse
Affiliation(s)
- Samaneh Eftekhari Mahabadi
- School of Mathematics, Statistics and Computer Science, College of Science, University of Tehran, Tehran, Iran
| | - Reza Khalifeh
- School of Mathematics, Statistics and Computer Science, College of Science, University of Tehran, Tehran, Iran
| | - Roshanak Ghods
- Department of Traditional Medicine, Institute for Studies in Medical History, Persian and Complementary Medicine, School of Persian Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Ricardo Ghelman
- Department of Medicine on Primary Care, Faculty of Medicine, Federal University of Rio de Janeiro, Brazil
| | - Asie Shojaii
- Department of Traditional pharmacy, Institute for Studies in Medical History, Persian and Complementary Medicine, School of Persian Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Armin Zareian
- Departments of Public Health and Health in Disaster & Emergencies. School of Nursing, AJA University of Medical Sciences, Tehran, Iran
| | - Nafiseh Hosseini Yekta
- Department of Persian Medicine, School of Traditional Medicine, Shahid Beheshti University of Medical Sciences, Tehran
| |
Collapse
|
5
|
Wen K, Zhang Q, Xie J, Xue B, Li X, Bian X, Sun T. Effect of Mono- and Polysaccharide on the Structure and Property of Soy Protein Isolate during Maillard Reaction. Foods 2024; 13:2832. [PMID: 39272597 PMCID: PMC11394747 DOI: 10.3390/foods13172832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/23/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
As a protein extracted from soybeans, soy protein isolate (SPI) may undergo the Maillard reaction (MR) with co-existing saccharides during the processing of soy-containing foods, potentially altering its structural and functional properties. This work aimed to investigate the effect of mono- and polysaccharides on the structure and functional properties of SPI during MR. The study found that compared to oat β-glucan, the reaction rate between SPI and D-galactose was faster, leading to a higher degree of glycosylation in the SPI-galactose conjugate. D-galactose and oat β-glucan showed different influences on the secondary structure of SPI and the microenvironment of its hydrophobic amino acids. These structural variations subsequently impact a variety of the properties of the SPI conjugates. The SPI-galactose conjugate exhibited superior solubility, surface hydrophobicity, and viscosity. Meanwhile, the SPI-galactose conjugate possessed better emulsifying stability, capability to produce foam, and stability of foam than the SPI-β-glucan conjugate. Interestingly, the SPI-β-glucan conjugate, despite its lower viscosity, showed stronger hypoglycemic activity, potentially due to the inherent activity of oat β-glucan. The SPI-galactose conjugate exhibited superior antioxidant properties due to its higher content of hydroxyl groups on its molecules. These results showed that the type of saccharides had significant influences on the SPI during MR.
Collapse
Affiliation(s)
- Kun Wen
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Qiyun Zhang
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jing Xie
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Bin Xue
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Xiaohui Li
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Xiaojun Bian
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Tao Sun
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
6
|
Wang ZJ, Ma P, Xu CY, Xu TS, Zhang L, He P, Hou BY, Yang XY, Du GH, Ji TF, Qiang GF. Identification of a novel hypoglycemic small molecule, trans-2, 4-dimethoxystilbene by rectifying gut microbiota and activating hepatic AMPKα-PPARγ pathway through gut-liver axis. Biomed Pharmacother 2024; 176:116760. [PMID: 38788595 DOI: 10.1016/j.biopha.2024.116760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/07/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
With the increasing prevalence of metabolic disorders, hyperglycemia has become a common risk factor that endangers people's lives and the need for new drug solutions is burgeoning. Trans-2, 4-dimethoxystilbene (TDMS), a synthetic stilbene, has been found as a novel hypoglycemic small molecule from glucose consumption test. Normal C57BL/6 J mice, mouse models of type 1 diabetes mellitus and diet-induced obesity subjected to TDMS gavage were found with lower glycemic levels and better glycemic control. TDMS significantly improved the symptoms of polydipsia and wasting in type 1 diabetic mice, and could rise their body temperature at the same time. It was found that TDMS could promote the expression of key genes of glucose metabolism in HepG2, as do in TDMS-treated liver, while it could improve the intestinal flora and relieve intestinal metabolic dysbiosis in hyperglycemic models, which in turn affected its function in the liver, forming the gut-liver axis. We further fished PPARγ by virtual screening that could be promoted by TDMS both in-vitro and in-vivo, which was regulated by upstream signaling of AMPKα phosphorylation. As a novel hypoglycemic small molecule, TDMS was proven to be promising with its glycemic improvements and amelioration of diabetes symptoms. It promoted glucose absorption and utilization by the liver and improved the intestinal flora of diabetic mice. Therefore, TDMS is expected to become a new hypoglycemic drug that acts through gut-liver axis via AMPKα-PPARγ signaling pathway in improving glycemic metabolism, bringing new hope to patients with diabetes and glucose metabolism disorders.
Collapse
Affiliation(s)
- Zi-Jing Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing 100050, China
| | - Peng Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing 100050, China
| | - Chun-Yang Xu
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, China
| | - Tian-Shu Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing 100050, China
| | - Li Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing 100050, China
| | - Ping He
- College of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Bi-Yu Hou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing 100050, China
| | - Xiu-Ying Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing 100050, China
| | - Guan-Hua Du
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing 100050, China
| | - Teng-Fei Ji
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing 100050, China.
| | - Gui-Fen Qiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing 100050, China.
| |
Collapse
|
7
|
Bai Z, Tang J, Li Y, Li Z, Gu S, Deng L, Zhang Y. Integrated Metabolomics Approach Reveals the Dynamic Variations of Metabolites and Bioactivities in Paeonia ostii 'Feng Dan' Leaves during Development. Int J Mol Sci 2024; 25:1059. [PMID: 38256133 PMCID: PMC10816844 DOI: 10.3390/ijms25021059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/05/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Paeonia ostii 'Feng Dan' is widely cultivated in China for its ornamental, medicinal, and edible properties. The whole plant of tree peony is rich in bioactive substances, while the comprehensive understanding of metabolites in the leaves is limited. In this study, an untargeted metabolomics strategy based on UPLC-ESI-TOF-MS was conducted to analyze the dynamic variations of bioactive metabolites in P. ostii 'Feng Dan' leaves during development. A total of 321 metabolites were rapidly annotated based on the GNPS platform, in-house database, and publications. To accurately quantify the selected metabolites, a targeted method of HPLC-ESI-QQQ-MS was used. Albiflorin, paeoniflorin, pentagalloylglucose, luteolin 7-glucoside, and benzoylpaeoniflorin were recognized as the dominant bioactive compounds with significant content variations during leaf development. Metabolite variations during the development of P. ostii 'Feng Dan' leaves are greatly attributed to the variations in antioxidant activities. Among all tested bacteria, the leaf extract exhibited exceptional inhibitory effects against Streptococcus hemolytis-β. This research firstly provides new insights into tree peony leaves during development. The stages of S1-S2 may be the most promising harvesting time for potential use in food or pharmaceutical purposes.
Collapse
Affiliation(s)
- Zhangzhen Bai
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China; (Z.B.); (J.T.); (Y.L.); (Z.L.); (S.G.)
| | - Junman Tang
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China; (Z.B.); (J.T.); (Y.L.); (Z.L.); (S.G.)
| | - Yajie Li
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China; (Z.B.); (J.T.); (Y.L.); (Z.L.); (S.G.)
| | - Zhuoning Li
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China; (Z.B.); (J.T.); (Y.L.); (Z.L.); (S.G.)
| | - Siyi Gu
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China; (Z.B.); (J.T.); (Y.L.); (Z.L.); (S.G.)
| | - Lu Deng
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yanlong Zhang
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China; (Z.B.); (J.T.); (Y.L.); (Z.L.); (S.G.)
| |
Collapse
|
8
|
Liu YH, Lin YS, Sie YY, Wang CC, Chang CI, Hou WC. Vitisin B, a resveratrol tetramer from Vitis thunbergii var. taiwaniana, ameliorates impaired glucose regulations in nicotinamide/streptozotocin-induced type 2 diabetic mice. J Tradit Complement Med 2023; 13:479-488. [PMID: 37693102 PMCID: PMC10491982 DOI: 10.1016/j.jtcme.2023.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 05/03/2023] [Accepted: 05/30/2023] [Indexed: 09/12/2023] Open
Abstract
Background and aim In Taiwan, Vitis thunbergii var. taiwaniana (VTT) is used in traditional medicine and as a local tea. VTT rich in resveratrol and resveratrol oligomers have been reported to exhibit anti-obesity and anti-hypertensive activities in animal models; however, no studies have investigated type 2 diabetes mellitus (T2DM) treatments. This study aimed to investigate the anti-T2DM effects of resveratrol tetramers isolated from the VTT in nicotinamide/streptozotocin (STZ)-induced Institute of Cancer Research (ICR) mice. Experimental procedure The oral glucose tolerance test (OGTT) was used to imitate postprandial blood glucose (BG) regulations in mice by pre-treatment with VTT extracts, resveratrol tetramers of vitisin A, vitisin B, and hopeaphenol 30 min before glucose loads. Vitisin B (50 mg/kg) was administered to treat T2DM-ICR mice once daily for 28 days to investigate its hypoglycemic activity. Results and conclusion Mice pre-treated with VTT-S-95EE, or vitisin B (100 mg/kg) 30-min before glucose loading showed significant reductions (P < 0.001) in the area under the curve at 120-min (BG-AUC0-120) than those without pre-treatment with VTT-S-95 E E or vitisin B. Vitisin B-treated T2DM mice showed hypoglycemic activities via a reduction in plasma dipeptidyl peptidase (DPP)-IV activities to maintain insulin actions and differed significantly than those of untreated T2DM mice (P < 0.05), and also reduced BG-AUC0-120 and insulin-AUC0-120 in the OGTT.These in vivo results showed that VTT containing vitisin B would be beneficial for developing nutraceuticals and/or functional foods for glycemic control in patients with T2DM, which should be investigated further.
Collapse
Affiliation(s)
- Yuh-Hwa Liu
- Department of General Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
- Division of Gastroenterology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, 111, Taiwan
| | - Yin-Shiou Lin
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, 110, Taiwan
| | - Yi-Yan Sie
- Ph.D. Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Ching-Chiung Wang
- Ph.D. Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan
| | - Chi-I Chang
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung, 912, Taiwan
| | - Wen-Chi Hou
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, 110, Taiwan
| |
Collapse
|
9
|
Chen H, Zhang WJ, Kong JB, Liu Y, Zhi YL, Cao YG, Du K, Xue GM, Li M, Zhao ZZ, Sun YJ, Feng WS, Xie ZS. Structurally Diverse Phenolic Amides from the Fruits of Lycium barbarum with Potent α-Glucosidase, Dipeptidyl Peptidase-4 Inhibitory, and PPAR-γ Agonistic Activities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:11080-11093. [PMID: 37462007 DOI: 10.1021/acs.jafc.3c01669] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
A total of nine new phenolic amides (1-9), including four pairs of enantiomeric mixtures (3-5 and 8), along with ten known analogues (10-19) were identified from the fruits of Lycium barbarum using bioassay-guided chromatographic fractionation. Their structures were elucidated by comprehensive spectroscopic and spectrometric analyses, chiral HPLC analyses, and quantum NMR, and electronic circular dichroism calculations. Compounds 5-7 are the first example of feruloyl tyramine dimers fused through a cyclobutane ring. The activity results indicated that compounds 1, 11, and 13-17 exhibited remarkable inhibition against α-glucosidase with IC50 of 1.11-33.53 μM, 5-150 times stronger than acarbose (IC50 = 169.78 μM). Meanwhile, compounds 4a, 4b, 5a, 5b, 13, and 14 exerted moderate agonistic activities for peroxisome proliferator-activated receptor (PPAR-γ), with EC50 values of 10.09-44.26 μM. Especially,compound 14 also presented inhibitory activity on dipeptidyl peptidase-4 (DPPIV), with an IC50 value of 47.13 μM. Furthermore, the banding manner of compounds 14 and 17 with the active site of α-glucosidase, DPPIV, and PPAR-γ was explored by employing molecular docking analysis.
Collapse
Affiliation(s)
- Hui Chen
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, P. R. China
- Co-Construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P. R. China, Zhengzhou 450046, P. R. China
| | - Wen-Jing Zhang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, P. R. China
| | - Jiang-Bo Kong
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, P. R. China
| | - Yun Liu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, P. R. China
| | - Yan-Le Zhi
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, P. R. China
| | - Yan-Gang Cao
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, P. R. China
| | - Kun Du
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, P. R. China
| | - Gui-Min Xue
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, P. R. China
| | - Meng Li
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, P. R. China
| | - Zhen-Zhu Zhao
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, P. R. China
| | - Yan-Jun Sun
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, P. R. China
- Co-Construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P. R. China, Zhengzhou 450046, P. R. China
| | - Wei-Sheng Feng
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, P. R. China
- Co-Construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P. R. China, Zhengzhou 450046, P. R. China
| | - Zhi-Shen Xie
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, P. R. China
| |
Collapse
|
10
|
Phytochemical Study on Seeds of Paeonia clusii subsp. rhodia-Antioxidant and Anti-Tyrosinase Properties. Int J Mol Sci 2023; 24:ijms24054935. [PMID: 36902364 PMCID: PMC10003135 DOI: 10.3390/ijms24054935] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/10/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
In this study, the black fertile (BSs) and the red unfertile seeds (RSs) of the Greek endemic Paeonia clusii subsp. rhodia (Stearn) Tzanoud were studied for the first time. Nine phenolic derivatives, trans-resveratol, trans-resveratrol-4'-O-β-d-glucopyranoside, trans-ε-viniferin, trans-gnetin H, luteolin, luteolin 3'-O-β-d-glucoside, luteolin 3',4'-di-O-β-d-glucopyranoside, and benzoic acid, along with the monoterpene glycoside paeoniflorin, have been isolated and structurally elucidated. Furthermore, 33 metabolites have been identified from BSs through UHPLC-HRMS, including 6 monoterpene glycosides of the paeoniflorin type with the characteristic cage-like terpenic skeleton found only in plants of the genus Paeonia, 6 gallic acid derivatives, 10 oligostilbene compounds, and 11 flavonoid derivatives. From the RSs, through HS-SPME and GC-MS, 19 metabolites were identified, among which nopinone, myrtanal, and cis-myrtanol have been reported only in peonies' roots and flowers to date. The total phenolic content of both seed extracts (BS and RS) was extremely high (up to 289.97 mg GAE/g) and, moreover, they showed interesting antioxidative activity and anti-tyrosinase properties. The isolated compounds were also biologically evaluated. Especially in the case of trans-gnetin H, the expressed anti-tyrosinase activity was higher than that of kojic acid, which is a well-known whitening agent standard.
Collapse
|
11
|
Chen X, Wu Y, Gu Y, Luo J, Kong L. Efficient discovery of potent α-glucosidase inhibitors from Paeoniae lactiflora using enzyme-MOF nanocomposites and competitive indicators. Food Funct 2023; 14:171-180. [PMID: 36477546 DOI: 10.1039/d2fo02783f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A great deal of attention has been paid to the seeds of Paeoniae lactiflora pall., an underutilized food resource, since its extract exhibits excellent α-glucosidase (GAA) inhibitory activity. In the present study, to gain further insight into this plant and find out potent GAA inhibitors, we established a novel ligand fishing strategy by introducing a competitive inhibitor as an indicator. After the successful establishment of this approach was verified by a series of methods, including kinetic assay, fluorescence determination, and HPLC, the newly developed ligand fishing method was applied to acquire potent GAA inhibitors from P. lactiflora seeds. Nine bioactive compounds were captured, and seven of them were identified as suffruticosol A, suffruticosol B, resveratrol, vitisin E, luteolin, trans-δ-viniferin, and ampelopsin E. The data of their GAA inhibitory activity demonstrated that these constituents were vigorously active against GAA with IC50 values of 1.67-30.47 μM, while such value of 1-DNJ was 228.77 μM. Among them, vitisin E and ampelopsin E were reported to show such inhibitory activity for the first time. Collectively, our findings provide valuable clues for the further utilization of P. lactiflora seeds as a functional food, and offer a new avenue for acquiring potent inhibitors from natural resources.
Collapse
Affiliation(s)
- Xinlin Chen
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China.
| | - Ying Wu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China.
| | - Yucheng Gu
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire RG42 6EY, UK
| | - Jianguang Luo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China.
| | - Lingyi Kong
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China.
| |
Collapse
|
12
|
Oligostilbenes from the seeds of Paeonia lactiflora as potent GLP-1 secretagogues targeting TGR5 receptor. Fitoterapia 2022; 163:105336. [DOI: 10.1016/j.fitote.2022.105336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/12/2022] [Accepted: 10/12/2022] [Indexed: 11/21/2022]
|
13
|
Yan K, Cheng XJ, Bian GL, Gao YX, Li DQ. The Influence of Different Extraction Techniques on the Chemical Profile and Biological Properties of Oroxylum indicum: Multifunctional Aspects for Potential Pharmaceutical Applications. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:8975320. [PMID: 36248411 PMCID: PMC9553467 DOI: 10.1155/2022/8975320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/23/2022] [Indexed: 11/18/2022]
Abstract
Oroxylum indicum (L.) Kurz (Bignoniaceae), a traditional Chinese herbal medicine, possesses various biological activities including antioxidant, anti-inflammatory, antibacterial, and anticancer. In order to guide the practical application of O. indicum in the pharmaceutical, food, and cosmetic industries, we evaluated the effects of five different extraction techniques (maceration extraction (ME), oxhlet extraction (SOXE), ultrasound-assisted extraction (UAE), tissue-smashing extraction (TSE), and accelerated-solvent extraction (ASE)) with 70% ethanol as the solvent on the phytochemical properties and biological potential. The UHPLC-DAD Orbitrap Elite MS technique was applied to characterize the main flavonoids in the extracts. Simultaneously, the antioxidant and enzyme inhibitory activities of the tested extracts were analyzed. SOXE extract showed the highest total phenolic content (TPC, 50.99 ± 1.78 mg GAE/g extract), while ASE extract displayed the highest total flavonoid content (TFC, 34.92 ± 0.38 mg RE/g extract), which displayed significant correlation with antioxidant activity. The extract obtained using UAE was the most potent inhibitor of tyrosinase (IC50: 16.57 ± 0.53 mg·mL-1), while SOXE extract showed the highest activity against α-glucosidase (IC50: 1.23 ± 0.09 mg·mL-1), succeeded by UAE, ME, ASE, and TSE extract. In addition, multivariate analysis suggested that different extraction techniques could significantly affect the phytochemical properties and biological activities of O. indicum. To sum up, O. indicum displayed expected biological potential and the data collected in this study could provide an experimental basis for further investigation in practical applications.
Collapse
Affiliation(s)
- Kai Yan
- Hebei Institute for Drug and Medical Device Control, No. 219 Yuquan Road, Shijiazhuang 050227, Hebei Province, China
| | - Xin-jie Cheng
- Department of Pharmacy, The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Shijiazhuang 050000, Hebei Province, China
| | - Guang-li Bian
- Department of Pharmacy, The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Shijiazhuang 050000, Hebei Province, China
| | - Yan-xia Gao
- Hebei Institute for Drug and Medical Device Control, No. 219 Yuquan Road, Shijiazhuang 050227, Hebei Province, China
| | - De-qiang Li
- Department of Pharmacy, The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Shijiazhuang 050000, Hebei Province, China
| |
Collapse
|
14
|
Ding M, Wu SL, Hu J, He XF, Huang XY, Li TZ, Ma YB, Zhang XM, Geng CA. Norlignans as potent GLP-1 secretagogues from the fruits of Amomum villosum. PHYTOCHEMISTRY 2022; 199:113204. [PMID: 35421433 DOI: 10.1016/j.phytochem.2022.113204] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 04/07/2022] [Accepted: 04/07/2022] [Indexed: 06/14/2023]
Abstract
The dried fruit of Amomum villosum (Amomi Fructus) is an important spices and traditional Chinese medicine. In this study, the EtOH extract of Amomi Fructus was revealed with hypoglycemic effects on db/db mice by increasing plasma insulin levels. After extracted with EtOAc, the EtOAc fraction showed increased activity in stimulating glucagon-like peptide-1 (GLP-1) secretion compared with the EtOH extract. In order to clarify the antidiabetic constituents, four undescribed norlignans, amovillosumins A‒D, were isolated from the EtOAc fraction, and the subsequent chiral resolution yielded three pairs of enantiomers. Their structures were determined by extensive spectroscopic data (1D and 2D NMR, HRESIMS, IR, UV and [α]D) and ECD calculations. Amovillosumins A and B significantly stimulated GLP-1 secretion by 375.1% and 222.7% at 25.0 μM, and 166.9% and 62.7% at 12.5 μM, representing a new type of GLP-1 secretagogues.
Collapse
Affiliation(s)
- Min Ding
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming, 650201, People's Republic of China; University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Sheng-Li Wu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming, 650201, People's Republic of China; School of Life Sciences, Yunnan University, Kunming, 650500, People's Republic of China
| | - Jing Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming, 650201, People's Republic of China
| | - Xiao-Feng He
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming, 650201, People's Republic of China
| | - Xiao-Yan Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming, 650201, People's Republic of China
| | - Tian-Ze Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming, 650201, People's Republic of China
| | - Yun-Bao Ma
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming, 650201, People's Republic of China
| | - Xue-Mei Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming, 650201, People's Republic of China
| | - Chang-An Geng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming, 650201, People's Republic of China
| |
Collapse
|
15
|
Song J, Zhang H, Wang ZX, Wang J. The antioxidant activity, α-glucosidase and acetylcholinesterase inhibition activity, and chemical composition of Paeonia delavayi petal. FOOD QUALITY AND SAFETY 2022. [DOI: 10.1093/fqsafe/fyac020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Objectives
This study aimed to evaluate the functional activity and phytochemical compositions in the flower petals of Paeonia delavayi with different colors.
Materials and Methods
P. delavayi petal extracts were prepared by maceration in methanol, including purple petal extract (PPE), red petal extract (RPE) and yellow petal extract (YPE), and their antioxidant activity, α-glucosidase and acetylcholinesterase inhibition activities were evaluated. To correlate these measured activities to phytochemicals in the petals, UPLC-MS/MS-based metabolomics method was applied to profile the compositions in the petals of different colors. Finally, the KEGG metabolic pathways database was used to identify the related metabolic pathways that are responsible for the production of these polyphenolic phytochemicals in the petals.
Results
The results showed that PPE had the highest total phenolic content (TPC), total flavonoid content (TFC), and the strongest ABTS· + scavenging ability, ferric reducing antioxidant power, and acetylcholinesterase inhibition ability in all three samples, while YPE showed the strongest DPPH· scavenging activity and α-glucosidase inhibition ability. A total of 232 metabolites were detected in the metabolomic analysis, 198 of which were flavonoids, chalcones, flavonols, and anthocyanins. Correlation analysis indicated that Peonidin-3-O-arabinoside and cyanidin-3-O-arabinoside were the major contributors to their antioxidant activity. Principal component analysis showed a clear separation between these three petals. In addition, a total of 38, 98, and 96 differential metabolites were identified in PPE, RPE, and YPE, respectively. Pathway enrichment revealed 6 KEGG pathways displayed significant enrichment differences, of which the anthocyanin biosynthesis, flavone and flavonol biosynthesis were the most enriched signaling pathways. It revealed the potential reason for the differences in metabolic and functional levels between different colors of P. delavayi petals.
Conclusions
P. delavayi petals of different colors have different metabolite contents and functional activities, of which the anthocyanin, flavone, and flavonol metabolites are critical in its functional activities, suggesting the anthocyanin biosynthesis, flavone and flavonol biosynthesis pathways be the key pathways responsible for both the petal color and bioactive phytochemicals in P. delavayi flowers.
Collapse
|
16
|
He XF, Wu SL, Chen JJ, Hu J, Huang XY, Li TZ, Zhang XM, Guo YQ, Geng CA. New diarylheptanoid dimers as GLP-1 secretagogues and multiple-enzyme inhibitors from Alpinia katsumadai. Bioorg Chem 2022; 120:105653. [DOI: 10.1016/j.bioorg.2022.105653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/06/2022] [Accepted: 01/31/2022] [Indexed: 12/24/2022]
|
17
|
Recent Updates on Development of Protein-Tyrosine Phosphatase 1B Inhibitors for Treatment of Diabetes, Obesity and Related Disorders. Bioorg Chem 2022; 121:105626. [DOI: 10.1016/j.bioorg.2022.105626] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/19/2021] [Accepted: 01/13/2022] [Indexed: 01/30/2023]
|
18
|
Yang XT, Li TZ, Geng CA, Liu P, Chen JJ. Synthesis and biological evaluation of (20 S,24 R)-epoxy-dammarane-3β,12β,25-triol derivatives as α-glucosidase and PTP1B inhibitors. Med Chem Res 2022; 31:350-367. [PMID: 35035203 PMCID: PMC8749348 DOI: 10.1007/s00044-021-02836-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/07/2021] [Indexed: 11/27/2022]
Abstract
The dammarane triterpenoid (20S,24R)-epoxy-dammarane-3β,12β,25-triol obtained from Cyclocarya paliurus in our previous study showed inhibitory activity on α-glucosidase in vitro with an inhibitory ratio of 32.2% at the concentration of 200 μM. In order to reveal the structure-activity relationships (SARs) and get more active compounds, 42 derivatives of (20S,24R)-epoxy-dammarane-3β,12β,25-triol were synthesized by chemical modification on the hydroxyls (C-3 and C-12), rings A and E, and assayed for their α-glucosidase and PTP1B inhibitory activities. Two compounds (8, 26) increased activity against α-glucosidase, and four compounds (8, 15, 26, 42) significantly inhibited PTP1B. It was noted that compounds 8 and 26 could inhibit both α-glucosidase and PTP1B as dual-target inhibitors with IC50 values of 489.8, 467.7 μM (α-glucosidase) and 319.7, 269.1 μM (PTP1B). Compound 26 was revealed to be a mix-type inhibitor on α-glucosidase and a noncompetitive-type inhibitor on PTP1B based on enzyme kinetic study. Furthermore, compound 42 could selectively inhibited PTP1B as a mix-type inhibitor with IC50 value of 134.9 μM, which was 2.5-fold higher than the positive control, suramin sodium (IC50 339.0 μM), but not inhibit α-glucosidase. ![]()
Collapse
Affiliation(s)
- Xiao-Tong Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences; Yunnan Key Laboratory of Natural Medicinal Chemistry, 650201 Kunming, People's Republic of China
| | - Tian-Ze Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences; Yunnan Key Laboratory of Natural Medicinal Chemistry, 650201 Kunming, People's Republic of China
| | - Chang-An Geng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences; Yunnan Key Laboratory of Natural Medicinal Chemistry, 650201 Kunming, People's Republic of China
| | - Pei Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences; Yunnan Key Laboratory of Natural Medicinal Chemistry, 650201 Kunming, People's Republic of China
| | - Ji-Jun Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences; Yunnan Key Laboratory of Natural Medicinal Chemistry, 650201 Kunming, People's Republic of China.,University of Chinese Academy of Sciences, 100049 Beijing, People's Republic of China
| |
Collapse
|
19
|
Structure related α-glucosidase inhibitory activity and molecular docking analyses of phenolic compounds from Paeonia suffruticosa. Med Chem Res 2022. [DOI: 10.1007/s00044-021-02830-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
20
|
Mata-Torres G, Andrade-Cetto A, Espinoza-Hernández F. Approaches to Decrease Hyperglycemia by Targeting Impaired Hepatic Glucose Homeostasis Using Medicinal Plants. Front Pharmacol 2021; 12:809994. [PMID: 35002743 PMCID: PMC8733686 DOI: 10.3389/fphar.2021.809994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 11/30/2021] [Indexed: 11/29/2022] Open
Abstract
Liver plays a pivotal role in maintaining blood glucose levels through complex processes which involve the disposal, storage, and endogenous production of this carbohydrate. Insulin is the hormone responsible for regulating hepatic glucose production and glucose storage as glycogen, thus abnormalities in its function lead to hyperglycemia in obese or diabetic patients because of higher production rates and lower capacity to store glucose. In this context, two different but complementary therapeutic approaches can be highlighted to avoid the hyperglycemia generated by the hepatic insulin resistance: 1) enhancing insulin function by inhibiting the protein tyrosine phosphatase 1B, one of the main enzymes that disrupt the insulin signal, and 2) direct regulation of key enzymes involved in hepatic glucose production and glycogen synthesis/breakdown. It is recognized that medicinal plants are a valuable source of molecules with special properties and a wide range of scaffolds that can improve hepatic glucose metabolism. Some molecules, especially phenolic compounds and terpenoids, exhibit a powerful inhibitory capacity on protein tyrosine phosphatase 1B and decrease the expression or activity of the key enzymes involved in the gluconeogenic pathway, such as phosphoenolpyruvate carboxykinase or glucose 6-phosphatase. This review shed light on the progress made in the past 7 years in medicinal plants capable of improving hepatic glucose homeostasis through the two proposed approaches. We suggest that Coreopsis tinctoria, Lithocarpus polystachyus, and Panax ginseng can be good candidates for developing herbal medicines or phytomedicines that target inhibition of hepatic glucose output as they can modulate the activity of PTP-1B, the expression of gluconeogenic enzymes, and the glycogen content.
Collapse
Affiliation(s)
| | - Adolfo Andrade-Cetto
- Laboratorio de Etnofarmacología, Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | |
Collapse
|
21
|
Geng CA, Deng ZT, Huang Q, Xiang CL, Chen JJ. Six New 3,5-Dimethylcoumarins from Chelonopsis praecox, Chelonopsis odontochila and Chelonopsis pseudobracteata. NATURAL PRODUCTS AND BIOPROSPECTING 2021; 11:643-649. [PMID: 34529253 PMCID: PMC8599598 DOI: 10.1007/s13659-021-00318-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/12/2021] [Indexed: 06/13/2023]
Abstract
Ten 3,5-dimethylcoumarins (1-6 and 8‒11) involving six new ones (1-6), together with a known 3-methylcoumarin (7), were isolated from the aerial parts of three Chelonopsis plants, C. praecox, C. odontochila, and C. pseudobracteata. The structures of the new compounds were determined by extensive HRESIMS, 1D and 2D NMR spectroscopic analyses. According to the substitution at C-5, these coumarins were classified into 5-methyl, 5-hydroxymethyl, 5-formyl, and 5-nor types. All the isolates were assayed for their inhibition on α-glucosidase, protein tyrosine phosphatase 1B, and T-cell protein tyrosine phosphatase in vitro.
Collapse
Affiliation(s)
- Chang-An Geng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
| | - Zhen-Tao Deng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
| | - Qian Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
| | - Chun-Lei Xiang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
| | - Ji-Jun Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| |
Collapse
|
22
|
Pan L, Zhang T, Yu M, Shi M, Jia X, Jia X, Zou Z. Bioactive-guided isolation and identification of oligostilbenes as anti-rheumatoid arthritis constituents from the roots of Caragana stenophylla. JOURNAL OF ETHNOPHARMACOLOGY 2021; 280:114134. [PMID: 33887420 DOI: 10.1016/j.jep.2021.114134] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/12/2021] [Accepted: 04/16/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The roots of Caragana stenophylla have been used as folk medicine due to the functions of activating blood, diuresis, analgesic and tonicity, especially in treating rheumatoid arthritis and hypertension. However, the anti-rheumatoid arthritis mechanisms and bioactive ingredients have not previously been fully investigated. AIM OF THE STUDY The aim of this study was to assess the anti-rheumatoid arthritis effects of the roots of Caragana stenophylla ethanol extract (EC), elucidate its mechanism of action and identify its active substances. MATERIALS AND METHODS Anti-rheumatoid arthritis activity of EC was assessed using type II-collagen induced arthritis in rats. Arthritis severity was evaluated by foot paw volume, arthritis index, joint swelling degree and histopathology. The serum inflammatory cytokines and matrix metalloproteinases (MMPs) were also detected by immunohistochemical analysis. In addition, the protein expression of IκB, p-IκB, iNOS and COX-2 was analyzed by western blot. RAW 264.7 macrophage cells were employed to assess the anti-inflammatory effects of fractions and compounds in vitro. UPLC-Q-TOF-MS was adopted to appraise the ingredients of the active fraction of the roots of C. stenophylla. Furthermore, various chromatographic techniques and spectroscopic methods were used for isolation and structure elucidation of compounds. RESULTS The results showed that EC could reduce type II collagen-induced rheumatoid arthritis model arthritic score and histopathology markedly at dose of 240 mg/kg. Besides, EC could suppress the levels of pro-inflammatory cytokines (IL-1β, IL-6, IL-8, IL-17, and TNF-α) and matrix metalloproteinases (MMP-3, MMP-9), and the expression levels of COX-2, p-IκB and iNOS also were declined. While, the levels of IL-10 and IκB were increased. The ethyl acetate fraction exhibited potent inhibitory effects against nitric oxide production in RAW 264.7 macrophage cells. Eleven main components including 1 flavonoid and 10 oligostilbenes from active fraction were isolated by mass directed chromatographic techniques. Their structures were determined on the basis of various spectroscopic methods and by comparison with the published NMR data. CONCLUSION The roots of C. stenophylla attenuated arthritis severity, restored serum cytokine imbalances by regulating NF-κB signaling pathway in type II collagen-induced rheumatoid arthritis model. Oligostilbenes were essential ingredients in ethyl acetate extract of C. stenophylla roots. Stilbenes and flavonoids should be responsible for its anti-rheumatoid arthritis activities.
Collapse
Affiliation(s)
- Lan Pan
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China; Xinjiang Institute of Chinese Materia Medica and Ethnodrug, Urumqi, 830002, China.
| | - Tao Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China.
| | - Meng Yu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China.
| | - Minghui Shi
- Xinjiang Institute of Chinese Materia Medica and Ethnodrug, Urumqi, 830002, China.
| | - Xinyue Jia
- Xinjiang Institute of Chinese Materia Medica and Ethnodrug, Urumqi, 830002, China.
| | - Xiaoguang Jia
- Xinjiang Institute of Chinese Materia Medica and Ethnodrug, Urumqi, 830002, China.
| | - Zhongmei Zou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China.
| |
Collapse
|
23
|
Din AU, Khan M, Shah MZ, Rauf A, Rashid U, Khalil AA, Zaman K, Al-Awthan YS, Al-Duais MA, Bahattab O, Mujawah AA, Muhammad N. Antidiabetic Activity of Ficusonolide, a Triterpene Lactone from Ficus foveolata (Wall. ex Miq.): In Vitro, In Vivo, and In Silico Approaches. ACS OMEGA 2021; 6:27351-27357. [PMID: 34693155 PMCID: PMC8529651 DOI: 10.1021/acsomega.1c04230] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
Diabetes is a chronic condition which is locally managed through the stem of Ficus foveolata. To find the exact chemical constituent responsible for this activity, a triterpene lactone (ficusonolide) isolated from F. foveolata was studied for antidiabetic potential through the in vitro antidiabetic paradigm employing L-6 cells and an in vivo antidiabetic assay against non-insulin-dependent rats. The results on glucose uptake in the L-6 cell line indicated that ficusonolide has enhanced the uptake of glucose by 53.27% over control at a dose of 100 μg/mL, while at doses of 50 and 25 μg/mL, the glucose uptake was enhanced by 22.42 and 14.34%, respectively. The extract of F. foveolata (100 mg/kg) and ficusonolide (50 mg/kg) demonstrated a significant (p < 0.001) decline in streptozotocin-induced hyperglycemia of diabetic rats. Ficusonolide displayed conspicuous inhibitory activity against the molecular docking studies with proteins such as dipeptidyl peptidase-IV (DPP-IV), protein tyrosine phosphatase 1B (PTP-1B), α-glucosidase, and α-amylase subjected to molecular targets. Detailed computational and structural insights affirmed promising interactions between target proteins and ficusonolide. In conclusion, the plant and its isolated compound have significant antidiabetic activity with a possible mechanism of interaction with DPP-IV, PTP-1B, α-glucosidase, and α-amylase.
Collapse
Affiliation(s)
- Ala Ud Din
- Department
of Chemistry, Bacha Khan University Charsadda, Charsadda 24420, Khyber Pakhtunkhwa, Pakistan
| | - Maria Khan
- Department
of Chemistry, Bacha Khan University Charsadda, Charsadda 24420, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Zahir Shah
- Key
Laboratory of Synthetic and Natural Fucntional Molecule, North West University, Xian 710127, P.
R. China
| | - Abdur Rauf
- Department
of Chemistry, University of Swabi, Anbar 23430, Khyber Pakhtunkhwa, Pakistan
| | - Umer Rashid
- Department
of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Anees Ahmed Khalil
- University
Institute of Diet and Nutritional Sciences, Faculty of Allied Health
Sciences, The University of Lahore, 54590 Lahore, Pakistan
| | - Khair Zaman
- Department
of Chemistry, Abdul Wali Khan University, Mardan 23200, Khyber Pakhtunkhwa, Pakistan
| | - Yahya S. Al-Awthan
- Department
of Biology, Faculty of Science, University
of Tabuk, Tabuk 71491, Saudi Arabia
- Department
of Biology, Faculty of Science, Ibb University, Ibb 70270, Yemen
| | - Mohammed A. Al-Duais
- Department
of Biochemistry, Faculty of Science, University
of Tabuk, Tabuk 71491, Saudi Arabia
- Biochemistry
Unit, Chemistry Department, Faculty of Science, Ibb University, Ibb 70270, Yeme
| | - Omar Bahattab
- Department
of Biology, Faculty of Science, University
of Tabuk, Tabuk 71491, Saudi Arabia
| | - Adil A.H. Mujawah
- Department
of Chemistry, College of Science and Arts, Qassim University, Ar Rass 51921, Saudi Arabia
| | - Naveed Muhammad
- Department of Pharmacy, Abdul
Wali Khan
University, Mardan 23200, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
24
|
Bai ZZ, Tang JM, Ni J, Zheng TT, Zhou Y, Sun DY, Li GN, Liu P, Niu LX, Zhang YL. Comprehensive metabolite profile of multi-bioactive extract from tree peony (Paeonia ostii and Paeonia rockii) fruits based on MS/MS molecular networking. Food Res Int 2021; 148:110609. [PMID: 34507753 DOI: 10.1016/j.foodres.2021.110609] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/08/2021] [Accepted: 07/11/2021] [Indexed: 10/20/2022]
Abstract
Tree peony seed, traditionally used for edible oil production, is rich in α-linolenic acid. However, little attention is given to the fruit by-products during seed oil production. The present work aimed to comprehensively investigate the phytochemical constituents and multiple biological activities of different parts of tree peony fruits harvested from Paeonia ostii and Paeonia rockii. 130 metabolites were rapidly identified through UPLC-Triple-TOF-MS on the basis of MS/MS molecular networking. Metabolite quantification was performed through the targeted approach of HPLC-ESI-QQQ-MS. Eight chemical markers were screened via principal component analysis (PCA) for distinguishing species and tissues. Interestingly, two dominant compounds, paeoniflorin and trans-resveratrol, are specially localized in seed kernel and seed coat, respectively. Unexpectedly, the extracts of fruit pod and seed coat showed significantly stronger antioxidant, antibacterial, and anti-neuroinflammatory activities than seed kernel from both P. ostii and P. rockii. Our work demonstrated that tree peony fruit is promising natural source of bioactive components and provided its potential utilization in food and pharmaceutical industries.
Collapse
Affiliation(s)
- Zhang-Zhen Bai
- National Engineering Technology Research Center for Oil Peony, College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China
| | - Jun-Man Tang
- National Engineering Technology Research Center for Oil Peony, College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China
| | - Jing Ni
- National Engineering Technology Research Center for Oil Peony, College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China
| | - Tian-Tian Zheng
- National Engineering Technology Research Center for Oil Peony, College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China
| | - Yang Zhou
- National Engineering Technology Research Center for Oil Peony, College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China
| | - Dao-Yang Sun
- National Engineering Technology Research Center for Oil Peony, College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China
| | | | - Pu Liu
- Chemical Engineering & Pharmaceutical College, Henan University of Science and Technology, Luoyang 471023, China.
| | - Li-Xin Niu
- National Engineering Technology Research Center for Oil Peony, College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China.
| | - Yan-Long Zhang
- National Engineering Technology Research Center for Oil Peony, College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
25
|
Natural α-Glucosidase and Protein Tyrosine Phosphatase 1B Inhibitors: A Source of Scaffold Molecules for Synthesis of New Multitarget Antidiabetic Drugs. Molecules 2021; 26:molecules26164818. [PMID: 34443409 PMCID: PMC8400511 DOI: 10.3390/molecules26164818] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/05/2021] [Accepted: 08/07/2021] [Indexed: 12/13/2022] Open
Abstract
Diabetes mellitus (DM) represents a group of metabolic disorders that leads to acute and long-term serious complications and is considered a worldwide sanitary emergence. Type 2 diabetes (T2D) represents about 90% of all cases of diabetes, and even if several drugs are actually available for its treatment, in the long term, they show limited effectiveness. Most traditional drugs are designed to act on a specific biological target, but the complexity of the current pathologies has demonstrated that molecules hitting more than one target may be safer and more effective. The purpose of this review is to shed light on the natural compounds known as α-glucosidase and Protein Tyrosine Phosphatase 1B (PTP1B) dual-inhibitors that could be used as lead compounds to generate new multitarget antidiabetic drugs for treatment of T2D.
Collapse
|
26
|
Hu Y, Li J, Chang AK, Li Y, Tao X, Liu W, Wang Z, Su W, Li Z, Liang X. Screening and tissue distribution of protein tyrosine phosphatase 1B inhibitors in mice following oral administration of Garcinia mangostana L. ethanolic extract. Food Chem 2021; 357:129759. [PMID: 33878587 DOI: 10.1016/j.foodchem.2021.129759] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/21/2021] [Accepted: 04/06/2021] [Indexed: 12/17/2022]
Abstract
Garcinia mangostana L. (mangosteen) is a tropical fruit that is rich in xanthones and is thought to have an anti-diabetic effect. In this study, we screened for the xanthones in mangosteen that could inhibit the activity of protein tyrosine phosphatase 1B (PTP1B), an enzyme that is targeted by diabetic drugs. Mice were orally administered mangosteen extract and blood samples were screened for the presence of PTP1B-interacting xanthones. Six such compounds (1-6) were identified by UF-HPLC-QTOF-MS and their inhibition against PTP1B was confirmed by activity assay. Among them, garcinone E (5) was found to be the most effective PTP1B inhibitor (IC50 = 0.43 μM). Tissue distribution analysis showed that the six compounds were distributed in eleven tissues, including the liver, muscle, fat, stomach, large intestine, small intestine, brain, kidney, heart, lung, and spleen. The results demonstrated that mangosteen might be a promising source of natural compounds with high PTP1B-inhibitory activity.
Collapse
Affiliation(s)
- Yu Hu
- College of Pharmacy, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, PR China
| | - Jianxin Li
- College of Pharmacy, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, PR China; College of Chemistry, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, PR China
| | - Alan K Chang
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, Zhejiang Province, PR China
| | - Yanan Li
- College of Pharmacy, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, PR China
| | - Xia Tao
- College of Pharmacy, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, PR China
| | - Wenbao Liu
- College of Pharmacy, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, PR China
| | - Zhina Wang
- College of Pharmacy, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, PR China
| | - Weiping Su
- College of Pharmacy, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, PR China
| | - Zehao Li
- College of Pharmacy, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, PR China
| | - Xiao Liang
- College of Pharmacy, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, PR China; Academy of Forensic Science, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, PR China.
| |
Collapse
|
27
|
Huang Q, Chen JJ, Pan Y, He XF, Wang Y, Zhang XM, Geng CA. Chemical profiling and antidiabetic potency of Paeonia delavayi: Comparison between different parts and constituents. J Pharm Biomed Anal 2021; 198:113998. [PMID: 33677281 DOI: 10.1016/j.jpba.2021.113998] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/15/2021] [Accepted: 02/24/2021] [Indexed: 12/11/2022]
Abstract
Paeonia delavayi (Paeoniaceae), an endemic plant mainly distributed in southwest China, is always used as the substitute of P. suffruticosa due to their morphological and pharmacological similarity. In the previous study, P. suffruticosa was revealed with antidiabetic potency, whereas the chemical difference and antidiabetic property between different parts of P. delavayi has not yet been studied. This paper was designed to clarify the chemical constituents and antidiabetic potency of P. delavayi by LCMS analysis and enzyme inhibition on α-glucosidase, PTP1B, TCPTP, and DPP4. By interpretation of their UV absorptions and MS fragmentations, and/or comparison with reference samples, 57 constituents comprising 15 flavonoids, 10 monoterpene glycosides, eight triterpenoids, seven galloyl glucoses, six N-containing compounds, five gallic acids, two acetophenones, and four other types of compounds were identified from the different parts of P. delavayi. Moreover, two new monoterpene aglycones (42 and 47) and one new noroleanane triterpenoid (51) were speculated by their MS/MS fragmentation rules. Principal component analysis (PCA) suggested the chemical resemblance between root core and root bark which could be well differentiated with the leaves and stems by their characteristic constituents (monoterpene glycosides, flavonoids, and acetophenones). All the four parts (200 μg/mL) showed obvious inhibition on α-glucosidase and PTP1B (81.2%-98.5%), but moderate to weak inhibition on TCPTP and DPP4 (19.5%-34.9%). Nine compounds representing five main types of constituents in Paeonia plants were assayed for their antidiabetic effects, indicating flavonoids and triterpenoids were the main active substances regarding to the four enzymes. Luteolin displayed obvious activity on α-glucosidase, PTP1B, and TCPTP with IC50 values of 94.6, 136.3, and 157.3 μM, and akebonic acid could inhibit α-glucosidase and PTP1B with IC50 values of 73.5 and 57.8 μM. Luteolin and akebonic acid were recognized as competitive inhibitors of α-glucosidase, but anticompetitive and mix-type inhibitors of PTP1B, respectively. Docking study demonstrated akebonic acid as PTP1B (over TCPTP) selective inhibitor by bonding to the catalytic sites (B/C) of PTP1B. This LCMS combined with enzymatic comparison opens new sights for recognizing the chemical profiles and antidiabetic potency of P. delavayi.
Collapse
Affiliation(s)
- Qian Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, People's Republic of China; Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming, 650201, Yunnan, People's Republic of China; University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Ji-Jun Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, People's Republic of China; Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming, 650201, Yunnan, People's Republic of China; University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yang Pan
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, People's Republic of China; Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming, 650201, Yunnan, People's Republic of China
| | - Xiao-Feng He
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, People's Republic of China; Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming, 650201, Yunnan, People's Republic of China
| | - Yuan Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, People's Republic of China; Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming, 650201, Yunnan, People's Republic of China; University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Xue-Mei Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, People's Republic of China; Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming, 650201, Yunnan, People's Republic of China
| | - Chang-An Geng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, People's Republic of China; Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming, 650201, Yunnan, People's Republic of China.
| |
Collapse
|
28
|
He XF, Chen JJ, Li TZ, Hu J, Zhang XM, Geng CA. Diarylheptanoid-chalcone hybrids with PTP1B and α-glucosidase dual inhibition from Alpinia katsumadai. Bioorg Chem 2021; 108:104683. [PMID: 33545534 DOI: 10.1016/j.bioorg.2021.104683] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/19/2022]
Abstract
The EtOH extracts of the dried seeds of Alpinia katsumadai were revealed with hypoglycemic effects on db/db mice at the concentration of 200 mg/kg. In order to clarify the antidiabetic constituents, 16 new diarylheptanoid-chalcone hybrids, katsumadainols A1-A16 (1-16), together with 13 known analogues (17-29), were isolated from A. katsumadai under the guidance of bioassay. Most of the compounds showed α-glucosidase and PTP1B dual inhibition, among which compounds 1-3, 5-7, 11-14, 21-25, and 27 showed PTP1B/TCPTP selective inhibition with IC50 values ranging from 22.0 to 96.7 μM, which were 2-10 times more active than sodium orthovanadate (IC50, 215.7 μM). All compounds exhibited obvious inhibition against α-glucosidase with IC50 values of 2.9-29.5 μM, indicating 6-59 times more active than acarbose (IC50, 170.9 μM). Study of enzyme kinetics indicated compounds 1, 3, and 12 were PTP1B and α-glucosidase mixed-type inhibitors with Ki values of 13.1, 12.9, 21.6 μM, and 4.9, 7.4, 3.4 μM, respectively.
Collapse
Affiliation(s)
- Xiao-Feng He
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming 650201, People's Republic of China
| | - Ji-Jun Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming 650201, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Tian-Ze Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming 650201, People's Republic of China
| | - Jing Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming 650201, People's Republic of China
| | - Xue-Mei Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming 650201, People's Republic of China
| | - Chang-An Geng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming 650201, People's Republic of China.
| |
Collapse
|
29
|
Bai ZZ, Ni J, Tang JM, Sun DY, Yan ZG, Zhang J, Niu LX, Zhang YL. Bioactive components, antioxidant and antimicrobial activities of Paeonia rockii fruit during development. Food Chem 2020; 343:128444. [PMID: 33131958 DOI: 10.1016/j.foodchem.2020.128444] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/09/2020] [Accepted: 10/17/2020] [Indexed: 12/11/2022]
Abstract
In last ten years, much attention focused on tree peony fruit (TPF) for edible oil production despite other potential utilization. The present study identified and quantified 29 bioactive components by liquid chromatography-electrospray ionization-triple quadrupole-mass spectrometry (LC-ESI-QqQ-MS) targeted approach during the development of TPF. Trans-resveratrol, benzoic acid, luteolin, and methyl gallate were selected as predominant chemical markers between seeds and pods through principal component analysis (PCA) and orthogonal partial least square-discriminant analysis (OPLS-DA). Extremely high levels of paeoniflorin (1893 mg/100 g) and trans-resveratrol (1793 mg/100 g) were observed at stage 2 (S2) and S6 in seeds, respectively. Antioxidant activities determined by ABTS+•, DPPH•, and FRAP assays showed significant correlations with total phenolic content (TPC) and total flavonoid content (TFC). The strongest antibacterial effects of pod and seed against Staphylococcus aureus and Proteus vulgaris occurred at initial stages and maturation stages. TPF could be a potential source of bioactive compounds with functional properties.
Collapse
Affiliation(s)
- Zhang-Zhen Bai
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China; National Engineering Technology Research Center for Oil Peony, Yangling 712100, China
| | - Jing Ni
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China; National Engineering Technology Research Center for Oil Peony, Yangling 712100, China
| | - Jun-Man Tang
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China; National Engineering Technology Research Center for Oil Peony, Yangling 712100, China
| | - Dao-Yang Sun
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China; National Engineering Technology Research Center for Oil Peony, Yangling 712100, China
| | - Zhen-Guo Yan
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China; National Engineering Technology Research Center for Oil Peony, Yangling 712100, China
| | - Jing Zhang
- College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Li-Xin Niu
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China; National Engineering Technology Research Center for Oil Peony, Yangling 712100, China.
| | - Yan-Long Zhang
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China; National Engineering Technology Research Center for Oil Peony, Yangling 712100, China.
| |
Collapse
|
30
|
He XF, Chen JJ, Li TZ, Zhang XK, Guo YQ, Zhang XM, Hu J, Geng CA. Nineteen New Flavanol-Fatty Alcohol Hybrids with α-Glucosidase and PTP1B Dual Inhibition: One Unusual Type of Antidiabetic Constituent from Amomum tsao-ko. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:11434-11448. [PMID: 32965110 DOI: 10.1021/acs.jafc.0c04615] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The dried fruits of Amomum tsao-ko were first revealed to have hypoglycemic effects on db/db mice at a concentration of 200 mg/kg. In order to clarify the antidiabetic constituents, 19 new flavanol-fatty alcohol hybrids, tsaokoflavanols A-S (1-19), were isolated and determined by extensive spectroscopic data and ECD calculations. Most of the compounds showed α-glucosidase and PTP1B dual inhibition, among which 1, 2, 6, 11, and 18 exhibited obvious activity against α-glucosidase with IC50 values of 5.2-9.0 μM, 20-35 times stronger than that of acarbose (IC50, 180.0 μM); meanwhile, 6, 10-12, and 19 were PTP1B/TCPTP-selective inhibitors with IC50 values of 56.4-80.4 μM, 2-4 times stronger than that of suramin sodium (IC50, 200.5 μM). Enzyme kinetics study indicated that compounds 1, 2, 6, and 11 were α-glucosidase and PTP1B mixed-type inhibitors with Ki values of 13.0, 11.7, 2.9, and 5.3 μM and 142.3, 88.9, 39.2, and 40.8 μM, respectively. Docking simulations proved the importance of hemiacetal hydroxy, the orientation of 3,4-dihydroxyphenyl, and the length of alkyl in binding with α-glucosidase and PTP1B.
Collapse
Affiliation(s)
- Xiao-Feng He
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Yunnan Key Laboratory of Natural Medicinal Chemistry, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Ji-Jun Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Yunnan Key Laboratory of Natural Medicinal Chemistry, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Tian-Ze Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Yunnan Key Laboratory of Natural Medicinal Chemistry, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Xu-Ke Zhang
- College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300071, People's Republic of China
| | - Yuan-Qiang Guo
- College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300071, People's Republic of China
| | - Xue-Mei Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Yunnan Key Laboratory of Natural Medicinal Chemistry, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Jing Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Yunnan Key Laboratory of Natural Medicinal Chemistry, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Chang-An Geng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Yunnan Key Laboratory of Natural Medicinal Chemistry, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| |
Collapse
|
31
|
He XF, Wang HM, Geng CA, Hu J, Zhang XM, Guo YQ, Chen JJ. Amomutsaokols A-K, diarylheptanoids from Amomum tsao-ko and their α-glucosidase inhibitory activity. PHYTOCHEMISTRY 2020; 177:112418. [PMID: 32679346 DOI: 10.1016/j.phytochem.2020.112418] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 04/14/2020] [Accepted: 05/18/2020] [Indexed: 05/14/2023]
Abstract
Eleven undescribed diarylheptanoids, amomutsaokols A‒K (1-11), together with 13 known ones (13-24), were isolated from the active fraction of the fruits of Amomum tsao-ko. The structures of the undescribed compounds were determined by extensive 1D and 2D NMR, HRESIMS and ECD calculations. Compounds 3-5, 7, 8, 12, 14 and 19 showed obviously α-glucosidase inhibitory activity with IC50 values ranging from 12.9 to 48.8 μM. An enzyme kinetic analysis indicated that compounds 8 and 9 were α-glucosidase noncompetitive inhibitors with Ki values of 18.5 and 213.0 μM, respectively. This study supported diarylheptanoids as the active constituents of A. tsao-ko with α-glucosidase inhibitory effects.
Collapse
Affiliation(s)
- Xiao-Feng He
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming, 650201, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Hui-Mei Wang
- College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300071, PR China
| | - Chang-An Geng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming, 650201, PR China
| | - Jing Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming, 650201, PR China
| | - Xue-Mei Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming, 650201, PR China
| | - Yuan-Qiang Guo
- College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300071, PR China
| | - Ji-Jun Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming, 650201, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| |
Collapse
|
32
|
Kousaxidis A, Petrou A, Lavrentaki V, Fesatidou M, Nicolaou I, Geronikaki A. Aldose reductase and protein tyrosine phosphatase 1B inhibitors as a promising therapeutic approach for diabetes mellitus. Eur J Med Chem 2020; 207:112742. [PMID: 32871344 DOI: 10.1016/j.ejmech.2020.112742] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 08/06/2020] [Indexed: 02/07/2023]
Abstract
Diabetes mellitus is a metabolic disease characterized by high blood glucose levels and usually associated with several chronic pathologies. Aldose reductase and protein tyrosine phosphatase 1B enzymes have identified as two novel molecular targets associated with the onset and progression of type II diabetes and related comorbidities. Although many inhibitors against these enzymes have already found in the field of diabetic mellitus, the research for discovering more effective and selective agents with optimal pharmacokinetic properties continues. In addition, dual inhibition of these target proteins has proved as a promising therapeutic approach. A variety of diverse scaffolds are presented in this review for the future design of potent and selective inhibitors of aldose reductase and protein tyrosine phosphatase 1B based on the most important structural features of both enzymes. The discovery of novel dual aldose reductase and protein tyrosine phosphatase 1B inhibitors could be effective therapeutic molecules for the treatment of insulin-resistant type II diabetes mellitus. The methods used comprise a literature survey and X-ray crystal structures derived from Protein Databank (PDB). Despite the available therapeutic options for type II diabetes mellitus, the inhibitors of aldose reductase and protein tyrosine phosphatase 1B could be two promising approaches for the effective treatment of hyperglycemia and diabetes-associated pathologies. Due to the poor pharmacokinetic profile and low in vivo efficacy of existing inhibitors of both targets, the research turned to more selective and cell-permeable agents as well as multi-target molecules.
Collapse
Affiliation(s)
- Antonios Kousaxidis
- School of Health, Department of Pharmacy, Aristotle University of Thessaloniki, 54124, Greece
| | - Anthi Petrou
- School of Health, Department of Pharmacy, Aristotle University of Thessaloniki, 54124, Greece
| | - Vasiliki Lavrentaki
- School of Health, Department of Pharmacy, Aristotle University of Thessaloniki, 54124, Greece
| | - Maria Fesatidou
- School of Health, Department of Pharmacy, Aristotle University of Thessaloniki, 54124, Greece
| | - Ioannis Nicolaou
- School of Health, Department of Pharmacy, Aristotle University of Thessaloniki, 54124, Greece
| | - Athina Geronikaki
- School of Health, Department of Pharmacy, Aristotle University of Thessaloniki, 54124, Greece.
| |
Collapse
|
33
|
Hu GL, Gao Y, Peng XR, Liu JH, Su HG, Huang YJ, Qiu MH. Lactam ent-Kaurane Diterpene: A New Class of Diterpenoids Present in Roasted Beans of Coffea arabica. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:6112-6121. [PMID: 32348136 DOI: 10.1021/acs.jafc.9b08149] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Seven new lactam ent-kaurane diterpenoids, cafemides A-G (1-7), were isolated from roasted beans of Coffea arabica. Their structures were elucidated by extensive spectroscopic analysis including 1D, 2D NMR (heteronuclear single quantum correlation (HSQC), heteronuclear multiple bond correlation (HMBC), 1H-1H correlation spectroscopy (COSY), and rotating frame Overhauser effect spectroscopy (ROESY)), high-resolution electrospray ionization mass spectrometry (HRESIMS), and IR spectra. They were divided into subtype I-III according to the structure. Further, with the aid of liquid chromatography-tandem mass spectrometry (LC-MS/MS) based molecular network, seven (8-14) subtype II diterpenoids were successfully identified. In addition, a variety of other subtypes of N-containing diterpenoids have been proven in roasted coffee. Compounds 1, 2, 3, 5, and 7 showed a moderate inhibitory effect on α-glucosidase with an IC50 value of 8.28 ± 0.62 μM, 38.23 ± 8.87 μM, 28.94 ± 1.42 μM, 12.44 ± 1.37 μM, and 22.2 ± 5.34 μM, respectively. To the best of our knowledge, this is the first time that N-containing diterpenoids have been reported in coffee.
Collapse
Affiliation(s)
- Gui-Lin Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Ya Gao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xing-Rong Peng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, People's Republic of China
| | - Jun-Hong Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Hai-Guo Su
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yan-Jie Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Ming-Hua Qiu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
34
|
Yang XT, Geng CA, Li TZ, Deng ZT, Chen JJ. Synthesis and biological evaluation of chepraecoxin A derivatives as α-glucosidase inhibitors. Bioorg Med Chem Lett 2020; 30:127020. [DOI: 10.1016/j.bmcl.2020.127020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/19/2020] [Accepted: 02/05/2020] [Indexed: 01/05/2023]
|
35
|
He XF, Zhang XK, Geng CA, Hu J, Zhang XM, Guo YQ, Chen JJ. Tsaokopyranols A–M, 2,6-epoxydiarylheptanoids from Amomum tsao-ko and their α-glucosidase inhibitory activity. Bioorg Chem 2020; 96:103638. [DOI: 10.1016/j.bioorg.2020.103638] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/13/2020] [Accepted: 01/28/2020] [Indexed: 12/30/2022]
|
36
|
Pan ZH, Ning DS, Fu YX, Li DP, Zou ZQ, Xie YC, Yu LL, Li LC. Preparative Isolation of Piceatannol Derivatives from Passion Fruit ( Passiflora edulis) Seeds by High-Speed Countercurrent Chromatography Combined with High-Performance Liquid Chromatography and Screening for α-Glucosidase Inhibitory Activities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:1555-1562. [PMID: 31986026 DOI: 10.1021/acs.jafc.9b04871] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Passiflora edulis Sims (passion fruit) seeds are often discarded as byproducts during juice processing. In fact, the seeds are of considerable commercial value in the food and cosmetics industry because of their rich polyphenols, especially piceatannol. In this study, high-speed countercurrent chromatography (HSCCC) was applied for the separation of stilbene polyphenols from passion fruit seeds. The n-hexane-ethyl acetate-methanol-water (1:2:1:2.8, v/v) was found to be the optimum two-phase solvent for the preparation of two major stilbenes, scirpusin B (8) and piceatannol (9) with purities of 90.2% and 94.8%, respectively. In addition, a continuous semipreparative HPLC was applied to further purify the HSCCC fractions containing minor stilbenes and obtain four new piceatannol derivatives (1-4) along with three known ones (5-7). The structures of these new compounds were determined using spectroscopic methods, including NMR, high-resolution electrospray ionization mass spectrometry (HR-ESI-MS), and circular dichroism (CD). The isolated compounds were evaluated for α-glucosidase inhibitory activities in vitro. The result suggested that all of them exhibited more significant activity than acarbose, and passiflorinol B (2) had the strongest activity, with a IC50 value of 1.7 μM.
Collapse
Affiliation(s)
- Zheng-Hong Pan
- Guangxi Key Laboratory of Functional Phytochemicals Research and Utilization , Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences , Guilin 541006 , PR China
| | - De-Sheng Ning
- Guangxi Key Laboratory of Functional Phytochemicals Research and Utilization , Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences , Guilin 541006 , PR China
| | - Yu-Xia Fu
- Guangxi Key Laboratory of Functional Phytochemicals Research and Utilization , Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences , Guilin 541006 , PR China
| | - Dian-Peng Li
- Guangxi Key Laboratory of Functional Phytochemicals Research and Utilization , Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences , Guilin 541006 , PR China
| | - Zhi-Qi Zou
- Guangxi Key Laboratory of Functional Phytochemicals Research and Utilization , Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences , Guilin 541006 , PR China
| | - Yun-Chang Xie
- Guangxi Key Laboratory of Functional Phytochemicals Research and Utilization , Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences , Guilin 541006 , PR China
| | - Ling-Ling Yu
- Guangxi Key Laboratory of Functional Phytochemicals Research and Utilization , Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences , Guilin 541006 , PR China
- College of Chemistry and Bioengineering , Guilin University of Technology , Guilin 541004 , PR China
| | - Lian-Chun Li
- Guangxi Key Laboratory of Functional Phytochemicals Research and Utilization , Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences , Guilin 541006 , PR China
| |
Collapse
|
37
|
Deng ZT, Chen JJ, Geng CA. ent-Labdane and ent-kaurane diterpenoids from Chelonopsis odontochila with α-glucosidase inhibitory activity. Bioorg Chem 2020; 95:103571. [DOI: 10.1016/j.bioorg.2020.103571] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/18/2019] [Accepted: 01/03/2020] [Indexed: 11/24/2022]
|