1
|
Chen L, De Longhi E, Gammacurta M, Marchal A, Darriet P. Quantitation of trace polyfunctional thiols in wine by liquid chromatography quadrupole Orbitrap high-resolution mass spectrometry in parallel reaction monitoring. J Chromatogr A 2024; 1736:465360. [PMID: 39307035 DOI: 10.1016/j.chroma.2024.465360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/16/2024] [Accepted: 09/07/2024] [Indexed: 10/23/2024]
Abstract
Polyfunctional thiols are key contributors to wine aroma due to their extremely low odor thresholds, and their quantitative analysis remains challenging as a result of their ultratrace concentrations and high reactivity. This work presents the first method based on ultra-high-performance liquid chromatography (UHPLC) coupled to quadrupole Orbitrap high-resolution mass spectrometry (HRMS) in parallel reaction monitoring (PRM) mode for quantifying thiols at nanograms per liter (ng/L) levels in wine. Thiols in wine were derivatized using 4,4'-dithiodipyridine and isolated by liquid-liquid extraction. This protocol allowed rapid sample preparation with minimum labor input and low consumable expenses. Instrumental analysis was conducted using UHPLC-quadrupole Orbitrap HRMS in PRM mode. Twenty thiol analytes, including literature-known, recently identified, and novel thiols were selected and validated by the optimized method in three wine matrices. The overall analytical performances demonstrated by this method were equivalent, and in most cases, greater than many previously developed GC-MS or LC-MS methods. The validated method was applied to analyze a selection of wines in which 12 thiols were quantified.
Collapse
Affiliation(s)
- Liang Chen
- Univ. Bordeaux, Bordeaux INP, INRAE, Bordeaux Sciences Agro, OENO, UMR 1366, ISVV, F-33140 Villenave d'Ornon, France.
| | - Emilio De Longhi
- Univ. Bordeaux, Bordeaux INP, INRAE, Bordeaux Sciences Agro, OENO, UMR 1366, ISVV, F-33140 Villenave d'Ornon, France; Hochschule Geisenheim University, Department of Microbiology and Biochemistry, 65366 Geisenheim, Germany
| | - Marine Gammacurta
- Univ. Bordeaux, Bordeaux INP, INRAE, Bordeaux Sciences Agro, OENO, UMR 1366, ISVV, F-33140 Villenave d'Ornon, France
| | - Axel Marchal
- Univ. Bordeaux, Bordeaux INP, INRAE, Bordeaux Sciences Agro, OENO, UMR 1366, ISVV, F-33140 Villenave d'Ornon, France
| | - Philippe Darriet
- Univ. Bordeaux, Bordeaux INP, INRAE, Bordeaux Sciences Agro, OENO, UMR 1366, ISVV, F-33140 Villenave d'Ornon, France
| |
Collapse
|
2
|
Sudarikov DV, Nikitina LE, Rollin P, Izmest’ev ES, Rubtsova SA. Monoterpene Thiols: Synthesis and Modifications for Obtaining Biologically Active Substances. Int J Mol Sci 2023; 24:15884. [PMID: 37958865 PMCID: PMC10649346 DOI: 10.3390/ijms242115884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Monoterpene thiols are one of the classes of natural flavors that impart the smell of citrus fruits, grape must and wine, black currants, and guava and are used as flavoring agents in the food and perfume industries. Synthetic monoterpene thiols have found an application in asymmetric synthesis as chiral auxiliaries, derivatizing agents, and ligands for metal complex catalysis and organocatalysts. Since monoterpenes and monoterpenoids are a renewable source, there are emerging trends to use monoterpene thiols as monomers for producing new types of green polymers. Monoterpene thioderivatives are also known to possess antioxidant, anticoagulant, antifungal, and antibacterial activity. The current review covers methods for the synthesis of acyclic, mono-, and bicyclic monoterpene thiols, as well as some investigations related to their usage for the preparation of the compounds with antimicrobial properties.
Collapse
Affiliation(s)
- Denis V. Sudarikov
- Institute of Chemistry, Federal Research Center “Komi Scientific Center”, Ural Branch, Russian Academy of Sciences, 167000 Syktyvkar, Russia; (E.S.I.); (S.A.R.)
| | - Liliya E. Nikitina
- General and Organic Chemistry Department, Kazan State Medical University, 49 Butlerov St., 420012 Kazan, Russia;
| | - Patrick Rollin
- Institute of Organic and Analytical Chemistry (ICOA), Université d’Orléans et the French National Center for Scientific Research (CNRS), UMR 7311, BP 6759, F-45067 Orléans, France;
| | - Evgeniy S. Izmest’ev
- Institute of Chemistry, Federal Research Center “Komi Scientific Center”, Ural Branch, Russian Academy of Sciences, 167000 Syktyvkar, Russia; (E.S.I.); (S.A.R.)
| | - Svetlana A. Rubtsova
- Institute of Chemistry, Federal Research Center “Komi Scientific Center”, Ural Branch, Russian Academy of Sciences, 167000 Syktyvkar, Russia; (E.S.I.); (S.A.R.)
| |
Collapse
|
3
|
Chen L, De Longhi E, Pons A, Buffeteau T, Daugey N, Redon P, Shinkaruk S, Darriet P. Identification, Quantitation, and Sensory Evaluation of Thiols in Bordeaux Red Wine with Characteristic Aging Bouquet. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:16248-16259. [PMID: 37862129 DOI: 10.1021/acs.jafc.3c05854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
Great Bordeaux red wines are known for their distinctive aging bouquet. However, the nature of volatile chemicals underpinning this sensory expression is not fully understood. This work investigated the empyreumatic aging bouquet of a collection of premium Bordeaux red wines using silver-ion (Ag+) solid-phase extraction, cryogenic heart-cutting multidimensional gas chromatography mass spectrometry/olfactometry, and comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry. In doing so, a substantial number of "meaty" odors were revealed. Three detected "meaty" notes were tentatively or unequivocally attributed to furan thiols. Among them, 2-methyltetrahydrofuran-3-thiol (1) with a pleasant "meaty" aroma was reported in wine for the first time. Its trans isomer (trans-1a) was resolved from its racemate by chemical modification, which confirmed its presence in wine. The odor detection threshold of trans-1a in the model wine was determined at 55 ng/L. Moreover, an additive effect between 1 and literature-known 2-methyl-3-furanthiol was observed. By a new ultra high-performance liquid chromatography quadrupole Orbitrap high-resolution mass spectrometry method, the concentration of trans-1a, in addition to those of 2-methyl-3-furanthiol and 2-furfuryl thiol, was measured in the wines at ng/L levels.
Collapse
Affiliation(s)
- Liang Chen
- Université de Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33140 Villenave d'Ornon, France
- Bordeaux Sciences Agro, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33170 Gradignan, France
| | - Emilio De Longhi
- Université de Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33140 Villenave d'Ornon, France
- Bordeaux Sciences Agro, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33170 Gradignan, France
- Department of Microbiology and Biochemistry, Hochschule Geisenheim University, Von-Lade-Strasse, 1, 65366 Geisenheim, Germany
| | - Alexandre Pons
- Université de Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33140 Villenave d'Ornon, France
- Bordeaux Sciences Agro, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33170 Gradignan, France
- Seguin Moreau France, Z.I. Merpins, BP 94, 16103 Cognac, France
| | - Thierry Buffeteau
- Université de Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, 33400 Talence, France
| | - Nicolas Daugey
- Université de Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, 33400 Talence, France
| | - Pascaline Redon
- Université de Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33140 Villenave d'Ornon, France
- Bordeaux Sciences Agro, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33170 Gradignan, France
| | - Svitlana Shinkaruk
- Université de Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33140 Villenave d'Ornon, France
- Bordeaux Sciences Agro, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33170 Gradignan, France
- Université de Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, 33400 Talence, France
| | - Philippe Darriet
- Université de Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33140 Villenave d'Ornon, France
- Bordeaux Sciences Agro, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33170 Gradignan, France
| |
Collapse
|
4
|
Zhang G, Xiao P, Yuan M, Li Y, Xu Y, Li H, Sun J, Sun B. Roles of sulfur-containing compounds in fermented beverages with 2-furfurylthiol as a case example. Front Nutr 2023; 10:1196816. [PMID: 37457986 PMCID: PMC10348841 DOI: 10.3389/fnut.2023.1196816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/25/2023] [Indexed: 07/18/2023] Open
Abstract
Aroma is a critical component of the flavor and quality of beverages. Among the volatile chemicals responsible for fragrance perception, sulfur compounds are unique odorants due to their extremely low odor threshold. Although trace amounts of sulfur compounds can enhance the flavor profile of beverages, they can lead to off-odors. Sulfur compounds can be formed via Maillard reaction and microbial metabolism, imparting coffee aroma and altering the flavor of beverages. In order to increase the understanding of sulfur compounds in the field of food flavor, 2-furfurylthiol (FFT) was chosen as a representative to discuss the current status of their generation, sensory impact, enrichment, analytical methods, formation mechanisms, aroma deterioration, and aroma regulation. FFT is comprehensively reviewed, and the main beverages of interest are typically baijiu, beer, wine, and coffee. Challenges and recommendations for FFT are also discussed, including analytical methods and mechanisms of formation, interactions between FFT and other compounds, and the development of specific materials to extend the duration of aroma after release.
Collapse
Affiliation(s)
- Guihu Zhang
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, China
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China
| | - Peng Xiao
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, China
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China
| | - Mengmeng Yuan
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, China
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China
| | - Youming Li
- Inner Mongolia Taibus Banner Grassland Brewing Co., Ltd., Xilin Gol League, China
| | - Youqiang Xu
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, China
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China
| | - Hehe Li
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, China
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Quality and Safety, Beijing Technology and Business University, Beijing, China
| | - Jinyuan Sun
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, China
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Quality and Safety, Beijing Technology and Business University, Beijing, China
| | - Baoguo Sun
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, China
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Quality and Safety, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
5
|
Alonso-Lomillo MA, Domínguez-Renedo O. Molecularly imprinted polypyrrole based electrochemical sensor for selective determination of ethanethiol. Talanta 2023; 253:123936. [PMID: 36152608 DOI: 10.1016/j.talanta.2022.123936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/05/2022] [Accepted: 09/09/2022] [Indexed: 12/13/2022]
Abstract
This work describes a molecularly imprinted (MIP) sensor, based on the electropolymerization of pyrrole on a glassy carbon electrode (GCE), for the determination of ethanethiol. Ethanethiol was used as a template molecule for the formation of cavities in the imprinted polymer. The effect of molar ratios template molecules/functional monomers and time needed to remove the template were optimized. The developed MIP/GCE sensor presented a linear range from 6.1 to 32.4 mg L-1 with capability detection and reproducibility values of 7.2 mg L-1 and 10.4%, respectively. The sensitivity of the developed sensor was enhanced by the incorporation of gold nanoparticles (AuNPs). The AuNPs/MIP/GCE showed a capability of detection and reproducibility values of 0.4 mg L-1 and 4.1%, respectively (calibration range from 0.3 to 3.1 mg L-1). The sensor was successfully applied to the determination of ethanethiol in spiked wine samples with recoveries ranging from 99% to 107%.
Collapse
Affiliation(s)
- M Asunción Alonso-Lomillo
- Analytical Chemistry Department, Faculty of Sciences, University of Burgos, Pza. Misael Bañuelos S/n, 09001, Burgos, Spain
| | - Olga Domínguez-Renedo
- Analytical Chemistry Department, Faculty of Sciences, University of Burgos, Pza. Misael Bañuelos S/n, 09001, Burgos, Spain.
| |
Collapse
|
6
|
Ma JH, Zhong Y, Zhou Y, Zhang Y, Feng XS. Organosulfur in food samples: Recent updates on sampling, pretreatment and determination technologies. J Chromatogr A 2023; 1689:463769. [PMID: 36610185 DOI: 10.1016/j.chroma.2022.463769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/25/2022] [Accepted: 12/29/2022] [Indexed: 01/01/2023]
Abstract
Organosulfur compounds (OSCs), mainly found in garlic, are the main biologically active substances for their pharmacological effects, including lowering of blood pressure and cholesterol, anti-cancer effect, liver protection, and anti-inflammatory. Efficient and sensitive pretreatment and determination methods of OSCs in different food matrices are of great significance. This review provides a comprehensive summary about the pretreatment and determination methods for OSCs in different food samples since 2010. Commonly used pretreatment methods, such as liquid-liquid extraction, microwave-assisted extraction, pressurized liquid extraction, liquid-liquid microextraction, solid phase extraction, dispersive solid phase extraction, solid-phase microextraction, and so on, have been summarized and overviewed in this paper. In particular, we discussed and compared various analysis methods including high performance liquid chromatography coupled with different detectors, gas chromatography-based methods, and few other methods. Finally, we tried to highlight the applicability, advantages and disadvantages of different pretreatment and analysis methods, and identified future prospects in this field.
Collapse
Affiliation(s)
- Jia-Hui Ma
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yang Zhong
- Department of Chemistry, School of Forensic Medicine, China Medical University, Shenyang 110122, China
| | - Yu Zhou
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| |
Collapse
|
7
|
Research progress in comprehensive two-dimensional gas chromatography-mass spectrometry and its combination with olfactometry systems in the flavor analysis field. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
8
|
Liu Y, Li N, Li X, Qian W, Liu J, Su Q, Chen Y, Zhang B, Zhu B, Cheng J. A high-resolution Orbitrap Mass spectral library for trace volatile compounds in fruit wines. Sci Data 2022; 9:496. [PMID: 35963960 PMCID: PMC9376066 DOI: 10.1038/s41597-022-01594-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/25/2022] [Indexed: 11/14/2022] Open
Abstract
The overall aroma is an important factor of the sensory quality of fruit wines, which attributed to hundreds of volatile compounds. However, the qualitative determination of trace volatile compounds is considered to be very challenging work. GC-Orbitrap-MS with high resolution and high sensitivity provided more possibilities for the determination of volatile compounds, but without the high-resolution mass spectral library. For accuracy of qualitative determination in fruit wines by GC-Orbitrap-MS, a high-resolution mass spectral library, including 76 volatile compounds, was developed in this study. Not only the HRMS spectrum but also the exact ion fragment, relative abundance, retention indices (RI), CAS number, chemical structure diagram, aroma description and aroma threshold (ortho-nasally) were provided and were shown in a database website (Food Flavor Laboratory, http://foodflavorlab.cn/). HRMS library was used to successfully identify the volatile compounds mentioned above in 16 fruit wines (5 blueberry wines, 6 goji berry wines and 5 hawthorn wines). The library was developed as an important basis for further understanding of trace volatile compounds in fruit wines. Measurement(s) | volatile compounds | Technology Type(s) | GC-Orbitrap-MS |
Collapse
Affiliation(s)
- Yaran Liu
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Na Li
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Xiaoyao Li
- School of Cyberspace Security, Beijing University of Posts and Telecommunications, Beijing, 100876, China
| | - Wenchao Qian
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Jiani Liu
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Qingyu Su
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Yixin Chen
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Bolin Zhang
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Baoqing Zhu
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| | - Jinxin Cheng
- China People's Police University, Hebei, 065000, China.
| |
Collapse
|
9
|
Carlin S, Piergiovanni M, Pittari E, Tiziana Lisanti M, Moio L, Piombino P, Marangon M, Curioni A, Rolle L, Rio Segade S, Versari A, Ricci A, Paola Parpinello G, Luzzini G, Ugliano M, Perenzoni D, Vrhovsek U, Mattivi F. The contribution of varietal thiols in the diverse aroma of Italian monovarietal white wines. Food Res Int 2022; 157:111404. [DOI: 10.1016/j.foodres.2022.111404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/14/2022] [Accepted: 05/21/2022] [Indexed: 11/25/2022]
|
10
|
Chen L, Darriet P. Qualitative Screening of Volatile Thiols in Wine by Selective Silver Ion Solid-Phase Extraction with Heart-Cutting Multidimensional Gas Chromatography Mass Spectrometry/Olfactometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4701-4711. [PMID: 35404059 DOI: 10.1021/acs.jafc.2c00243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The chemical analysis of odorous volatile thiols is intrinsically challenging. Substantial progress has been made in quantitative analysis of targeted thiols at ultra-trace concentrations (ng/L), but lesser analytical attention has been given to the qualitative screening of unknown thiols. This work presents a solid-phase extraction (SPE) method using a silver ion (Ag+)-based sorbent to isolate volatile thiols from red wine. This proposed Ag+ SPE method was effective (recovery: 87-101% for four non-furan thiols and 35-49% for two furan thiols), simple, safe, and greatly reduced artifacts, testifying to its suitability as the sample preparation protocol for a qualitative screening experiment. Separation and detection were conducted using heart-cutting multidimensional gas chromatography coupled to mass spectrometry/olfactometry (H/C MDGC-MS/O). Key parameters including H/C width, main host oven temperature, and cryogenic trapping temperature were investigated for optimal instrument performance. The developed Ag+ SPE H/C MDGC-MS/O strategy was readily applicable for qualitative screening of odorous volatile thiols in wine, as demonstrated by two case studies.
Collapse
Affiliation(s)
- Liang Chen
- University of Bordeaux, INRAE, Bordeaux INP, UMR1366 Œnologie, ISVV, F-33140 Villenave d'Ornon, France
| | - Philippe Darriet
- University of Bordeaux, INRAE, Bordeaux INP, UMR1366 Œnologie, ISVV, F-33140 Villenave d'Ornon, France
| |
Collapse
|
11
|
Analysis of Varietal Thiols in Sauvignon Blanc Wines—Optimization of a Solid-Phase Extraction Gas Chromatography Tandem Mass Spectrometry Method. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-021-02200-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Chen X, Kilmartin PA, Fedrizzi B, Quek SY. Elucidation of Endogenous Aroma Compounds in Tamarillo ( Solanum betaceum) Using a Molecular Sensory Approach. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:9362-9375. [PMID: 34342975 DOI: 10.1021/acs.jafc.1c03027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Glycosidically bound volatiles (GBVs) are flavorless compounds in fruits and may undergo hydrolysis during fruit maturation, storage, and processing, releasing free aglycones that are odor active. However, the contribution of glycosidic aglycones to the sensory attributes of fruits remains unclear. Herein, the key odor-active aglycones in tamarillo fruits were elucidated through the molecular sensory approach. We extracted GBVs from three cultivars of tamarillo fruits using solid-phase extraction and subsequently prepared aglycone isolates by enzymatic hydrolysis of GBVs. Gas chromatography-mass spectrometry-olfactometry (GC-MS-O) coupled with odor activity value (OAV) calculation, comparative aroma extract dilution analysis (cAEDA), and omission tests were used to identify key aromatic aglycones. A total of 42 odorants were determined by GC-MS-O analysis. Among them, trans-2,cis-6-nonadienal, 2,5-dimethyl-4-hydroxy-3(2H)-furanone (DMHF), linalool, 4-vinylguaiacol, geraniol, and α-terpineol showed high OAVs. The cultivar Amber had more aglycones with flavor dilution (FD) factors >16 than the Mulligan cultivar (27 vs 21, respectively), and the Laird's Large fruit showed the highest FD of 1024 for glycosidic DMHF. Omission tests indicated 14 aglycones as essential odorants related to GBVs in tamarillo fruits. Moreover, the enzymatic liberation of aglycones affected the sensory attributes of the tamarillo juice, resulting in an intensified odor profile with noticeable fruity and sweet notes. This study gives insights into the role of endogenous aroma during tamarillo-flavor perception, which lays the groundwork for developing tamarillo-based products with improved sensory properties.
Collapse
Affiliation(s)
- Xiao Chen
- School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
| | - Paul A Kilmartin
- School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
| | - Bruno Fedrizzi
- School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
| | - Siew Young Quek
- School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
- Riddet Institute, Centre of Research Excellence in Food Research, Palmerston North 4474, New Zealand
| |
Collapse
|
13
|
Chen L, Darriet P. Strategies for the identification and sensory evaluation of volatile constituents in wine. Compr Rev Food Sci Food Saf 2021; 20:4549-4583. [PMID: 34370385 DOI: 10.1111/1541-4337.12810] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 06/18/2021] [Accepted: 06/20/2021] [Indexed: 11/27/2022]
Abstract
Wine aroma, which stems from complex perceptual and cognitive processes, is initially driven by a multitude of naturally occurring volatile constituents. Its interpretation depends on the characterization of relevant volatile constituents. With large numbers of volatile constituents already identified, the search for unknown volatiles in wine has become increasingly challenging. However, the opportunities to discover unknown volatile compounds contributing to the wine volatilome are still of great interest, as demonstrated by the recent identification of highly odorous trace (µg/L) to ultra-trace (ng/L) volatile compounds in wine. This review provides an overview of both existing strategies and future directions on identifying unknown volatile constituents in wine. Chemical identification, including sample extraction, fractionation, gas chromatography, olfactometry, and mass spectrometry, is comprehensively covered. In addition, this review also focuses on aspects related to sensory-guided wine selection, authentic reference standards, artifacts and interferences, and the evaluation of the sensory significance of discovered wine volatiles. Powerful key volatile odorants present at ultra-trace levels, for which these analytical approaches have been successfully applied, are discussed. Research areas where novel wine volatiles are likely to be identified are pointed out. The importance of perceptual interaction phenomena is emphasized. Finally, future avenues for the exploration of yet unknown wine volatiles by coupling analytical approaches and sensory evaluation are suggested.
Collapse
Affiliation(s)
- Liang Chen
- Université de Bordeaux, Unité de Recherche Œnologie, EA 4577, USC 1366 INRAE, Institut des Sciences de la Vigne et du Vin, 210 Chemin de Leysotte, 33882 Villenave d'Ornon Cedex, France
| | - Philippe Darriet
- Université de Bordeaux, Unité de Recherche Œnologie, EA 4577, USC 1366 INRAE, Institut des Sciences de la Vigne et du Vin, 210 Chemin de Leysotte, 33882 Villenave d'Ornon Cedex, France
| |
Collapse
|
14
|
Yu P, Yang Y, Sun J, Jia X, Zheng C, Zhou Q, Huang F. Identification of volatile sulfur-containing compounds and the precursor of dimethyl sulfide in cold-pressed rapeseed oil by GC-SCD and UPLC-MS/MS. Food Chem 2021; 367:130741. [PMID: 34399272 DOI: 10.1016/j.foodchem.2021.130741] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/19/2021] [Accepted: 07/29/2021] [Indexed: 11/25/2022]
Abstract
Volatile sulfur-containing compounds (VSCs) provide an important contribution to foods due to their special odors. In this study, VSCs in 21 cold-pressed rapeseed oils (CROs) from 9 regions in China were extracted and separated by headspace solid-phase microextraction combined with gas chromatography coupled with sulfur chemiluminescence detection. 19 VSCs were identified by authentic standards, and the total concentration of VSCs in all CROs ranged from 49.0 to 18129 μg/kg. Dimethyl sulfide (DMS), with its high odor activity value (7-14574), was the most significant aroma contributor to the CROs. Furthermore, S-methylmethionine (SMM) in rapeseed was first affirmed by ultra-performance liquid chromatography-tandem mass spectrometry and isotope quantitation. The positive correlation coefficient between DMS and SMM was 0.793 (p < 0.05), which confirmed SMM as a crucial precursor of DMS in CROs. This study provided a theoretical basis for selecting rapeseed materials by the distribution of essential VSCs and the source of DMS.
Collapse
Affiliation(s)
- Pei Yu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, and Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Wuhan 430062, China
| | - Yini Yang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, and Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Wuhan 430062, China
| | - Jinyuan Sun
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Xiao Jia
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, and Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Wuhan 430062, China
| | - Chang Zheng
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, and Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Wuhan 430062, China
| | - Qi Zhou
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, and Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Wuhan 430062, China.
| | - Fenghong Huang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, and Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Wuhan 430062, China.
| |
Collapse
|
15
|
Pawełczyk A, Żwawiak J, Zaprutko L. Kumquat Fruits as an Important Source of Food Ingredients and Utility Compounds. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1928179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Anna Pawełczyk
- Department of Organic Chemistry, Pharmaceutical Faculty, Poznan University of Medical Sciences, Poznań, Poland
| | - Justyna Żwawiak
- Department of Organic Chemistry, Pharmaceutical Faculty, Poznan University of Medical Sciences, Poznań, Poland
| | - Lucjusz Zaprutko
- Department of Organic Chemistry, Pharmaceutical Faculty, Poznan University of Medical Sciences, Poznań, Poland
| |
Collapse
|
16
|
Demarcq B, Cavailles M, Lambert L, Schippa C, Ollitrault P, Luro F. Characterization of Odor-Active Compounds of Ichang Lemon ( Citrus wilsonii Tan.) and Identification of Its Genetic Interspecific Origin by DNA Genotyping. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:3175-3188. [PMID: 33667086 DOI: 10.1021/acs.jafc.0c07894] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Ichang lemon is a citrus fruit whose rind gives off a delicious and much appreciated fragrance and flavor. The volatile components of the fruit peel of Ichang lemon were investigated by GC-MS and GC-O (AEDA method). Simultaneously, its genetic origin was identified by using diagnostic SNP markers specific to ancestral species and multiallelic SSR and InDel markers. Ichang lemon combines three ancestral genomes (Citrus maxima, Citrus ichangensis, and Citrus reticulata) and may be a pummelo × Yuzu hybrid. Although the major compounds of the Ichang lemon aromatic profile were present in Citrus junos, a few pummelo-specific compounds were also detected, such as indole and nootkatone, in agreement with its maternal lineage. 3-Methyl-3-sulfanylbutyl acetate, reported to occur in passion fruit and brewed coffee, was identified by GC-MS, GC-QTOF-MS, and GC-FTIR for the first time in citrus. This odor-active compound has a sulfurous, tropical fruity, green note.
Collapse
Affiliation(s)
- Benoit Demarcq
- V Mane Fils SA, 620 Route de Grasse, 06620 Le Bar-sur-Loup, France
| | | | - Laetitia Lambert
- V Mane Fils SA, 620 Route de Grasse, 06620 Le Bar-sur-Loup, France
| | | | - Patrick Ollitrault
- CIRAD, UMR AGAP, F-20230 San Giuliano, France
- UMR AGAP Institut, Université Montpellier, CIRAD, INRAE, Institut Agro, 20230 San Giuliano, France
| | - Francois Luro
- UMR AGAP Institut, Université Montpellier, CIRAD, INRAE, Institut Agro, 20230 San Giuliano, France
| |
Collapse
|
17
|
Welke JE, Hernandes KC, Nicolli KP, Barbará JA, Biasoto ACT, Zini CA. Role of gas chromatography and olfactometry to understand the wine aroma: Achievements denoted by multidimensional analysis. J Sep Sci 2020; 44:135-168. [PMID: 33245848 DOI: 10.1002/jssc.202000813] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/21/2020] [Accepted: 11/22/2020] [Indexed: 02/06/2023]
Abstract
The human nose has been used as a detector in gas chromatography analysis to evaluate odoriferous compounds related to aroma and quality of wine. Several olfactometric techniques are available to access the description, intensity, and/or duration of the odor of each compound. Olfactometry can be associated with one-dimensional gas chromatography or multidimensional gas chromatography, including heart-cut gas chromatography and comprehensive two-dimensional gas chromatography. Multidimensional gas chromatography may help to resolve coeluted compounds and detect important trace components for the aroma. The identification of odor-active compounds may help to differentiate wines according to terroir, grapes cultivars used in winemaking or types of aging, understand the role of fungal infection of grapes for wine quality, find the best management practices in vineyard and vinification to obtain the greatest quality. In addition, when the instrumental techniques are combined with sensory analysis, even more accurate information may be obtained regarding the overall wine aroma. This review discloses the state of the art of olfactometric methods and the analytical techniques used to investigate odor-active compounds such as one-dimensional gas chromatography, multidimensional gas chromatography, and comprehensive two-dimensional gas chromatography. The advances in knowledge of wine aroma achieved with the use of these techniques in the target and profiling approaches were also discussed.
Collapse
Affiliation(s)
- Juliane Elisa Welke
- Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, Porto Alegre, Rio Grande do Sul, Brazil
| | - Karolina Cardoso Hernandes
- Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, Porto Alegre, Rio Grande do Sul, Brazil
| | - Karine Primieri Nicolli
- Instituto de Química, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, Porto Alegre, Rio Grande do Sul, Brazil
| | - Janaína Aith Barbará
- Instituto de Química, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, Porto Alegre, Rio Grande do Sul, Brazil
| | | | - Claudia Alcaraz Zini
- Instituto de Química, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
18
|
Song X, Zhu L, Jing S, Li Q, Ji J, Zheng F, Zhao Q, Sun J, Chen F, Zhao M, Sun B. Insights into the Role of 2-Methyl-3-furanthiol and 2-Furfurylthiol as Markers for the Differentiation of Chinese Light, Strong, and Soy Sauce Aroma Types of Baijiu. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:7946-7954. [PMID: 32615756 DOI: 10.1021/acs.jafc.0c04170] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The sensory impacts of two thiols, 2-methyl-3-furanthiol (MFT) and 2-furfurylthiol (FFT), in Chinese soy sauce aroma-type Baijiu (SSB), strong aroma-type Baijiu (STB), and light aroma-type Baijiu (LTB) (liquor) were evaluated and combined with partial least squares discriminant analysis (PLS-DA) to differentiate Chinese Baijiu. The flavor dilution factors of these two thiols ranged from 81 to 6561, and quantitative results showed that MFT and FFT were significantly more abundant (p < 0.001) in SSB than in STB and LTB. The determined odor activity values (OAVs) suggest that MFT (OAV: 34-121) and FFT (OAV: 11-103) contribute significantly to the overall aroma profiles of LTB and STB. Interestingly, the OAVs of these two thiols were high (256-263) and did not significantly differ (p > 0.05) in SSB. Notably, hierarchical cluster analysis and PLS-DA results revealed that these compounds can be used to differentiate Chinese LTB, STB, and SSB. According to their prominent organoleptic and distinguishing roles, these two thiols can be regarded as flavor markers for SSB.
Collapse
Affiliation(s)
- Xuebo Song
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| | - Lin Zhu
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| | - Si Jing
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| | - Qing Li
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| | - Jian Ji
- School of Food Science, State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Fuping Zheng
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| | - Qiangzhong Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jinyuan Sun
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| | - Feng Chen
- Department of Food Nutrition and Packaging Sciences, Clemson University, Clemson, South Carolina 29634, United States
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Baoguo Sun
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
19
|
Schmidberger PC, Schieberle P. Changes in the Key Aroma Compounds of Raw Shiitake Mushrooms ( Lentinula edodes) Induced by Pan-Frying As Well As by Rehydration of Dry Mushrooms. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:4493-4506. [PMID: 32196328 DOI: 10.1021/acs.jafc.0c01101] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Application of the aroma extract dilution analysis (AEDA) on an extract/distillate from raw shiitake mushrooms revealed 32 odorants among which 3-(methylthio)propanal (cooked potato), 1-octen-3-one, and 1-octen-3-ol (both mushroom-like) showed the highest flavor dilution (FD) factors. An isotope enrichment experiment with raw shiitake tissue and either 13C18-linoleic acid or 2H4-1-octen-3-ol confirmed that both 1-octen-3-ol and 1-octen-3-one are direct degradation products of the fatty acid, but it could be proven for the first time that the ketone is not formed by an oxidation of the alcohol. After pan-frying, 42 odor-active compounds appeared among which 3-hydroxy-4,5-dimethylfuran-2(5H)-one (savory), 1,2,4,5-tetrathiane (burnt, sulfury), 4-hydroxy-2,5-dimethylfuran-3(2H)-one (caramel-like), phenylacetic acid (honey-like), 3-(methylthio)-propanal, and trans-4,5-epoxy-(E)-2-decenal (metallic) showed the highest FD factors. To get a deeper insight into their aroma contribution, 19 key odorants were quantitated in the raw shiitake and twenty-one in the pan-fried mushrooms by stable isotope dilution assays, and new methods for the quantitation of four sulfur compounds were developed. A calculation of odor activity values (OAV; ratio of concentration to odor threshold) showed that 1-octen-3-one was by far the most important odorant in raw shiitake. During pan-frying, in particular, four aroma compounds were significantly increased, i.e., 4-hydroxy-2,5-dimethylfuran-3(2H)-one, dimethyl trisulfide, 1,2,4,5-tetrathiane, and 1,2,3,5,6-pentathiepane. The overall aroma profile of pan-fried shiitake could very well be mimicked by an aroma recombinate consisting of 15 reference aroma compounds in the concentrations determined in the pan-fried mushrooms. Further results showed that the sulfur compounds were even higher in rehydrated dry shiitake as compared to the pan-fried mushrooms.
Collapse
Key Words
- [2H4]-1,2,3,5,6-pentathiepane
- [2H4]-1,2,4,5-tetrathiane
- [2H6]-1,2,4,6-tetrathiepane
- dry
- odor activity value
- pan-fried shiitake
- raw shiitake
- rehydrated shiitake
- sensomics
- stable isotope dilution analysis
Collapse
Affiliation(s)
- Philipp C Schmidberger
- Technische Universität München, Lehrstuhl für Lebensmittelchemie, Lise-Meitner-Straße 34, 85354 Freising, Germany
| | - Peter Schieberle
- Technische Universität München, Lehrstuhl für Lebensmittelchemie, Lise-Meitner-Straße 34, 85354 Freising, Germany
| |
Collapse
|
20
|
Amaral MSS, Nolvachai Y, Marriott PJ. Comprehensive Two-Dimensional Gas Chromatography Advances in Technology and Applications: Biennial Update. Anal Chem 2019; 92:85-104. [DOI: 10.1021/acs.analchem.9b05412] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Michelle S. S. Amaral
- Australian Centre for Research on Separation Science, School of Chemistry, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Yada Nolvachai
- Australian Centre for Research on Separation Science, School of Chemistry, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Philip J. Marriott
- Australian Centre for Research on Separation Science, School of Chemistry, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| |
Collapse
|
21
|
Chen L, Capone DL, Jeffery DW. Analysis of Potent Odour-Active Volatile Thiols in Foods and Beverages with a Focus on Wine. Molecules 2019; 24:molecules24132472. [PMID: 31284416 PMCID: PMC6650874 DOI: 10.3390/molecules24132472] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 12/13/2022] Open
Abstract
Certain volatile thiols are some of the most potent odour-active molecules that are found in nature. Thiols play significant roles in the aroma qualities of a range of foods and beverages, including wine, with extremely low odour detection thresholds (nanogram per litre range). A fundamental understanding of their formation, fate, and impact essentially depends on the development of suitable analytical methods. The analysis of volatile thiols in foods and beverages is a challenging task when considering (1) the complexity of food and beverage matrices and (2) that thiols are highly reactive, low molecular-weight volatiles that are generally present at trace to ultra-trace concentrations. For the past three decades, the analytical evaluation of volatile thiols has been intensively performed in various foods and beverages, and many novel techniques related to derivatisation, isolation, separation, and detection have been developed, particularly by wine researchers. This review aims to provide an up-to-date overview of the major analytical methodologies that are proposed for potent volatile thiol analysis in wine, foods, and other beverages. The analytical challenges for thiol analysis in foods and beverages are outlined, and the main analytical methods and recent advances in methodology are summarised and evaluated for their strengths and limitations. The key analytical aspects reviewed include derivatisation and sample preparation techniques, chromatographic separation, mass spectrometric detection, matrix effects, and quantitative analysis. In addition, future perspectives on volatile thiol research are also suggested.
Collapse
Affiliation(s)
- Liang Chen
- Department of Wine and Food Science, The University of Adelaide (UA), PMB 1, Glen Osmond, SA 5064, Australia
| | - Dimitra L Capone
- Department of Wine and Food Science, The University of Adelaide (UA), PMB 1, Glen Osmond, SA 5064, Australia
- Australian Research Council Training Centre for Innovative Wine Production, UA, PMB 1, Glen Osmond, SA 5064, Australia
| | - David W Jeffery
- Department of Wine and Food Science, The University of Adelaide (UA), PMB 1, Glen Osmond, SA 5064, Australia.
- Australian Research Council Training Centre for Innovative Wine Production, UA, PMB 1, Glen Osmond, SA 5064, Australia.
| |
Collapse
|