1
|
Mao Z, Chai G. Oral delivery of MOMIPP lipid nanoparticles for methuosis-induced cancer chemotherapy. NANOSCALE 2025; 17:4082-4098. [PMID: 39774617 DOI: 10.1039/d4nr04044a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Methuosis, a non-apoptotic pattern of cell death, triggers the accumulation of macropinosome-derived vacuoles in the cytoplasm. Through this novel mechanism, methuosis inducers possess great potential in fighting apoptosis-resistant cancer cells and offer a promising alternative for cancer treatment. However, the potent methuosis inducer, 3-(5-methoxy, 2-methyl-1H-indol-3-yl)-1-(4-pyridinyl)-2-propen-1-one (MOMIPP), faces an intractable issue of insolubility in most solvents, hindering in vivo dosing and compromising the validation of its antitumor efficacy. Few strategies have been developed to effectively deliver MOMIPP and achieve robust in vivo tumor inhibition since its first report in 2012. Here, a MOMIPP self-emulsifying drug delivery system (MOMIPP-SEDDS) was developed to substantially improve its oral bioavailability and achieve a favorable antitumor effect in a mouse xenograft tumor model. Our findings demonstrated that the MOMIPP-SEDDS was internalized into Caco-2 cells via the lipid raft/caveolae pathway and exhibited enhanced absorption in both cell monolayers and everted gut sacs. Compared with MOMIPP suspensions, MOMIPP-SEDDS showed a 13.3-fold increase in peak concentration and increased relative bioavailability by 19.98 times. By inducing methuosis, MOMIPP-SEDDS successfully retarded tumor progression in a subcutaneous HeLa mouse tumor model. Additionally, transmission electron microscopy (TEM) images of the tumor sections evidenced the occurrence of methuosis in the MOMIPP-SEDDS treatment group. This MOMIPP-SEDDS emerges as a promising lipid nanoparticle platform and high translational medicine for the oral delivery of MOMIPP to exert methuosis-induced tumor suppression for cancer treatment.
Collapse
Affiliation(s)
- Zeyuan Mao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Guihong Chai
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 51006, China
| |
Collapse
|
2
|
Kwok HC, Tse HT, Ng KK, Wang S, Au CK, Cai Z, Chan W. Absorptivity Is an Important Determinant in the Toxicity Difference between Aristolochic Acid I and Aristolochic Acid II. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:2551-2561. [PMID: 39808478 PMCID: PMC11800392 DOI: 10.1021/acs.jafc.4c10765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/05/2025] [Accepted: 01/06/2025] [Indexed: 01/16/2025]
Abstract
Inadvertent exposure to aristolochic acids (AAs) is causing chronic renal disease worldwide, with aristolochic acid I (AA-I) identified as the primary toxic agent. This study employed chemical methods to investigate the mechanisms underlying the nephrotoxicity and carcinogenicity of AA-I. Aristolochic acid II (AA-II), which has a structure similar to that of AA-I, was investigated with the same methods for comparison. Despite their structural similarities, findings from cultured human cells and gut sac experiments showed that AA-I is absorbed more effectively than AA-II (∼3 times greater for AA-I than for AA-II; p < 0.001). This increased absorption, along with the previously observed higher activity of reductive activation enzymes for AA-I, results in greater DNA damage and oxidative stress, both of which are key factors in AA-related toxicity. The similar patterns of cell mortality (34.4 ± 2.3% vs 9.7 ± 0.1% for AA-I and AA-II at 80 μM; p < 0.0001), DNA adduct formation (∼3 times greater for AA-I than for AA-II; p < 0.001), and oxidative stress levels in relation to the concentrations of AA-I and AA-II indicate that the higher absorption rate of AA-I is a significant contributor to its greater toxicity. The toxicity of AA-I was also found to be further enhanced by its (natural) coexistence with AA-II. Since AA-I and AA-II differ only by a methoxy group, future research on reducing risks associated with AA exposure should focus on strategies to lower the absorption of these compounds.
Collapse
Affiliation(s)
- Hong-Ching Kwok
- Department
of Chemistry, The Hong Kong University of
Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Hei-Tak Tse
- Department
of Chemistry, The Hong Kong University of
Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Ka-Ki Ng
- Department
of Chemistry, The Hong Kong University of
Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Shuangshuang Wang
- Department
of Chemistry, The Hong Kong University of
Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Chun-Kit Au
- Department
of Chemistry, The Hong Kong University of
Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Zongwei Cai
- Eastern
Institute of Technology Ningbo, Ningbo, Zhejiang 315200, China
- Department
of Chemistry and State Key Laboratory of Environmental and Biological
Analysis, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong SAR, China
| | - Wan Chan
- Department
of Chemistry, The Hong Kong University of
Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
3
|
Yu Y, Dong Q, Wang J, Hu Y, Liu Z, Chen Q. Chitosan oligosaccharide efficiently inhibits Cronobacter sakazakii biofilm by interacting with out membrane protein A for regulating CpxRA-mediated cellulose production pathway. Int J Biol Macromol 2024; 282:137302. [PMID: 39515706 DOI: 10.1016/j.ijbiomac.2024.137302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/12/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Chitosan oligosaccharide (COS) can efficiently inhibit Cronobacter sakazakii (C. sakazakii) biofilm independent on antibacterial activity. However, the mechanism is still unclear. In this study, the role of out membrane protein A (OmpA) and its downstream CpxRA-mediated cellulose production pathway in COS's inhibition on C. sakazakii biofilm were explored. The spectroscopic results were shown that COS could interact with OmpA, and this changed OmpA's second structure and spatial conformation as well as cell membrane permeability and COS uptake. C. sakazakii ΔOmpA strain under COS treatment had a lower cell membrane permeability and COS uptake rate. The interaction between OmpA and COS could further initiate CpxRA system. The regulon cpxP expression level was therefore up-regulated. The deletion of the response regulator cpxR gene reduced inhibitory effect of COS on biofilm. CpxRA system inhibited expression of csgD and adrA, which coded diguanylate cyclase to generate cyclic diguanosine monophosphate (c-di-GMP). The expression of bcsAB was then down-regulated by c-di-GMP, and the cellulose production as well as biofilm were reduced. The addition of exogenous c-di-GMP could mitigate the inhibition of COS on C. sakazakii biofilm. These results not only help to elucidate biofilm inhibition mechanism of COS, but also provided a basis for developing anti-biofilm agents targeted OmpA.
Collapse
Affiliation(s)
- Yang Yu
- School of Life Sciences, Shanghai University, Shanghai 200444, PR China
| | - Quanling Dong
- School of Life Sciences, Shanghai University, Shanghai 200444, PR China
| | - Jiaxu Wang
- School of Life Sciences, Shanghai University, Shanghai 200444, PR China
| | - Yuanlong Hu
- School of Life Sciences, Shanghai University, Shanghai 200444, PR China
| | - Zhanmin Liu
- School of Life Sciences, Shanghai University, Shanghai 200444, PR China.
| | - Qiming Chen
- School of Life Sciences, Shanghai University, Shanghai 200444, PR China.
| |
Collapse
|
4
|
Yuan L, Liu C, Li B, Wang S, Sun J, Mao X. Multi-omics analysis reveals that agaro-oligosaccharides with different degrees of polymerization alleviate colitis in mice by regulating intestinal flora and arginine synthesis. Food Funct 2024; 15:10628-10643. [PMID: 39310981 DOI: 10.1039/d4fo03650f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Inflammatory bowel disease (IBD) is a common chronic disease with a complex etiology, characterized by body weight loss, intestinal barrier damage, and an imbalance of intestinal flora, posing a significant threat to people's health. In this work, we studied whether safer natural active agaro-oligosaccharides (AOSs) benefit mice with IBD and elucidated their underlying mechanisms. The findings indicated that oral administration of agarobiose (A2), agarotriose (A3), and agarotetraose (A4) contributed to alleviating body weight loss and colon shortening, as well as enhancing IL-10 levels while reducing IL-6, IL-1β, and TNF-α. AOSs improved colon disruption, reduced the number of goblet cells caused by DSS, and enhanced the expression of Muc2, ZO-1, and occludin-1 to repair the intestinal barrier. It is noteworthy that A3 demonstrated superior outcomes in the evaluated AOSs relative to A2 and A4. This was evidenced by an increase in Bacteroidota and reduced Firmicutes at the phylum level, which corrected DSS-induced intestinal dysbiosis and significantly restored disrupted metabolic pathways, including amino acid and lipid metabolism. The differential metabolites between the AOS treatment groups and the model group were mainly enriched in arginine synthesis with co-regulated critical substances N-acetyl-L-citrulline and N2-acetylornithine, which alleviated colitis. This evidence offers a fresh perspective on the potential application of AOSs as functional foods to improve intestinal inflammation and metabolism.
Collapse
Affiliation(s)
- Long Yuan
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, 266404, PR China.
- Qingdao Key Laboratory of Food Biotechnology, Qingdao, 266404, PR China
| | - Chunhui Liu
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, 266404, PR China.
- Qingdao Key Laboratory of Food Biotechnology, Qingdao, 266404, PR China
| | - Bolun Li
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, 266404, PR China.
- Qingdao Key Laboratory of Food Biotechnology, Qingdao, 266404, PR China
| | - Sai Wang
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, 266404, PR China.
- Qingdao Key Laboratory of Food Biotechnology, Qingdao, 266404, PR China
| | - Jianan Sun
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, 266404, PR China.
- Qingdao Key Laboratory of Food Biotechnology, Qingdao, 266404, PR China
- Sanya Ocean Research Institute, Ocean University of China, Sanya, 572025, PR China
| | - Xiangzhao Mao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, 266404, PR China.
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao, 266404, PR China
- Sanya Ocean Research Institute, Ocean University of China, Sanya, 572025, PR China
| |
Collapse
|
5
|
Liu P, Chen W, Wu D, Zhang Z, Li W, Yang Y. The preparation, modification and hepatoprotective activity of chitooligosaccharides: A review. Int J Biol Macromol 2024; 277:134489. [PMID: 39111493 DOI: 10.1016/j.ijbiomac.2024.134489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/13/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024]
Abstract
Chitooligosaccharides (COS) has attracted increasing attention due to the various promising bioactivities, tremendous potential in agricultural, environmental nutritional and functional food fields. COS as the major degradation product from chitosan or chitin is prepared via enzymatic, chemical and physical methods. Further obtained COS generally possesses different structural characteristics, such as molecular weight, degree of acetylation and degree of polymerization. Innovations into COS modification has also broadened application of COS in nutrition as well as in agricultural safety. Due to the affinity between structure and bioactivity, diversity of structural characteristics endows COS with various bioactivities like antitumor, antioxidant and anti-inflammatory effects, especially hepatoprotective activity. Therefore, the present review narrates the recent developments in COS physicochemical properties, while paying considerable attention to preparation strategies of COS and their advantages and disadvantages. Moreover, the modification of COS is also discussed including alkylation, quaternization and sulfation, herein the structure-activity relationship of COS was highlighted. Additionally, we summarize the latest research on hepatoprotective activity and mechanisms of COS. Eventually, the future directions of research on COS were discussed, which would provide a new appreciation for the future use of COS.
Collapse
Affiliation(s)
- Peng Liu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, 201403 Shanghai, China
| | - Wanchao Chen
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, 201403 Shanghai, China
| | - Di Wu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, 201403 Shanghai, China
| | - Zhong Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, 201403 Shanghai, China
| | - Wen Li
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, 201403 Shanghai, China
| | - Yan Yang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, 201403 Shanghai, China.
| |
Collapse
|
6
|
Li N, Geng Z, Guo Y, Dai X, Zhu W, Yao L, Jiang Y, Wang X, Dong H, Wang H, Wang L. Evaluation of the Bioavailability of Iodine and Arsenic in Raw and Cooked Saccharina japonica Based on Simulated Digestion/Caco-2 Cell Model. Foods 2024; 13:2864. [PMID: 39335793 PMCID: PMC11431140 DOI: 10.3390/foods13182864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
Kelp is a traditional healthy food due to its high nutritional content; however, its relatively high contents of iodine and arsenic have raised concerns about its edible safety. This study explored the effects of different cooking treatments on the contents of iodine and arsenic in kelp, evaluated the bioaccessibility and bioavailability of iodine and arsenic in kelp using in vitro digestion, and compared the differences in the transport characteristics of iodine in kelp and KIO3 using a Caco-2 monolayer cell transport model. The results show that the content of target elements that reached systemic circulation could be reduced by cooking and gastrointestinal digestion. The highest reductions in iodine and arsenic were 94.4% and 74.7%, respectively, which were achieved by boiling for 10 min. The bioaccessibility and bioavailability of iodine and arsenic were significantly improved by a cooking treatment. However, the contents of iodine and arsenic decreased significantly, with the bioaccessibility of iodine reducing from 3188.2 μg/L to 317.0 μg/L and that of arsenic reducing from 32.5 μg/L to 18.1 μg/L in the gastric phase after boiling. The findings also show that the efficiency of iodine transport in kelp and KIO3 was positively correlated with the transport time and negatively correlated with the concentration of iodine. With the increase in the iodine concentration, the rate of iodine transport in kelp decreased from 63.93% to 3.14%, but that of KIO3 was stable at around 35%, which indicates that the absorption efficiency of iodine from kelp was limited, even when too much kelp was ingested. In conclusion, the edible safety of kelp is significantly improved after cooking. The risk of excessive iodine and arsenic intake caused by consuming kelp is extremely low, and as an effective iodine supplement source, kelp has higher edible safety compared with KIO3. This study clarifies the safety of algae based on iodine and arsenic contents and also provides a basis for the formulation of food safety standards.
Collapse
Affiliation(s)
- Na Li
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Zhaomeng Geng
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Yingying Guo
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Xinyue Dai
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- College of Food Science, Dalian Polytechnic University, Dalian 116034, China
| | - Wenjia Zhu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Lin Yao
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Yanhua Jiang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Xiaojuan Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Hao Dong
- Shandong Meijia Group Co., Ltd., Rizhao 276800, China
| | - Huijie Wang
- Shandong Meijia Group Co., Ltd., Rizhao 276800, China
| | - Lianzhu Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| |
Collapse
|
7
|
She CY, Deng YX, Wu QY, Li J. Comparative pharmacokinetic investigation on crocetin in hyperlipidemia and normal rats after oral administration. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6037-6050. [PMID: 38386043 DOI: 10.1007/s00210-024-03012-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/13/2024] [Indexed: 02/23/2024]
Abstract
Crocetin as one of the main components of saffron possesses a lot of pharmacological effects, especially the beneficial effects in the treatment of hyperlipidemia. However, the pharmacokinetics of crocetin in the pathological state of hyperlipidemia has not been reported. In present study, the pharmacokinetics of crocetin in hyperlipidemia rats after oral administration of crocetin was investigated and the possible mechanisms for the pharmacokinetics were explored. High-fat diet was used to induce hyperlipidemia in rats. The pharmacokinetics of crocetin was investigated in hyperlipidemia and normal rats after oral and intravenous administration of crocetin, and the possible mechanisms of the pharmacokinetic changes were investigated in terms of metabolism and absorption using in vitro incubation with liver microsomes and the everted gut sac method, respectively. Results indicated that the AUCs of crocetin in hyperlipidemia rats after oral administration of crocetin were remarkably decreased when compared with those in normal rats. Moreover, crocetin was also metabolized more rapidly in the liver microsomes of hyperlipidemia rats and intestinal absorption of crocetin was significantly reduced in hyperlipidemia rats. It suggested that the remarkably decreased AUCs of crocetin in hyperlipidemia rats might partly result from the result of faster metabolic elimination and reduced absorption of crocetin in the hyperlipidemia pathological state. And the present investigations conducted on rats demonstrate that further investigations into the kinetics of crocetin in humans with hyperlipidemia are necessary in order to ensure an adequate dosage in this indication.
Collapse
Affiliation(s)
- Cheng-Ye She
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Hunan Normal University, Changsha, 410013, China
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Hunan Normal University), Ministry of Education, Changsha, 410081, China
- Department of Pharmaceutical Science, Medical College of Hunan Normal University, Changsha, 410013, China
| | - Yuan-Xiong Deng
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Hunan Normal University, Changsha, 410013, China.
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Hunan Normal University), Ministry of Education, Changsha, 410081, China.
- Department of Pharmaceutical Science, Medical College of Hunan Normal University, Changsha, 410013, China.
| | - Qin-Yu Wu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Hunan Normal University, Changsha, 410013, China
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Hunan Normal University), Ministry of Education, Changsha, 410081, China
- Department of Pharmaceutical Science, Medical College of Hunan Normal University, Changsha, 410013, China
| | - Jing Li
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Hunan Normal University, Changsha, 410013, China
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Hunan Normal University), Ministry of Education, Changsha, 410081, China
- Department of Pharmaceutical Science, Medical College of Hunan Normal University, Changsha, 410013, China
| |
Collapse
|
8
|
Wang M, Mao H, Ke Z, Chen J, Qi L, Wang J. Chinese bayberry ( Myrica rubra Sieb. et Zucc.) leaves proanthocyanidins inhibit intestinal glucose transport in human Caco-2 cells. Front Pharmacol 2024; 15:1284268. [PMID: 38529186 PMCID: PMC10961338 DOI: 10.3389/fphar.2024.1284268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 02/22/2024] [Indexed: 03/27/2024] Open
Abstract
Background: The hypoglycemic effects of Chinese bayberry leaves proanthocyanidins (BLPs) have been demonstrated. It is unclear, nevertheless, whether BLPs reduced postprandial blood glucose levels by regulating glucose uptake and glucose transport. Method: This study investigated the effect of BLPs (25, 50, and 100 μg/mL) on glucose uptake and glucose transport in human intestinal epithelial cells (Caco-2 cells). The uptake of 2-Deoxy-2-[(7-nitro-2,1,3-benzoxadiazol-4-yl) amino]-D-glucose (2-NBDG) and disaccharidases activity in Caco-2 cells were measured. The glucose transport ability across the cell membrane was determined using the established Caco-2 monolayer model. The transcript and protein levels of key glucose transporters were analyzed using real-time quantitative polymerase chain reaction (RT-qPCR) and western blotting, respectively. Results: The results showed that BLPs significantly decreased glucose uptake and disaccharidases activity (p < 0.05). Otherwise, BLPs treatment obviously inhibited glucose transport across the Caco-2 monolayer in both simulated-fast (5 mM glucose) and simulated-fed (25 mM glucose) conditions. It was attributed to the suppression of glucose transporter2 (GLUT2) and sodium-dependent glucose cotransporter 1 (SGLT1) by BLPs. BLPs were found to significantly downregulated the transcript level and protein expression of glucose transporters (p < 0.05). Meanwhile, the mRNA expression of phospholipase C (PLC) and protein kinase C (PKC) involved in the signaling pathway associated with glucose transport were decreased by BLPs. Conclusion: These results suggested that BLPs inhibited intestinal glucose transport via inhibiting the expression of glucose transporters. It indicated that BLPs could be potentially used as a functional food in the diet to modulate postprandial hyperglycemia.
Collapse
Affiliation(s)
- Mengting Wang
- School of Biological and Chemical Engineering, NingboTech University, Ningbo, China
| | - Haiguang Mao
- School of Biological and Chemical Engineering, NingboTech University, Ningbo, China
| | - Zhijian Ke
- School of Biological and Chemical Engineering, NingboTech University, Ningbo, China
| | - Jianchu Chen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Lili Qi
- School of Biological and Chemical Engineering, NingboTech University, Ningbo, China
| | - Jinbo Wang
- School of Biological and Chemical Engineering, NingboTech University, Ningbo, China
| |
Collapse
|
9
|
Wang R, Rao C, Liu Q, Liu X. Optimization of Conditions of Zanthoxylum Alkylamides Liposomes by Response Surface Methodology and the Absorption Characteristics of Liposomes in the Caco-2 Cell Monolayer Model. ACS OMEGA 2024; 9:10992-11004. [PMID: 38463333 PMCID: PMC10918836 DOI: 10.1021/acsomega.4c00074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/05/2024] [Indexed: 03/12/2024]
Abstract
Zanthoxylum alkylamides, as a numbing substance in Zanthoxylum bungeanum has many physiological effects. However, the numbing taste and unstable properties limited its application. This study aimed to optimize the preparation process of Zanthoxylum alkylamides liposomes by response surface methodology (RSM) and to investigate the in vitro absorption characteristics of the liposomes through the Caco-2 cell monolayer model. The process parameters of liposomes were as follows: Zanthoxylum alkylamides was 15 mg, phospholipid-feedstock ratio was 6.14, phospholipid-cholesterol ratio was 8.51, sodium cholate was 33.80 mg, isopropyl myristate was 29.49 mg, and the theoretical encapsulation efficiency of the prepared liposomes could reach 90.23%. Further, the particle size of the liposomes was 155.47 ± 3.16 nm, and the ζ-potential was -34.11 ± 4.34 mV. Meanwhile, the liposomes could be preserved for 14 days under the condition that the content of Zanthoxylum alkylamides was less than 2 mg/mL and the preservation temperature was lower than 25 °C. Moreover, the uptake characteristics of the Zanthoxylum alkylamides liposomes in the Caco-2 cell monolayer model were also investigated. The results showed that the Zanthoxylum alkylamides liposomes could be taken up and absorbed by Caco-2 cells. Also, the Zanthoxylum alkylamides liposomes had a better uptake performance than the unembedded Zanthoxylum alkylamides and conformed to the passive uptake.
Collapse
Affiliation(s)
- Rui Wang
- College
of Food Science, Southwest University, Chongqing 400715, China
- State
Key Laboratory of Southwestern Chinese Medicine Resources, School
of Public Health, Chengdu University of
Traditional Chinese Medicine, Chengdu 611137, China
- Collaborative
Innovation Center for Child Nutrition and Health Development, Chongqing University of Education, Chongqing 400067, China
| | - Chaolong Rao
- State
Key Laboratory of Southwestern Chinese Medicine Resources, School
of Public Health, Chengdu University of
Traditional Chinese Medicine, Chengdu 611137, China
| | - Qiuyan Liu
- State
Key Laboratory of Southwestern Chinese Medicine Resources, School
of Public Health, Chengdu University of
Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiong Liu
- College
of Food Science, Southwest University, Chongqing 400715, China
| |
Collapse
|
10
|
Zhang X, Chen M, Wang N, Luo J, Li M, Li S, Hemar Y. Conjugation of chitopentaose with β-lactoglobulin using Maillard reaction, and its effect on the allergic desensitization in vivo. Int J Biol Macromol 2024; 258:128913. [PMID: 38141707 DOI: 10.1016/j.ijbiomac.2023.128913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/08/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
The conjugation of chitopentaose (CHP) on β-lactoglobulin (βLg) via Maillard reaction was used to desensitize βLg. The stable βLg-CHP conjugate (βC-4) was formed at 4 h incubation, which contains 5 CHP attached molecules and a conjugated degree of 42 %. The conjugation promoted the thermal stability and emulsifying properties of βLg, and inhibited the immunoglobulin E (IgE) combining capacity by decreasing the content of β-sheet in βLg. Moreover, βLg-CHP conjugates were imparted with anti-oxidant properties and anti-inflammatory activities. Further, the combined action of inhibited IgE combining capacity and anti-inflammatory activities improved the allergy desensitization in βLg sensitized mice. The results showed that overexpressed IgE and inflammatory factors, unbalanced Th1-/Th2- immune cytokines were significantly attenuated after βLg was conjugated with CHP, avoiding the inflammatory lesions in spleen and colon. Additionally, the adverse changes in gut microbiota were alleviated in βC-4 group with a decrease of Bacteroidetes and increase of Firmicutes at phylum level and the probiotic bacteria of Lactobacillaceae was significantly improved at the family level. Thus, the conjugation of CHP can desensitize allergic reaction caused by βLg.
Collapse
Affiliation(s)
- Xiaoning Zhang
- School of Food Science & Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, China.
| | - Meng Chen
- Center for Disease Control and Prevention of Tengzhou City, Zaozhuang 277500, China
| | - Ning Wang
- School of Food Science & Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, China
| | - Juanjuan Luo
- School of Food Science & Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, China
| | - Meifeng Li
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China.
| | - Sining Li
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China.
| | - Yacine Hemar
- School of Natural Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| |
Collapse
|
11
|
Lu J, Wang C, Ma Y, Liu K, Fu X, Xing S. Exploration of the Product Specificity of chitosanase CsnMY002 and Mutants Using Molecular Dynamics Simulations. Molecules 2023; 28:molecules28031048. [PMID: 36770713 PMCID: PMC9920700 DOI: 10.3390/molecules28031048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/06/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023] Open
Abstract
Chitosanase CsnMY002 is a new type of enzyme isolated from Bacillus subtilis that is used to prepare chitosan oligosaccharide. Although mutants G21R and G21K could increase Chitosan yield and thus increase the commercial value of the final product, the mechanism by which this happens is not known. Herein, we used molecular dynamics simulations to explore the conformational changes in CsnMY002 wild type and mutants when they bind substrates. The binding of substrate changed the conformation of protein, stretching and deforming the active and catalytic region. Additionally, the mutants caused different binding modes and catalysis, resulting in different degrees of polymerization of the final Chitooligosaccharide degradation product. Finally, Arg37, Ile145 ~ Gly148 and Trp204 are important catalytic residues of CsnMY002. Our study provides a basis for the engineering of chitosanases.
Collapse
Affiliation(s)
- Jianzhang Lu
- Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University, Changchun 130012, China
- University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University, Haining 314400, China
| | - Chu Wang
- Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yingying Ma
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Kaifeng Liu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Xueqi Fu
- Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Shu Xing
- Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University, Changchun 130012, China
- Correspondence:
| |
Collapse
|
12
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2019-2020. MASS SPECTROMETRY REVIEWS 2022:e21806. [PMID: 36468275 DOI: 10.1002/mas.21806] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2020. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. The review is basically divided into three sections: (1) general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, quantification and the use of arrays. (2) Applications to various structural types such as oligo- and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals, and (3) other areas such as medicine, industrial processes and glycan synthesis where MALDI is extensively used. Much of the material relating to applications is presented in tabular form. The reported work shows increasing use of incorporation of new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented nearly 40 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show little sign of diminishing.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
- Department of Chemistry, University of Oxford, Oxford, Oxfordshire, United Kingdom
| |
Collapse
|
13
|
Anil S. Potential Medical Applications of Chitooligosaccharides. Polymers (Basel) 2022; 14:3558. [PMID: 36080631 PMCID: PMC9460531 DOI: 10.3390/polym14173558] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Chitooligosaccharides, also known as chitosan oligomers or chitooligomers, are made up of chitosan with a degree of polymerization (DP) that is less than 20 and an average molecular weight (MW) that is lower than 3.9 kDa. COS can be produced through enzymatic conversions using chitinases, physical and chemical applications, or a combination of these strategies. COS is of significant interest for pharmacological and medical applications due to its increased water solubility and non-toxicity, with a wide range of bioactivities, including antibacterial, anti-inflammatory, anti-obesity, neuroprotective, anticancer, and antioxidant effects. This review aims to outline the recent advances and potential applications of COS in various diseases and conditions based on the available literature, mainly from preclinical research. The prospects of further in vivo studies and translational research on COS in the medical field are highlighted.
Collapse
Affiliation(s)
- Sukumaran Anil
- Oral Health Institute, Department of Dentistry, Hamad Medical Corporation, Qatar University, Doha 3050, Qatar; ; Tel.: +974-50406670
- Pushpagiri Research Centre, Pushpagiri Institute of Medical Sciences and Research Centre (PIMS&RC), Thiruvalla, Pathanamthitta 689101, Kerala, India
| |
Collapse
|
14
|
Liu G, Duan Y, Yang S, Yu M, Lv Z. Simultaneous quantification of marine neutral neoagaro-oligosaccharides and agar-oligosaccharides by the UHPLC-MS/MS method: application to the intestinal transport study by using the Caco-2 cell monolayer. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:2227-2234. [PMID: 35616101 DOI: 10.1039/d2ay00700b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A sensitive and robust ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method was established for the first time to simultaneously quantify marine neutral neoagaro-oligosaccharides (NAOS) and agar-oligosaccharides (AOS) with different degrees of polymerization (DP) in Hanks' balanced salt solution (HBSS). The separation was achieved on a BEH amide column using a mobile phase of acetonitrile-10 mmol L-1 ammonium acetate (58 : 42, v/v) with an isocratic elution program. The total analysis time was 3.5 min. The mass spectra were acquired in the multiple reaction monitoring (MRM) pattern by using a heated-electrospray ionization (H-ESI) source operating in the positive ionization mode. The linear range was 40-20 000 nmol L-1. The accuracy and precision ranged from 91.5 to 110.0% and 0.9 to 10.4%, respectively. The extraction recovery was consistent and reproducible. The stability was within 90.3-110.8%. The matrix effect, carryover, and dilution integrity were all satisfactory. Moreover, the validated method was successfully applied to the intestinal transport study by using the Caco-2 cell monolayer in vitro. The results revealed that neoagarobiose, neoagarotetraose, neoagarohexaose, agarotriose, agaropentose, and agaroheptose were transported by a paracellular pathway.
Collapse
Affiliation(s)
- Guilin Liu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China.
| | - Yunhai Duan
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China.
| | - Shuang Yang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China.
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, People's Republic of China
- Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, Qingdao 266003, People's Republic of China
- Key Laboratory of Marine Drugs, Ministry of Education of China, Qingdao 266003, People's Republic of China
| | - Mingming Yu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China.
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, People's Republic of China
- Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, Qingdao 266003, People's Republic of China
- Key Laboratory of Marine Drugs, Ministry of Education of China, Qingdao 266003, People's Republic of China
| | - Zhihua Lv
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China.
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, People's Republic of China
- Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, Qingdao 266003, People's Republic of China
- Key Laboratory of Marine Drugs, Ministry of Education of China, Qingdao 266003, People's Republic of China
| |
Collapse
|
15
|
Feng J, Liu Y, Chen J, Bai Y, He J, Cao H, Che Q, Guo J, Su Z. Marine Chitooligosaccharide Alters Intestinal Flora Structure and Regulates Hepatic Inflammatory Response to Influence Nonalcoholic Fatty Liver Disease. Mar Drugs 2022; 20:md20060383. [PMID: 35736186 PMCID: PMC9231394 DOI: 10.3390/md20060383] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 12/23/2022] Open
Abstract
In this study, C57BL/6 mice were given an HFHSD diet for 8 weeks to induce hepatic steatosis and then given COSM solution orally for 12 weeks. The study found that the HFHSD diet resulted in steatosis and insulin resistance in mice. The formation of NAFLD induced by HFHSD diet was related to the imbalance of intestinal flora. However, after COSM intervention, the abundance of beneficial bacteria increased significantly, while the abundance of harmful bacteria decreased significantly. The HFHSD diet also induced changes in intestinal bacterial metabolites, and the content of short-chain fatty acids in cecal contents after COSM intervention was significantly higher than that in the model group. In addition, COSM not only improved LPS levels and barrier dysfunction in the ileum and colon but upregulated protein levels of ZO-1, occludin, and claudin in the colon and downregulated the liver LPS/TLR4/NF-κB inflammatory pathway. We concluded that the treatment of marine chitooligosaccharide COSM could improve the intestinal microflora structure of the fatty liver and activate an inflammatory signaling pathway, thus alleviating the intrahepatic lipid accumulation induced by HFHSD.
Collapse
Affiliation(s)
- Jiayao Feng
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (J.F.); (Y.L.); (J.C.)
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yongjian Liu
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (J.F.); (Y.L.); (J.C.)
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jiajia Chen
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (J.F.); (Y.L.); (J.C.)
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yan Bai
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China; (Y.B.); (J.H.)
| | - Jincan He
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China; (Y.B.); (J.H.)
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, China;
| | - Qishi Che
- Guangzhou Rainhome Pharm & Tech Co., Ltd., Science City, Guangzhou 510663, China;
| | - Jiao Guo
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Correspondence: (J.G.); (Z.S.); Tel.: +86-20-3935-2067 (Z.S.)
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (J.F.); (Y.L.); (J.C.)
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Correspondence: (J.G.); (Z.S.); Tel.: +86-20-3935-2067 (Z.S.)
| |
Collapse
|
16
|
Wang B, Wang L, Qu Y, Lu J, Xia W. Chitosan oligosaccharides exert neuroprotective effects via modulating the PI3K/Akt/Bcl-2 pathway in a Parkinsonian model. Food Funct 2022; 13:5838-5853. [PMID: 35545086 DOI: 10.1039/d1fo04374a] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Parkinson's disease (PD), the second most common neurodegenerative disease, is a threat to patients due to the inability to prevent or decelerate disease progression. Currently, most clinical drugs for the treatment of PD are synthetic drugs that always present undesirable adverse or toxic effects. Chitosan oligosaccharide (COS) is a natural oligosaccharide that has been considered relatively safe and studied in the therapeutic effects on different types of neuronal disorders. In this study, we separated four COS monomers (COSs) including chitobiose (COS2), chitotriose (COS3), chitotetraose (COS4) and chitopentaose (COS5) to explore their structure-activity relationship in PD mice induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Techniques including TLC, HPLC, MS, and NMR were applied to investigate the purity and structure of the COSs. After the oral administration of COSs, behavior indexes, pathological indexes, cytokines, and expression of proteins in the nigrostriatal pathway of the mice were analyzed. The results showed that the four COSs were fully deacetylated and the purity was >90%. Additionally, the neurobehavioral deficits of the PD mice were improved by treatment with COSs. The results further proved that COSs could protect the TH-labelled dopaminergic neurons via reducing the overexpression of α-synuclein, alleviating neuroinflammation, and activating the PI3K/Akt/Bcl-2 pathway to reduce apoptosis. COS3 exhibited a better effect on protecting dopaminergic neurons; however, COS2 provided a better effect on reducing the overexpression of α-synuclein. To conclude, the neuroprotective activity makes COSs a viable candidate as an ingredient for healthcare products.
Collapse
Affiliation(s)
- Bin Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China. .,Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Ling Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China. .,Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Yufei Qu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| | - Jingyu Lu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| | - Wenshui Xia
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China. .,Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
17
|
Mei Z, Huang X, Zhang H, Cheng D, Xu X, Fang M, Hu J, Liu Y, Liang Y, Mei Y. Chitin derivatives ameliorate DSS-induced ulcerative colitis by changing gut microbiota and restoring intestinal barrier function. Int J Biol Macromol 2022; 202:375-387. [PMID: 35063480 DOI: 10.1016/j.ijbiomac.2022.01.049] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/29/2021] [Accepted: 01/08/2022] [Indexed: 02/07/2023]
Abstract
Chitin derivatives (CDs), including chitosan (CS), chitooligosaccharides (COS), and glucosamine (GlcN), were administrated in dextran sodium sulfate (DSS)-induced ulcerative colitis (UC) mice. UC symptoms such as body weight loss, reduced food intake, and increased disease activity index were relieved (except GlcNL group). CDs (except GlcNL) exerted a strong protective effect on colon length and colonic structure. Treatment with CDs (except GlcNL) increased IL-10 level, reduced levels of IL-1β, IL-6, TNF-α, myeloperoxidase, and inducible nitric oxide synthase, and enhanced expression of tight junction proteins significantly. CDs (except GlcNL) significantly upregulated IκB-α level, and downregulated p65 and p38 phosphory lation and TLR-4 mRNA transcription level, indicating inhibition of TRL-4/NF-κB/MAPK signaling pathway activity. CD treatments increased relative abundance of gut microbiota, modulated its composition, and increased the concentrations of SCFAs. Our findings indicate that CDs exert an ameliorative effect on UC by change of gut microbiota composition and restoration of intestinal barrier function.
Collapse
Affiliation(s)
- Zewen Mei
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Xingxi Huang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Heng Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Danyi Cheng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Xin Xu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Mingyue Fang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Jutuan Hu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yangyang Liu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yunxiang Liang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yuxia Mei
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
18
|
Chen M, Jin J, Ji X, Chang K, Li J, Zhao L. Pharmacokinetics, bioavailability and tissue distribution of chitobiose and chitotriose in rats. BIORESOUR BIOPROCESS 2022; 9:13. [PMID: 38647841 PMCID: PMC10991139 DOI: 10.1186/s40643-022-00500-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/22/2022] [Indexed: 11/10/2022] Open
Abstract
Chitooligosaccharides (COSs) have various physiological activities and broad application prospects; however, their pharmacokinetics and tissue distribution remain unclear. In this study, a sensitive and selective ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) method for determining chitobiose (COS 2) and chitotriose (COS 3) in rat serum and tissues was developed. This method was successfully validated based on FDA guidelines in terms of selectivity, calibration curves (lower limit of quantification was 0.002 µg/mL for COS 2 and 0.02 µg/mL for COS 3), precision (intra-day relative standard deviation of 0.04%-3.55% and inter-day relative standard deviation of 1.94%-11.63%), accuracy (intra-day relative error of - 1.81%-11.06% and inter-day relative error of - 9.41%-8.63%), matrix effects, recovery (97.10%-101.29%), stability, dilution integrity, and carry-over effects. Then, the method was successfully applied to the pharmacokinetics and tissue distribution study of COS 2 and COS 3 after intragastric and intravenous administration. After intragastric administration, COS 2 and COS 3 were rapidly absorbed, reached peak concentrations in the serum after approximately 0.45 h, and showed rapid elimination with clearances greater than 18.82 L/h/kg and half-lives lower than 6 h. The absolute oral bioavailability of COS 2 and COS 3 was 0.32%-0.52%. COS 2 and COS 3 were widely distributed in Wistar rat tissues and could penetrated the blood-brain barrier without tissue accumulation.
Collapse
Affiliation(s)
- Mai Chen
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai, 200237, China
| | - Jiayang Jin
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai, 200237, China
| | - Xiaoguo Ji
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai, 200237, China
| | - Kunlin Chang
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai, 200237, China
| | - Juan Li
- Department of Nutrition, Chang-Zheng Hospital, Naval Medical University, Shanghai, 200003, China.
| | - Liming Zhao
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai, 200237, China.
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai, 200237, China.
| |
Collapse
|
19
|
Wang X, Chen K, Zhang X, Hu Y, Wang Z, Yin F, Liu X, Zhang J, Qin L, Zhou D. Effect of carbon chain length on the hydrolysis and transport characteristics of alkyl gallates in rat intestine. Food Funct 2021; 12:10581-10588. [PMID: 34614054 DOI: 10.1039/d1fo01732b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Phenolipids such as alkyl gallates (A-GAs) have been approved by food industry as non-toxic antioxidant additives. However, their digestion and absorption mechanisms in the intestine have not yet been clarified. In this research, the hydrolysis and transport characteristics of A-GAs with fatty alcohols of various chain lengths (C1:0, C2:0, C3:0, C4:0, C8:0, C12:0 and C16:0) were estimated by the everted-rat-gut-sac model (ERGSM) for the first time. High-performance liquid chromatography measurements proved that measurable peaks corresponding to methyl gallate (G-C1:0), ethyl gallate (G-C2:0), propyl gallate (G-C3:0) and butyl gallate (G-C4:0) were discovered in the serosal fluids, which showed the short-chain alkyl gallates can cross the membrane in the form of esters. Besides, all A-GAs were hydrolyzed to GA in the mucosal solution, which contributed evidently to the transport of GA across the membrane of the small intestine. Meanwhile, the hydrolysis rate of A-GAs and transport rate of GA initially increased and then decreased with the chain length, exhibiting a maximum for octyl gallate (G-C8:0). In general, all A-GAs have the behavior of sustained-release. In consequence, the production of A-GAs should be an effective method to extend action time and further increases biological activities of GA.
Collapse
Affiliation(s)
- Xinmiao Wang
- School of Food Science and Technology; Dalian Polytechnic University, Dalian 116034, PR China.
| | - Kefan Chen
- School of Food Science and Technology; Dalian Polytechnic University, Dalian 116034, PR China.
| | - Xiumin Zhang
- School of Food Science and Technology; Dalian Polytechnic University, Dalian 116034, PR China.
| | - Yuanyuan Hu
- School of Food Science and Technology; Dalian Polytechnic University, Dalian 116034, PR China.
| | - Zixu Wang
- School of Food Science and Technology; Dalian Polytechnic University, Dalian 116034, PR China.
| | - Fawen Yin
- School of Food Science and Technology; Dalian Polytechnic University, Dalian 116034, PR China. .,National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, PR China
| | - Xiaoyang Liu
- School of Food Science and Technology; Dalian Polytechnic University, Dalian 116034, PR China. .,National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, PR China
| | - Jianghua Zhang
- School of Food Science and Technology; Dalian Polytechnic University, Dalian 116034, PR China.
| | - Lei Qin
- School of Food Science and Technology; Dalian Polytechnic University, Dalian 116034, PR China. .,National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, PR China
| | - Dayong Zhou
- School of Food Science and Technology; Dalian Polytechnic University, Dalian 116034, PR China. .,National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, PR China
| |
Collapse
|
20
|
Structural Characterization of a Neutral Polysaccharide from Cucurbia moschata and Its Uptake Behaviors in Caco-2 Cells. Foods 2021; 10:foods10102357. [PMID: 34681406 PMCID: PMC8535365 DOI: 10.3390/foods10102357] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/13/2021] [Accepted: 09/24/2021] [Indexed: 01/08/2023] Open
Abstract
A neutral pumpkin polysaccharide (NPPc) was extracted from Cucurbia moschata and its structural characterization is performed. Moreover, uptake behaviors of an NPPC were investigated at the cellular level. The results showed that NPPc, an average molecular weight (Mw) of 9.023 kDa, was linear (1→4)-α-D-Glcp residues in the backbone, which branched point at O-6 position of (1→4,6)-α-D-Glcp. The side chain contained (1→6)-α-D-Glcp and terminal glucose. The cellular uptake kinetics results showed that the uptake of fluorescent-labeled NPPc was in time- and dose-dependent manners in Caco-2 cells. For subcellular localization of NPPc, it was accumulated in endoplasmic reticulum and mitochondrion. This study illustrates the characteristics on the uptake of NPPc and provides a rational basis for the exploration of polysaccharides absorption in intestinal epithelium.
Collapse
|
21
|
Zhang P, Liu S, Yang S, Wang Y, Jiang T, Yu M, Lv Z. Simultaneous determination of chito-oligosaccharides in rat plasma by the LC-MS/MS method: application to a pharmacokinetic study. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:3242-3248. [PMID: 34184005 DOI: 10.1039/d1ay00772f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A simple and sensitive method for the simultaneous determination of chito-oligosaccharides (COSs) with degrees of polymerization (DPs) from 2 to 7 was developed and used for COS quantification in rat plasma. Samples were separated on a Waters XBridge Amide column (3.5 μm, 2.1 × 150 mm) by isometric elution with 10 mM aqueous ammonium acetate (pH = 9) in acetonitrile and 10 mM aqueous ammonium acetate (pH = 9) (v/v, 50 : 50) employing multiple reaction monitoring (MRM) detection. Analytes and internal standards (IS) were extracted from rat plasma by protein precipitation with acetonitrile. The assay was linear over a concentration range of 20-10 000 ng mL-1 for COS2-7. The intra-day and inter-day precision of the investigated components exhibited an RSD within 15%, and the accuracy (RE%) ranged from -7.3% to 7.6%. The extraction recoveries of the six constituents were determined to be between 82.5% and 94.3%. No significant matrix effects for COS2-7 were observed in rat plasma. COS in plasma remained stable for 24 h at room temperature (short-term), after freeze-thaw cycles, and 30 days in a -40 °C freezer. In comparison to reported COS quantitation methods, this method is simple, sensitive and cost-effective and could be used for the simultaneous quantitation of COS2-7. This method meets the Food and Drug Administration guidelines and had been successfully applied to the analysis of pharmacokinetic samples collected from rats.
Collapse
Affiliation(s)
- Pengpeng Zhang
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, People's Republic of China.
| | - Shuai Liu
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, People's Republic of China.
| | - Shuang Yang
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, People's Republic of China. and Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, People's Republic of China and Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, Qingdao 266003, People's Republic of China and Key Laboratory of Marine Drugs, Ministry of Education of China, Qingdao 266003, People's Republic of China
| | - Yuanhong Wang
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, People's Republic of China. and Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, People's Republic of China and Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, Qingdao 266003, People's Republic of China and Key Laboratory of Marine Drugs, Ministry of Education of China, Qingdao 266003, People's Republic of China
| | - Tingfu Jiang
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, People's Republic of China. and Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, People's Republic of China and Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, Qingdao 266003, People's Republic of China and Key Laboratory of Marine Drugs, Ministry of Education of China, Qingdao 266003, People's Republic of China
| | - Mingming Yu
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, People's Republic of China. and Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, People's Republic of China and Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, Qingdao 266003, People's Republic of China and Key Laboratory of Marine Drugs, Ministry of Education of China, Qingdao 266003, People's Republic of China
| | - Zhihua Lv
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, People's Republic of China. and Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, People's Republic of China and Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, Qingdao 266003, People's Republic of China and Key Laboratory of Marine Drugs, Ministry of Education of China, Qingdao 266003, People's Republic of China
| |
Collapse
|
22
|
Zhou J, Wen B, Xie H, Zhang C, Bai Y, Cao H, Che Q, Guo J, Su Z. Advances in the preparation and assessment of the biological activities of chitosan oligosaccharides with different structural characteristics. Food Funct 2021; 12:926-951. [PMID: 33434251 DOI: 10.1039/d0fo02768e] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chitosan oligosaccharides (COSs) are widely used biopolymers that have been studied in relation to a variety of abnormal biological activities in the food and biomedical fields. Since different COS preparation technologies produce COS compounds with different structural characteristics, it has not yet been possible to determine whether one or more chito-oligomers are primarily responsible for the bioactivity of COSs. The inherent biocompatibility, mucosal adhesion and nontoxic nature of COSs are well documented, as is the fact that they are readily absorbed from the intestinal tract, but their structure-activity relationship requires further investigation. This review summarizes the methods used for COS preparation, and the research findings with regard to the antioxidant, anti-inflammatory, anti-obesity, bacteriostatic and antitumour activity of COSs with different structural characteristics. The correlation between the molecular structure and bioactivities of COSs is described, and new insights into their structure-activity relationship are provided.
Collapse
Affiliation(s)
- Jingwen Zhou
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou (510006), China. and Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou (510006), China.
| | - Bingjian Wen
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou (510006), China. and Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou (510006), China.
| | - Hongyi Xie
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou (510006), China. and Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou (510006), China.
| | - Chengcheng Zhang
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou (510006), China. and Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou (510006), China.
| | - Yan Bai
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou (510310), China
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan (528458), China
| | - Qishi Che
- Guangzhou Rainhome Pharm & Tech Co., Ltd, Science City, Guangzhou (510663), China
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou (510006), China.
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou (510006), China.
| |
Collapse
|
23
|
Ji XG, Chang KL, Chen M, Zhu LL, Osman A, Yin H, Zhao LM. In vitro fermentation of chitooligosaccharides and their effects on human fecal microbial community structure and metabolites. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111224] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
24
|
Huang D, Hou X, Zhang D, Zhang Q, Yan C. Two novel polysaccharides from rhizomes of Cibotium barometz promote bone formation via activating the BMP2/SMAD1 signaling pathway in MC3T3-E1 cells. Carbohydr Polym 2020; 231:115732. [PMID: 31888819 DOI: 10.1016/j.carbpol.2019.115732] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/19/2019] [Accepted: 12/09/2019] [Indexed: 01/06/2023]
Abstract
Cibotium barometz, an important traditional Chinese medicine, is used in strengthening bones and tendons. We found that C. barometz crude polysaccharides (CB70) could alleviate bone loss and markedly improve the biomechanical properties of OVX rats. Thus, to clarify biological active ingredient(s) of CB70, two homogeneous polysaccharides (CBP70-1-1 and CBP70-1-2) were purified from CB70. A combination of monosaccharide composition, FT-IR, GC-MS and NMR analysis indicated that CBP70-1-1 was composed of →6)-D-Galp-(1→, D-Glcp-(1→, →3,6)-D-Manp-(1→, →4)-D-Glcp-(1→ and →6)-D-Glcp-(1→ with relative molecular weights of 12,724 Da, and CBP70-1-2 was composed of →4)-D-Glcp-(1→, D-Glcp-(1→, →3,6)-D-Manp-(1→, →6)-D-Galp-(1→, →4,6)-D-Glcp-(1→ and →3)-L-Araf-(1→ with relative molecular weights of 3611 Da. Morphological analyses revealed that CBP70-1-1 and CBP70-1-2 appeared as a sheet that were irregular in size and shape, while the surface of CBP70-1-1 was full of sharp protuberances and CBP70-1-2 was smooth. Furthermore, the effects of CBP70-1-1 and CBP70-1-2 on the proliferation, differentiation and mineralization of mouse pre-osteoblastic MC3T3-E1 cells were assessed via CCK-8 assay, alkaline phosphatase activity assay, and alizarin red-based assay, respectively. These results revealed that CBP70-1-1 and CBP70-1-2 significantly promoted the proliferation, differentiation and mineralization of MC3T3-E1 cells, even better than E2. More importantly, quantitative real-time PCR and Western blot analysis indicated that CBP70-1-2 pronouncedly promoted the expression of osteogenic-related marker genes (Runx2, Osx, Ocn and Opn) and proteins (BMP2, RUNX2, OSX and p-SMAD1), which implies that the osteogenic activity of CBP70-1-2 is accomplished mainly by activating the BMP2/SMAD1 signaling pathway. These findings suggest CBP70-1-2 as a potential natural anti-osteoporotic agent for pharmacotherapy.
Collapse
Affiliation(s)
- Dong Huang
- Center for Clinical Precision Medication, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510006, China; School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China; School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xin Hou
- School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Dawei Zhang
- Department of Osteoporosis, Shajing People's Hospital of Bao'an Shenzhen, Shenzhen, 518104, China
| | - Qian Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Chunyan Yan
- Center for Clinical Precision Medication, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510006, China; School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
25
|
Zheng L, Hu Y, He X, Zhao Y, Xu H. Isolation of swine-derived Lactobacillus plantarum and its synergistic antimicrobial and health-promoting properties with ZnO nanoparticles. J Appl Microbiol 2020; 128:1764-1775. [PMID: 32027448 DOI: 10.1111/jam.14605] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/06/2020] [Accepted: 01/13/2020] [Indexed: 12/20/2022]
Abstract
AIMS The purpose of this study was to isolate Lactobacillus from gastrointestinal tract of healthy postweaning piglets and investigate its synergistic antimicrobial and probiotic effects with ZnO nanoparticles (nZnO). METHODS AND RESULTS Of the 128 isolates, Lactobacillus plantarum BLPL03 was selected based on its excellent acid and bile salt tolerance properties. Lactobacillus plantarum BLPL03 was sensitive to β-lactams, macrolides, amphenicols and cephalosporins, whereas it displayed the steady resistance to aminoglycosides, tetracyclines, quinolones and peptide antibiotics. In vitro analysis of antibacterial activities showed that L. plantarum BLPL03 inhibited the four common food-borne pathogenic bacteria including Escherichia coli O157:H7 CMCC 44828, Salmonella Typhimurium ATCC 13311, Staphylococcus aureus CMCC 26003 and Listeria monocytogenes CMCC 54007 in synergy with nZnO. Furthermore, the quantitative polymerase chain reaction test demonstrated that the combined administration of L. plantarum BLPL03 fermentation liquor (LFL) and nZnO synergistically elevated the faecal number of Bifidobacterium by 73·19-fold, and reduced the two potential enteropathogenic bacteria Enterobacteriaceae and Clostridium perfringens in mice challenged with Salm. Typhimurium. Finally, dietary supplementation with low dose of nZnO (20 mg kg-1 ) when combined with LFL administration enhanced final body weight, fur appearance and average daily gain, and decreased feed conversion ratio and diarrhoea incidence in weaned piglets. The faecal Bifidobacterium and Lactobacillus of piglets were dramatically enhanced by 81·96- and 3·15-fold, respectively, after administration of a mixture of nZnO and LFL. Meanwhile, combination of nZnO with LFL resulted in low levels of Bacteroides, Enterococcus, and Enterobacteriaceae. CONCLUSIONS A combination of nZnO and LFL exhibits potential health-benefit properties for the control of gut microbial composition by their synergistic antimicrobial and probiotic effects. SIGNIFICANCE AND IMPACT OF THE STUDY This study may provide a potential nutritional strategy to improve performance and gut health of animals with gut microbiota disorders caused by pathogen infections and weanling, and so on.
Collapse
Affiliation(s)
- L Zheng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, People's Republic of China
| | - Y Hu
- The 908th Hospital of Chinese People's Liberation Army Joint Logistic Support Force, Nanchang, People's Republic of China
| | - X He
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, People's Republic of China
| | - Y Zhao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, People's Republic of China
| | - H Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, People's Republic of China
| |
Collapse
|
26
|
Liu Y, Chen J, Tan Q, Deng X, Tsai PJ, Chen PH, Ye M, Guo J, Su Z. Nondigestible Oligosaccharides with Anti-Obesity Effects. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:4-16. [PMID: 31829005 DOI: 10.1021/acs.jafc.9b06079] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Obesity has an important influence on health conditions, causing a multitude of complications and comorbidities, and drug therapy is considered to be one of the treatment strategies. Nowadays, there is increasing interest in the study of intestinal microbiota regulation of obesity; also, an increasing number of agricultural and sideline products have been found to have anti-obesity potential. In the present review, we summarize an overview of current known and potential anti-obesity oligosaccharides and their molecular structures. We describe their anti-obesity potential activity and the molecular structure associated with this activity, the regulation of intestinal microbiota composition and its mechanism of action, including regulation of the short-chain fatty acid (SCFA) pathway and altering bile acid (BA) pathway. This review will provide new ideas for us to develop new anti-obesity functional foods.
Collapse
Affiliation(s)
- Yongjian Liu
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs , Guangdong Pharmaceutical University , Guangzhou 510006 , China
- Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine , Guangdong Pharmaceutical University , Guangzhou 510006 , China
| | - Jiajia Chen
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs , Guangdong Pharmaceutical University , Guangzhou 510006 , China
- Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine , Guangdong Pharmaceutical University , Guangzhou 510006 , China
| | - Qiuhua Tan
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs , Guangdong Pharmaceutical University , Guangzhou 510006 , China
- Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine , Guangdong Pharmaceutical University , Guangzhou 510006 , China
| | - Xiaoyi Deng
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs , Guangdong Pharmaceutical University , Guangzhou 510006 , China
- Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine , Guangdong Pharmaceutical University , Guangzhou 510006 , China
| | - Ping-Ju Tsai
- King-Prebiotics Biotechnology (TW) CO., LTD. , Linkou District, New Taipei City 24446 , Taiwan China
| | - Pei-Hsuan Chen
- King-Prebiotics Biotechnology (TW) CO., LTD. , Linkou District, New Taipei City 24446 , Taiwan China
| | - Manxiang Ye
- New Francisco (Yunfu City) Biotechnology CO., LTD. , Swan-kan-chiau Industrial District, Kaofong Village Yunfu City 527343 , Guangdong , China
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine , Guangdong Pharmaceutical University , Guangzhou 510006 , China
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs , Guangdong Pharmaceutical University , Guangzhou 510006 , China
| |
Collapse
|