1
|
Ye S, Shang X, Ao L, Sun B, Chen X, Shen CH, Liu M, Lin F, Dong W, Sun X, Xiong Y, Deng B. Decoding Long-Chain Fatty Acid Ethyl Esters during the Distillation of Strong Aroma-Type Baijiu and Exploring the Adsorption Mechanism with Magnetic Nanoparticles. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21752-21762. [PMID: 39265547 DOI: 10.1021/acs.jafc.4c05117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
Simultaneous detection of the dynamic distribution of long-chain fatty acid ethyl esters (LCFAEEs) during Baijiu distillation is crucial for optimizing its flavor and health attributes. In this study, we synthesized a simple, cost-effective Fe3O4@NH2 adsorbent to simultaneously extract eight LCFAEEs from Baijiu. Through density functional theory and adsorption experiments, we elucidated 1,6-hexanediamine as a surface modifier, with the -NH2 groups providing adsorption sites for the LCFAEEs via hydrogen-bonding interactions and van der Waals forces. Additionally, we established the magnetic solid-phase extraction-GC-MS extraction technique combined with stable isotope dilution analysis to analyze LCFAEEs. This method revealed the dynamic distribution patterns of LCFAEEs during strong aroma-type Baijiu (SAB) distillation. We observed that the concentrations of the eight LCFAEEs gradually decreased with prolonged distillation and were significantly correlated with ethanol concentration. To ensure optimal flavor and clarity in SAB, it is recommended to select the heart-stage base Baijiu with an alcohol content of 58%-63%.
Collapse
Affiliation(s)
- Siting Ye
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | - Xiaolong Shang
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | - Ling Ao
- Luzhou Laojiao Co., Ltd., Luzhou 646000, China
| | - Baoguo Sun
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | - Xiaoman Chen
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | | | - Miao Liu
- Luzhou Laojiao Co., Ltd., Luzhou 646000, China
| | - Feng Lin
- Luzhou Laojiao Co., Ltd., Luzhou 646000, China
| | - Wei Dong
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | - Xiaotao Sun
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | | | - Bo Deng
- Luzhou Laojiao Co., Ltd., Luzhou 646000, China
| |
Collapse
|
2
|
Zhang S, Guo L, Tao R, Liu S. Ferroptosis-targeting drugs in breast cancer. J Drug Target 2024:1-18. [PMID: 39225187 DOI: 10.1080/1061186x.2024.2399181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/07/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
In 2020, breast cancer surpassed lung cancer as the most common cancer in the world for the first time. Due to the resistance of some breast cancer cell lines to apoptosis, the therapeutic effect of anti-breast cancer drugs is limited. According to recent report, the susceptibility of breast cancer cells to ferroptosis affects the progress, prognosis and drug resistance of breast cancer. For instance, roblitinib induces ferroptosis of trastuzumab-resistant human epidermal growth factor receptor 2 (HER2)-positive breast cancer cells by diminishing fibroblast growth factor receptor 4 (FGFR4) expression, thereby augmenting the susceptibility of these cells to HER2-targeted therapies. In tamoxifen-resistant breast cancer cells, Fascin exacerbates their resistance by repressing solute carrier family 7 member 11 (SLC7A11) expression, which in turn heightens their responsiveness to tamoxifen. In recent years, Chinese herbs extracts and therapeutic drugs have been demonstrated to elicit ferroptosis in breast cancer cells by modulating a spectrum of regulatory factors pertinent to ferroptosis, including SLC7A11, glutathione peroxidase 4 (GPX4), acyl-CoA synthetase long chain family member 4 (ACSL4), and haem oxygenase 1 (HO-1). Here, we review the roles and mechanisms of Chinese herbal extracts and therapeutic drugs in regulating ferroptosis in breast cancer, providing potential therapeutic options for anti-breast cancer.
Collapse
Affiliation(s)
- Shuxian Zhang
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, China
| | - Lijuan Guo
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, China
| | - Ran Tao
- Department of Anatomy, Medical College, Dalian University, Dalian, China
| | - Shuangping Liu
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, China
| |
Collapse
|
3
|
Naaz N, Choudhary S, Hasan N, Sharma N, Al Aboud NM, Shehata WF. Biochemical and molecular profiling of induced high yielding M3 mutant lines of two Trigonella species: Insights into improved yield potential. PLoS One 2024; 19:e0305691. [PMID: 39074097 DOI: 10.1371/journal.pone.0305691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/04/2024] [Indexed: 07/31/2024] Open
Abstract
Trigonella, commonly known as Fenugreek, is among the most promising medicinal herbs consumed worldwide due its protein rich dietary contributions. This study involved induced mutagenesis on two Trigonella species (Trigonella foenum-graecum var. PEB and Trigonella corniculata var. Pusa kasuri) using caffeine and sodium azide as mutagens, resulting in the identification of nine high-yielding mutant lines in the M3 generation. Molecular characterization using SCoT markers revealed a high polymorphism of 28.3% and 46.7% in PEB and Pusa kasuri, respectively, facilitating the investigation of genetic divergence among the control and mutant lines. Similarity correlation analysis indicated a high similarity between mutant A and mutant C (0.97) and between mutant J and mutant O (0.88), while the lowest similarity was observed between mutant B and mutant F (0.74) and between control and mutant L (0.58). Mutant F and Mutant J displayed the highest seed yield and its attributing traits, and seed protein content in PEB and Pusa kasuri, respectively. Physiological parameters, including chlorophyll content (Mutants A and N) and carotenoids (mutant A and J), exhibited improvements. Assessment of stomatal and seed characteristics using scanning electron microscopy may lead to improved physiological processes and distinction at the interspecific level, respectively. Methanolic extracts of the control and the mutant lines of both species were subjected to GC-MS analysis, revealing 24 major phytocompounds known for their pharmacological activities (antioxidant, anti-inflammatory, anticancer, etc.). Statistical methods such as Pearson correlation heatmap and pairwise scatter plot matrix provided insights into the correlations and linear associations among parameters for both PEB and Pusa kasuri. The strong correlation between iron content and seeds per pod in the mutant lines suggests a promising avenue for further research. Continued research and breeding efforts using these mutants can lead to significant advancements in agriculture and medicine, benefiting farmers, consumers, and industries alike.
Collapse
Affiliation(s)
- Neha Naaz
- Department of Botany, Cytogenetics and Plant Breeding Lab, Aligarh Muslim University, Aligarh, India
| | - Sana Choudhary
- Department of Botany, Cytogenetics and Plant Breeding Lab, Aligarh Muslim University, Aligarh, India
| | - Nazarul Hasan
- Department of Botany, Cytogenetics and Plant Breeding Lab, Aligarh Muslim University, Aligarh, India
| | - Nidhi Sharma
- Department of Botany, Cytogenetics and Plant Breeding Lab, Aligarh Muslim University, Aligarh, India
| | - Nora M Al Aboud
- Department of Biology, Faculty of Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Wael F Shehata
- Department of Agricultural Biotechnology, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa, Saudi Arabia
| |
Collapse
|
4
|
Vermonden P, Martin M, Glowacka K, Neefs I, Ecker J, Höring M, Liebisch G, Debier C, Feron O, Larondelle Y. Phospholipase PLA2G7 is complementary to GPX4 in mitigating punicic-acid-induced ferroptosis in prostate cancer cells. iScience 2024; 27:109774. [PMID: 38711443 PMCID: PMC11070704 DOI: 10.1016/j.isci.2024.109774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/08/2024] [Accepted: 04/15/2024] [Indexed: 05/08/2024] Open
Abstract
Ferroptosis is a cell death pathway that can be promoted by peroxidizable polyunsaturated fatty acids in cancer cells. Here, we investigated the mechanisms underlying the toxicity of punicic acid (PunA), an isomer of conjugated linolenic acids (CLnAs) bearing three conjugated double bonds highly prone to peroxidation, on prostate cancer (PCa) cells. PunA induced ferroptosis in PCa cells and triggered massive lipidome remodeling, more strongly in PC3 androgen-negative cells than in androgen-positive cells. The greater sensitivity of androgen-negative cells to PunA was associated with lower expression of glutathione peroxidase 4 (GPX4). We then identified the phospholipase PLA2G7 as a PunA-induced ferroptosis suppressor in PCa cells. Overexpressing PLA2G7 decreased lipid peroxidation levels, suggesting that PLA2G7 hydrolyzes hydroperoxide-containing phospholipids, thus preventing ferroptosis. Importantly, overexpressing both PLA2G7 and GPX4 strongly prevented PunA-induced ferroptosis in androgen-negative PCa cells. This study shows that PLA2G7 acts complementary to GPX4 to protect PCa cells from CLnA-induced ferroptosis.
Collapse
Affiliation(s)
- Perrine Vermonden
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, 1348 Louvain-la-Neuve, Belgium
| | - Manon Martin
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, 1348 Louvain-la-Neuve, Belgium
| | - Katarzyna Glowacka
- FATH, Institut de recherche Expérimentale et Clinique, UCLouvain, 1200 Woluwe Saint-Lambert, Belgium
| | - Ineke Neefs
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, 1348 Louvain-la-Neuve, Belgium
| | - Josef Ecker
- Functional Lipidomics and Metabolism Research, Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Marcus Höring
- Lipidomics Lab, Institute of Clinical Chemistry and Laboratory Medicine, University Hospital of Regensburg, Regensburg, Germany
| | - Gerhard Liebisch
- Lipidomics Lab, Institute of Clinical Chemistry and Laboratory Medicine, University Hospital of Regensburg, Regensburg, Germany
| | - Cathy Debier
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, 1348 Louvain-la-Neuve, Belgium
| | - Olivier Feron
- FATH, Institut de recherche Expérimentale et Clinique, UCLouvain, 1200 Woluwe Saint-Lambert, Belgium
| | - Yvan Larondelle
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, 1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
5
|
Zhou ZQ, Wei M, Tan CL, Deng ZY, Li J. Low intake of ruminant trans fatty acids ameliorates the disordered lipid metabolism in C57BL/6J mice fed a high-fat diet. Food Funct 2024; 15:1539-1552. [PMID: 38234289 DOI: 10.1039/d3fo04947g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Currently, the health benefits of ruminant trans fatty acids (R-TFA) are still controversial. Our previous investigations indicated that R-TFA at higher dosages (1.3% and 4% E) caused disordered lipid metabolism in mice; however, through collecting R-TFA intake data in 9 provinces of China, it was suggested that, in 2021, the range of R-TFA intake for Chinese residents was about 0.053-0.307 g d-1. Based on the 2022 Nutritional Dietary Guidelines for Chinese Residents, the recommended daily energy supply from R-TFA was about 0.11%-0.15% E. However, the health effects of R-TFA at a lower dosage are still unknown; therefore, our current research aims to further explore the effects of R-TFA on health. Through in vivo experiments, it was shown that R-TFA (0.15% E) decreased body weight gain and serum cholesterol levels in C57BL/6J mice fed a high-fat diet, while it had no significant effect on mice fed a low-fat diet. Besides, hepatic histopathology analysis suggested that R-TFA (0.15% E) ameliorated the degree of hepatic steatosis and reduced intrahepatocyte lipid droplet accumulation in C57BL/6J mice fed a high-fat diet. Through lipidomics analysis, we further screened 8 potential lipid metabolites that participate in regulating the dysregulation of lipid metabolism. Finally, it was suggested that R-TFA (0.15% E) down-regulated the expression of genes related to inflammation and cholesterol synthesis while up-regulated the expression of genes related to cholesterol clearance, which might partially explain the salutary effect of R-TFA (0.15% E) in ameliorating the hepatic steatosis and improving disordered lipid metabolism in mice fed a high-fat diet. Our current research will provide a reference for the intake of R-TFA and, furthermore, give some insights into understanding the health effects of R-TFA.
Collapse
Affiliation(s)
- Ze-Qiang Zhou
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| | - Meng Wei
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| | - Chao-Li Tan
- Jiangxi Sunshine Dairy Co., Ltd, Nanchang, Jiangxi 330001, China
| | - Ze-Yuan Deng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
- College of Food, Nanchang University, Nanchang 330047, China
- International Institute of Food Innovation, Nanchang University, Nanchang 330031, China
| | - Jing Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
- College of Food, Nanchang University, Nanchang 330047, China
- International Institute of Food Innovation, Nanchang University, Nanchang 330031, China
- National Center of Technology Innovation for Dairy, China
| |
Collapse
|
6
|
Dai J, Pang M, Cai J, Liu Y, Qin Y. Integrated transcriptomic and metabolomic investigation of the genes and metabolites involved in swine follicular cyst formation. Front Vet Sci 2024; 10:1298132. [PMID: 38274662 PMCID: PMC10808629 DOI: 10.3389/fvets.2023.1298132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/13/2023] [Indexed: 01/27/2024] Open
Abstract
Follicular cysts are a common reproductive disorder in mammals that is usually caused by stress. However, the pathogenesis of follicular cysts in sows remains unclear. To provide new insights into the mechanisms of follicular cyst formation in pigs, we conducted a combined transcriptomic and metabolomic analysis on theca interna and mural granulosa cells of follicular cysts and mature follicles. We identified 2,533 up-regulated and 1,355 down-regulated genes in follicular cysts, compared with mature follicles. These differentially expressed genes were mainly found in signaling pathways related to tumor formation and cortisol synthesis and secretion as shown by Ingenuity Pathway Analysis, which predicted 4,362 upstream regulatory factors. The combined gene expression and pathway analysis identified the following genes as potential biomarkers for porcine follicular cysts: cytochrome P450 family 2 subfamily C polypeptide 18, L-lactate dehydrogenase, carbamoyl-phosphate synthase, fibroblast growth factor 7, integrin binding sialoprotein, interleukin 23 receptor, prolactin receptor, epiregulin, interleukin 1 receptor type II, arginine vasopressin receptor 1A, fibroblast growth factor 10, claudin 7, G Protein Subunit Gamma 3, cholecystokinin B receptor and cytosolic phospholipase A2. Metabolomics analysis found significant differences in 87 metabolites, which were enriched in unsaturated fatty acid biosynthesis, and sphingolipid signaling pathways. These results provide valuable information on the molecular mechanisms of follicular cyst formation, which may facilitate the development of new therapeutics to prevent and treat follicular cysts.
Collapse
Affiliation(s)
- Jiage Dai
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- College of Animal Sciences and Technology, China Agricultural University, Beijing, China
| | - Mingyue Pang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Jiabao Cai
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Yan Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yusheng Qin
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
7
|
Al-Awaida W, Al-Ameer HJ, Sharab A, Akasheh RT. Modulation of wheatgrass ( Triticum aestivum Linn) toxicity against breast cancer cell lines by simulated microgravity. Curr Res Toxicol 2023; 5:100127. [PMID: 37767028 PMCID: PMC10520342 DOI: 10.1016/j.crtox.2023.100127] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/11/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
This study scrutinizes the effects of simulated microgravity on the antioxidant and cytotoxic potential, along with the phytochemical content of wheatgrass (Triticum aestivum Linn). To imitate microgravity, wheatgrass seeds were germinated in a 3D-clinostat at different rotations per minute (5, 10, 15, and 20 rpm), together with terrestrial gravity control, over 10 days. After germination, the methanolic extracts were analyzed using UPLC-Triple Quad LCMS for their phytochemical composition and tested for their hydrogen peroxide, nitric oxide, and DPPH scavenging activities. The cytotoxic effects of these extracts were evaluated against normal skin fibroblasts, normal breast cells (MCF-10), and breast cancer cells (MCF-7 and MDA-231). The findings showed an extended root growth in wheatgrass germinated under microgravity (WGM) compared to under gravity (WGG). Additionally, WGM extracts demonstrated increased H2O2-, NO-, and DPPH-scavenging activities and a higher content of polyphenols and flavonoids than WGG extracts. These effects were amplified with an increase in clinostat rotations. Moreover, WGM extracts were found to contain a unique set of bioactive compounds (compounds that were detected in the microgravity-germinated wheatgrass but were either absent or present in lower concentrations in wheatgrass germinated under standard gravity conditions.), including pyridoxine, apigenin, and tocopherol, among others, which were absent in WGG. The UPLC-Triple Quad LCMS analysis revealed these unique bioactive compounds in WGM. Notably, WGM extracts showed enhanced cytotoxic effects against normal skin fibroblasts, normal MCF-10, MCF-7, and breast cancer MDA-231 cell lines, with increased cytotoxicity correlating with the number of clinostat rotations. Particularly, WGM extract (at 20 rpm) demonstrated significantly stronger cytotoxicity against MCF-7 breast cancer cells. Further in-depth gene expression analysis of MCF-7 cells exposed to WGM revealed a significant downregulation of genes integral to breast cancer pathways, tyrosine kinase signaling, and DNA repair, complemented by upregulation of certain cell survival and cytotoxic genes. These alterations in genetic pathways associated with cell survival, hormone responses, and cancer progression may elucidate the enhanced cytotoxicity observed in WGM extracts. Our findings underscore the potential of microgravity as a tool to enhance the cytotoxic capabilities of wheatgrass against cancer cell lines, presenting a promising direction for future research in the field of space biology and its implications for terrestrial health.
Collapse
Affiliation(s)
- Wajdy Al-Awaida
- Department of Biology and Biotechnology, Faculty of Science, American University of Madaba, P.O. Box: 99, Madaba 17110, Jordan
| | - Hamzeh J. Al-Ameer
- Department of Biology and Biotechnology, Faculty of Science, American University of Madaba, P.O. Box: 99, Madaba 17110, Jordan
- Department of Pharmaceutical Biotechnology, Faculty of Allied Medical Sciences, Al-AhliyyaAmman University (AAU), Amman, 19328, Jordan
| | - Ahmad Sharab
- Department of Biology and Biotechnology, Faculty of Science, American University of Madaba, P.O. Box: 99, Madaba 17110, Jordan
| | - Rand T. Akasheh
- Department of Nutrition and Dietetics, American University of Madaba, P.O. Box: 99, Madaba 17110, Jordan
| |
Collapse
|
8
|
Li G, Chen J, Yang Q, Yang X, Wang P, Lei H, Mi M, Ma Q. Identification of chemical constituents in pomegranate seeds based on ultra-high-performance supercritical fluid chromatography coupled with quadrupole time-of-flight mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2023; 37 Suppl 1:e9482. [PMID: 36718938 DOI: 10.1002/rcm.9482] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
Pomegranate seeds are a potential source of bioactive compounds. Nonetheless, most pomegranate seeds are discarded in the food processing industry, likely due to the lack of convincing data on their component analysis. METHODS To reveal the main chemical constituents of pomegranate seeds, a reliable and sensitive method based on ultra-high-performance supercritical fluid chromatography coupled with electrospray ionization and quadrupole time-of-flight mass spectrometry (MS) was developed. A time-dependent MSE data acquisition mode was applied to acquire the mass spectrometric data. The chemical constituents were identified by an automatic retrieval of a traditional Chinese medicine library and relevant literature. RESULTS A total number of 59 compounds, including fatty acids, sterols, vitamins, cerebrosides, phospholipids, flavonoids, phenylpropanoids, and others, were tentatively identified. Their possible fragmentation pathways and characteristic ions were proposed and elucidated. CONCLUSIONS The findings of this study, along with the developed methodology, could provide a reference for basic research on the pharmacodynamic substances of pomegranate seeds and shed light on their potential nutritional and therapeutic applications in the future.
Collapse
Affiliation(s)
- Guoping Li
- Chinese Academy of Inspection and Quarantine, Beijing, China
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Chen
- Tibetan Traditional Medical College, Lhasa, China
| | - Qing Yang
- Waters Technology Co., Ltd., Beijing, China
| | | | - Penglong Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Haimin Lei
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Ma Mi
- Tibetan Traditional Medical College, Lhasa, China
| | - Qiang Ma
- Chinese Academy of Inspection and Quarantine, Beijing, China
| |
Collapse
|
9
|
Do Q, Zhang R, Hooper G, Xu L. Differential Contributions of Distinct Free Radical Peroxidation Mechanisms to the Induction of Ferroptosis. JACS AU 2023; 3:1100-1117. [PMID: 37124288 PMCID: PMC10131203 DOI: 10.1021/jacsau.2c00681] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 05/03/2023]
Abstract
Ferroptosis is a form of regulated cell death driven by lipid peroxidation of polyunsaturated fatty acids (PUFAs). Lipid peroxidation can propagate through either the hydrogen-atom transfer (HAT) or peroxyl radical addition (PRA) mechanism. However, the contribution of the PRA mechanism to the induction of ferroptosis has not been studied. In this study, we aim to elucidate the relationship between the reactivity and mechanisms of lipid peroxidation and ferroptosis induction. We found that while some peroxidation-reactive lipids, such as 7-dehydrocholesterol, vitamins D3 and A, and coenzyme Q10, suppress ferroptosis, both nonconjugated and conjugated PUFAs enhanced cell death induced by RSL3, a ferroptosis inducer. Importantly, we found that conjugated PUFAs, including conjugated linolenic acid (CLA 18:3) and conjugated linoleic acid (CLA 18:2), can induce or potentiate ferroptosis much more potently than nonconjugated PUFAs. We next sought to elucidate the mechanism underlying the different ferroptosis-inducing potency of conjugated and nonconjugated PUFAs. Lipidomics revealed that conjugated and nonconjugated PUFAs are incorporated into distinct cellular lipid species. The different peroxidation mechanisms predict the formation of higher levels of reactive electrophilic aldehydes from conjugated PUFAs than nonconjugated PUFAs, which was confirmed by aldehyde-trapping and mass spectrometry. RNA sequencing revealed that protein processing in the endoplasmic reticulum and proteasome are among the most significantly upregulated pathways in cells treated with CLA 18:3, suggesting increased ER stress and activation of unfolded protein response. These results suggest that protein damage by lipid electrophiles is a key step in ferroptosis.
Collapse
Affiliation(s)
- Quynh Do
- Department
of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Rutan Zhang
- Department
of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Gavin Hooper
- Department
of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Libin Xu
- Department
of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
10
|
Du M, Jin J, Wu G, Jin Q, Wang X. Metabolic, structure-activity characteristics of conjugated linolenic acids and their mediated health benefits. Crit Rev Food Sci Nutr 2023; 64:8203-8217. [PMID: 37021469 DOI: 10.1080/10408398.2023.2198006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Conjugated linolenic acid (CLnA) is a mixture of octadecenoic acid with multiple positional and geometric isomers (including four 9, 11, 13-C18:3 isomers and three 8, 10, 12-C18:3 isomers) that is mainly present in plant seeds. In recent years, CLnA has shown many promising health benefits with the deepening of research, but the metabolic characteristics, physiological function differences and mechanisms of different isomers are relatively complex. In this article, the metabolic characteristics of CLnA were firstly reviewed, with focus on its conversion, catabolism and anabolism. Then the possible mechanisms of CLnA exerting biological effects were summarized and analyzed from its own chemical and physical characteristics, as well as biological receptor targeting characteristics. In addition, the differences and mechanisms of different isomers of CLnA in anticancer, lipid-lowering, anti-diabetic and anti-inflammatory physiological functions were compared and summarized. The current results show that the position and cis-trans conformation of conjugated structure endow CLnA with unique physical and chemical properties, which also makes different isomers have commonalities and particularities in the regulation of metabolism and physiological functions. Corresponding the metabolic characteristics of different isomers with precise nutrition strategy will help them to play a better role in disease prevention and treatment. CLnA has the potential to be developed into food functional components and dietary nutritional supplements. The advantages and mechanisms of different CLnA isomers in the clinical management of specific diseases need further study.
Collapse
Affiliation(s)
- Meijun Du
- State Key Lab of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Research Laboratory for Lipid Nutrition and Safety, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jun Jin
- State Key Lab of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Research Laboratory for Lipid Nutrition and Safety, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Gangcheng Wu
- State Key Lab of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Research Laboratory for Lipid Nutrition and Safety, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Qingzhe Jin
- State Key Lab of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Research Laboratory for Lipid Nutrition and Safety, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xingguo Wang
- State Key Lab of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Research Laboratory for Lipid Nutrition and Safety, School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
11
|
Garaiova M, Hua Q, Holic R. Heterologous Production of Calendic Acid Naturally Found in Calendula officinalis by Recombinant Fission Yeast. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3842-3851. [PMID: 36795330 DOI: 10.1021/acs.jafc.2c08967] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Calendic acid (CA) is a conjugated fatty acid with anti-cancer properties that is widely present in seed oil of Calendula officinalis. Using the co-expression of C. officinalis fatty acid conjugases (CoFADX-1 or CoFADX-2) and Punica granatum fatty acid desaturase (PgFAD2), we metabolically engineered the synthesis of CA in the yeast Schizosaccharomyces pombe without the need for linoleic acid (LA) supplementation. The highest CA titer and achieved accumulation were 4.4 mg/L and 3.7 mg/g of DCW in PgFAD2 + CoFADX-2 recombinant strain cultivated at 16 °C for 72 h, respectively. Further analyses revealed the accumulation of CA in free fatty acids (FFA) and downregulation of the lcf1 gene encoding long-chain fatty acyl-CoA synthetase. The developed recombinant yeast system represents an important tool for the future identification of the essential components of the channeling machinery to produce CA as a high-value conjugated fatty acid at an industrial level.
Collapse
Affiliation(s)
- Martina Garaiova
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 84005, Slovakia
| | - Qiang Hua
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Roman Holic
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 84005, Slovakia
| |
Collapse
|
12
|
Lowenthal R, Taylor M, Gidden JA, Heflin B, Lay JO, Avaritt N, Tackett AJ, Urbaniak A. The mycelium of the Trametes versicolor synn. Coriolus versicolor (Turkey tail mushroom) exhibit anti-melanoma activity in vitro. Biomed Pharmacother 2023; 161:114424. [PMID: 36827712 PMCID: PMC10147383 DOI: 10.1016/j.biopha.2023.114424] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
Melanoma is one of the most aggressive forms of skin cancer and is characterized by high metastatic potential. Despite improvements in early diagnosis and treatment, the mortality rate among metastatic melanoma patients continues to represent a significant clinical challenge. Therefore, it is imperative that we search for new forms of treatment. Trametes versicolor is a mushroom commonly used in Chinese traditional medicine due to its numerous beneficial properties. In the present work, we demonstrate T. versicolor fruiting body and mycelium ethanol extracts exhibit potent cytotoxic activity towards A375 (IC50 = 663.3 and 114.5 µg/mL respectively) and SK-MEL-5 (IC50 = 358.4 and 88.6 µg/mL respectively) human melanoma cell lines. Further studies revealed that T. versicolor mycelium extract induced apoptotic cell death and poly (ADP-ribose) polymerase cleavage, upregulated the expression of autophagy-associated marker LC3-II, increased the presentation of major histocompatibility complex II and expression of programmed death-ligand receptor, and inhibited cell migration in SK-MEL-5 cells. Therefore, our present findings highlight the therapeutic potential of T. versicolor mycelium extract for the treatment of melanoma and merit further study.
Collapse
Affiliation(s)
- Rocky Lowenthal
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Megan Taylor
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Jennifer A Gidden
- Arkansas Statewide MS Facility, University of Arkansas, Fayetteville 72701, AR, United States
| | - Billie Heflin
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Jackson O Lay
- Arkansas Statewide MS Facility, University of Arkansas, Fayetteville 72701, AR, United States; Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville 72701, AR, United States
| | - Nathan Avaritt
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Alan J Tackett
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States.
| | - Alicja Urbaniak
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States.
| |
Collapse
|
13
|
Maidana L, de Souza M, Bracarense APFRL. Lactobacillus plantarum and Deoxynivalenol Detoxification: A Concise Review. J Food Prot 2022; 85:1815-1823. [PMID: 36173895 DOI: 10.4315/jfp-22-077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 09/25/2022] [Indexed: 11/11/2022]
Abstract
ABSTRACT Mycotoxins are toxic secondary fungal metabolites that contaminate feeds, and their levels remain stable during feed processing. The economic impact of mycotoxins on animal production happens mainly due to losses related to direct effects on animal health and trade losses related to grain rejection. Deoxynivalenol (DON) is a trichothecene mycotoxin that has contaminated approximately 60% of the grains worldwide. Ingestion of DON induces many toxic effects on human and animal health. Detoxification strategies to decrease DON levels in food and feeds include physical and chemical methods; however, they are not very effective when incorporated into the industrial production process. A valuable alternative to achieve this aim is the use of lactic acid bacteria. These bacteria can control fungal growth and thus overcome DON production or can detoxify the mycotoxin through adsorption and biotransformation. Some Lactobacillus spp. strains, such as Lactobacillus plantarum, have demonstrated preventive effects against DON toxicity in poultry and swine. This beneficial effect is associated with a binding capacity of lactic acid bacteria cell wall peptidoglycan with mycotoxins. Moreover, several antifungal compounds have been isolated from L. plantarum supernatants, including lactic, acetic, caproic, phenyl lactic, 3-hydroxylated fatty, and cyclic dipeptide acids. Biotransformation of DON by L. plantarum into other products is also hypothesized, but the mechanism remains unknown. In this concise review, we highlight the use of L. plantarum as an alternative approach to reduce DON levels and toxicity. Although the action mechanism of L. plantarum is still not fully understood, these bacteria are a safe, efficient, and low-cost strategy to reduce economic losses from mycotoxin contamination cases. HIGHLIGHTS
Collapse
Affiliation(s)
- Leila Maidana
- Laboratory of Animal Pathology, Department of Preventive Veterinary Medicine, Universidade Estadual de Londrina, Londrina, 86057-970, Brazil.,Department of Pathological Sciences, Veterinary Sciences Faculty, Universidad Nacional de Asunción, San Lorenzo, 111408, Paraguay
| | - Marielen de Souza
- Laboratory of Animal Pathology, Department of Preventive Veterinary Medicine, Universidade Estadual de Londrina, Londrina, 86057-970, Brazil
| | - Ana Paula F R L Bracarense
- Laboratory of Animal Pathology, Department of Preventive Veterinary Medicine, Universidade Estadual de Londrina, Londrina, 86057-970, Brazil
| |
Collapse
|
14
|
Cao L, Yin M, Shi TQ, Lin L, Ledesma-Amaro R, Ji XJ. Engineering Yarrowia lipolytica to produce nutritional fatty acids: Current status and future perspectives. Synth Syst Biotechnol 2022; 7:1024-1033. [PMID: 35801090 PMCID: PMC9249680 DOI: 10.1016/j.synbio.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/11/2022] [Accepted: 06/11/2022] [Indexed: 11/26/2022] Open
Abstract
Due to their vital physiological functions, nutritional fatty acids have great potential as nutraceutical food supplements for preventing an array of diseases such as inflammation, depression, arthritis, osteoporosis, diabetes and cancer. Microbial biosynthesis of fatty acids follows the trend of sustainable development, as it enables green, environmentally friendly and efficient production. As a natural oleaginous yeast, Yarrowia lipolytica is especially well-suited for the production of fatty acids. Moreover, it has a variety of genetic engineering tools and novel metabolic engineering strategies that make it a robust workhorse for the production of an array of value-added products. In this review, we summarize recent advances in metabolic engineering strategies for accumulating nutritional fatty acids in Y. lipolytica, including conjugated fatty acids and polyunsaturated fatty acids. In addition, the future prospects of nutritional fatty acid production using the Y. lipolytica platform are discussed in light of the current progress, challenges, and trends in this field. Finally, guidelines for future studies are also emphasized.
Collapse
|
15
|
Ravichandiran K, Parani M. Transcriptome analysis of five different tissues of bitter gourd (Momordica charantia L.) fruit identifies full-length genes involved in seed oil biosynthesis. Sci Rep 2022; 12:15374. [PMID: 36100691 PMCID: PMC9470707 DOI: 10.1038/s41598-022-19686-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 09/01/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractThe bitter gourd seed oil, rich in conjugated fatty acids, has therapeutic value to treat cancer, obesity, and aging. It also has an industrial application as a drying agent. Despite its significance, genomics studies are limited, and the genes for seed oil biosynthesis are not fully understood. In this study, we assembled the fruit transcriptome of bitter gourd using 254.5 million reads (Phred score > 30) from the green rind, white rind, pulp, immature seeds, and mature seeds. It consisted of 125,566 transcripts with N50 value 2,751 bp, mean length 960 bp, and 84% completeness. Transcript assembly was validated by RT-PCR and qRT-PCR analysis of a few selected transcripts. The transcripts were annotated against the NCBI non-redundant database using the BLASTX tool (E-value < 1E−05). In gene ontology terms, 99,443, 86,681, and 82,954 transcripts were classified under biological process, molecular function, and cellular component. From the fruit transcriptome, we identified 26, 3, and 10 full-length genes coding for all the enzymes required for synthesizing fatty acids, conjugated fatty acids, and triacylglycerol. The transcriptome, transcripts with tissue-specific expression patterns, and the full-length identified from this study will serve as an important genomics resource for this important medicinal plant.
Collapse
|
16
|
Zheng Y, Ji S, Li X, Feng Q. Active ingredients and molecular targets of Taraxacum mongolicum against hepatocellular carcinoma: network pharmacology, molecular docking, and molecular dynamics simulation analysis. PeerJ 2022; 10:e13737. [PMID: 35873910 PMCID: PMC9302432 DOI: 10.7717/peerj.13737] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/25/2022] [Indexed: 01/17/2023] Open
Abstract
Background Taraxacum mongolicum (TM) is a widely used herb. Studies have reported that TM exhibits growth-inhibitory and apoptosis-inducing on multiple tumors, including hepatocellular carcinoma (HCC). The active ingredients, targets, and molecular mechanisms of TM against HCC need to be further elucidated. Methods We identified the active ingredients and targets of TM via HERB, PubChem, SwissADME, SwissTargetPrediction, and PharmMapper. We searched HCC targets from GeneCards, Comparative Toxicogenomics Database (CTD), and DisGeNET. Then, the intersection of drug targets and disease targets was uploaded to the STRING database to construct protein-protein interactions (PPI) networking whose topology parameters were analyzed in Cytoscape software to screen hub targets. Next, we used Metascape for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, and we employed AutoDock vina, AMBER18 and PyMOL software along with several auxiliary tools for molecular docking and molecular dynamics (MD) simulation. Finally, based on the in silico findings, cellular experiments were conducted to investigate the effect of TM on HSP90AA1 gene expression. Results A total of 228 targets and 35 active ingredients were identified. Twenty two hub targets were selected through PPI networking construction for further investigation. The enrichment analysis showed that protein kinase binding, mitogenactivated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathways were mainly involved. Molecular docking and MD simulation results supported good interaction between HSP90 protein and Austricin/Quercetin. The in vitro assay showed that TM inhibited the proliferation of HepG2 cells and the expression of HSP90AA1 gene. Conclusions This study is the first to use network pharmacology, molecular docking, MD simulation and cellular experiments to elucidate the active ingredients, molecular targets, and key biological pathways responsible for TM anti-HCC, providing a theoretical basis for further research.
Collapse
Affiliation(s)
- Yanfeng Zheng
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Shaoxiu Ji
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xia Li
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Quansheng Feng
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
17
|
Wang H, Shuai X, Ye S, Zhang R, Wu M, Jiang S, Li Y, Wu D, He J. Recent advances in the development of bitter gourd seed oil: from chemical composition to potential applications. Crit Rev Food Sci Nutr 2022; 63:10678-10690. [PMID: 35648048 DOI: 10.1080/10408398.2022.2081961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Non-conventional seed oils are being considered novelty foods due to the unique properties of their chemical constituents. Numerous such seed oils serve as nutritional and functional supplements, making them a point of interest for scholars. Bitter gourd (Momordica charantia L.) seed oil (BGSO) has been widely used in folk medicine worldwide for the treatment of different pathologies, such as diabetes, cancer, and several inflammatory diseases. Therefore, its nutritional and medicinal value has been extensively studied. Considering the potential use of BGSO, it is imperative to have a comprehensive understanding of this product to develop and use its biologically active ingredients in innovative food and pharmaceutical products. An extensive understanding of BGSO would also help improve the economic feasibility of the bitter gourd seed processing industry and help prevent environmental pollution associated with the raw waste produced during the processing of bitter gourd seeds. This review addresses the potential uses of BGSO in terms of food and pharmaceuticals industry perspectives and comprehensively summarizes the oil extraction process, chemical composition, biological activity, and the application prospects of BGSO in clinical medicine.
Collapse
Affiliation(s)
- Huiling Wang
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan, P.R. China
- National R&D Center for Se-rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, P.R. China
| | - Xiaoyan Shuai
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan, P.R. China
- National R&D Center for Se-rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, P.R. China
| | - Shuxin Ye
- China YunHong Holdings Co, Ltd, Wuxue, P.R. China
| | - Rui Zhang
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan, P.R. China
- National R&D Center for Se-rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, P.R. China
| | - Muci Wu
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan, P.R. China
- National R&D Center for Se-rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, P.R. China
| | - Sijia Jiang
- China YunHong Holdings Co, Ltd, Wuxue, P.R. China
| | - Yubao Li
- China YunHong Holdings Co, Ltd, Wuxue, P.R. China
| | - Dong Wu
- China YunHong Holdings Co, Ltd, Wuxue, P.R. China
| | - Jingren He
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan, P.R. China
- National R&D Center for Se-rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, P.R. China
| |
Collapse
|
18
|
Zhang X, Guo X, Li F, Usman S, Zhang Y, Ding Z. Antioxidant, Flavonoid, α-tocopherol, β-carotene, Fatty Acids, and Fermentation Profiles of Alfalfa Silage Inoculated With Novel Lactiplantibacillus Plantarum and Pediococcus acidilactici Strains With High-antioxidant Activity. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Guerra-Vázquez CM, Martínez-Ávila M, Guajardo-Flores D, Antunes-Ricardo M. Punicic Acid and Its Role in the Prevention of Neurological Disorders: A Review. Foods 2022; 11:252. [PMID: 35159404 PMCID: PMC8834450 DOI: 10.3390/foods11030252] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/14/2022] [Accepted: 01/14/2022] [Indexed: 02/06/2023] Open
Abstract
Millions of people worldwide are affected by neurodegenerative diseases (NDs). NDs are characterized by progressive damage and death of nerve cells accompanied by high levels of inflammatory biomarkers and oxidative stress conditions. Punicic acid, the main bioactive component of pomegranate (Punica granatum) seed oil, is an omega-5 isomer of conjugated α-linoleic acid that has shown strong anti-oxidative and anti-inflammatory effects that contributes towards its positive effect against a wide arrange of diseases. Punicic acid decreases oxidative damage and inflammation by increasing the expression of peroxisome proliferator-activated receptors. In addition, it can reduce beta-amyloid deposits formation and tau hyperphosphorylation by increasing the expression of GLUT4 protein and the inhibition of calpain hyperactivation. Microencapsulated pomegranate, with high levels of punicic acid, increases antioxidant PON1 activity in HDL. Likewise, encapsulated pomegranate formulations with high levels of punicic acid have shown an increase in the antioxidant PON1 activity in HDL. Because of the limited brain permeability of punicic acid, diverse delivery formulations have been developed to enhance the biological activity of punicic acid in the brain, diminishing neurological disorders symptoms. Punicic acid is an important nutraceutical compound in the prevention and treatment of neurodegenerative diseases such as Alzheimer's, Parkinson's, and Huntington's disease.
Collapse
Affiliation(s)
| | | | | | - Marilena Antunes-Ricardo
- Tecnológico de Monterrey, Centro de Biotecnología-FEMSA, Escuela de Ingeniería y Ciencias, Av. Eugenio Garza Sada 2501 Sur, Monterrey C.P. 64849, NL, Mexico; (C.M.G.-V.); (M.M.-Á.); (D.G.-F.)
| |
Collapse
|
20
|
Horká P, Vrkoslav V, Kindl J, Schwarzová-Pecková K, Cvačka J. Structural Characterization of Unusual Fatty Acid Methyl Esters with Double and Triple Bonds Using HPLC/APCI-MS 2 with Acetonitrile In-Source Derivatization. Molecules 2021; 26:molecules26216468. [PMID: 34770878 PMCID: PMC8588306 DOI: 10.3390/molecules26216468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/21/2021] [Accepted: 10/21/2021] [Indexed: 12/11/2022] Open
Abstract
Double and triple bonds have significant effects on the biological activities of lipids. Determining multiple bond positions in their molecules by mass spectrometry usually requires chemical derivatization. This work presents an HPLC/MS method for pinpointing the double and triple bonds in fatty acids. Fatty acid methyl esters were separated by reversed-phase HPLC with an acetonitrile mobile phase. In the APCI source, acetonitrile formed reactive species, which added to double and triple bonds to form [M + C3H5N]+• ions. Their collisional activation in an ion trap provided fragments helpful in localizing the multiple bond positions. This approach was applied to fatty acids with isolated, cumulated, and conjugated double bonds and triple bonds. The fatty acids were isolated from the fat body of early-nesting bumblebee Bombus pratorum and seeds or seed oils of Punicum granatum, Marrubium vulgare, and Santalum album. Using the method, the presence of the known fatty acids was confirmed, and new ones were discovered.
Collapse
Affiliation(s)
- Petra Horká
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Náměstí 542/2, 166 00 Prague 6, Czech Republic; (P.H.); (V.V.); (J.K.)
- Department of Analytical Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 43 Prague 2, Czech Republic;
| | - Vladimír Vrkoslav
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Náměstí 542/2, 166 00 Prague 6, Czech Republic; (P.H.); (V.V.); (J.K.)
| | - Jiří Kindl
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Náměstí 542/2, 166 00 Prague 6, Czech Republic; (P.H.); (V.V.); (J.K.)
| | - Karolina Schwarzová-Pecková
- Department of Analytical Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 43 Prague 2, Czech Republic;
| | - Josef Cvačka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Náměstí 542/2, 166 00 Prague 6, Czech Republic; (P.H.); (V.V.); (J.K.)
- Department of Analytical Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 43 Prague 2, Czech Republic;
- Correspondence: ; Tel.: +420-220-183-303
| |
Collapse
|
21
|
Hu X, Wan L, Liu S, Chen B, Li W, Wu C, Xiong T, Xi S, Mao H, Liu S. Comparative analysis of meat quality and chemical composition among three weight groups of Chinese Ningdu yellow chicken: Implications for customer choice. Anim Sci J 2021; 92:e13638. [PMID: 34585472 DOI: 10.1111/asj.13638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/26/2021] [Accepted: 08/12/2021] [Indexed: 11/25/2022]
Abstract
The aim of this study was to compare the meat quality and evaluate the chemical composition of Chinese Ningdu yellow chicken of different weights once they have reached market age. Thirty hens at the day of age 118 were selected and divided into three groups according to their weight: light weight (1288.00 ± 69.78 g, n = 10), medium weight (1407.17 ± 39.40 g, n = 10), heavy weight (1581.6 ± 46.59 g, n = 10), and the differences in weight among these three groups are significant. Biochemical, histological, and metabonomic approaches were used to obtain index values of meat quality and chemical composition. Compared with meat from lighter chickens, muscle fiber density was significantly lower in heavier chickens, and meat pH was positively correlated with chicken weight. Though the amount of all measured amino acids were not different among three weight groups of chicken, the levels of several kinds of fatty acids exhibited significant differences or correlations, including linolenic acid, arachidonic acid, myristic acid, oleic acid, and docosahexaenoic acid (DHA). These results contribute to help customers choose the optimal chicken weight depending upon the food to be cooked.
Collapse
Affiliation(s)
- Xiaolong Hu
- Poultry Institute, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Lei Wan
- Poultry Institute, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Shuibing Liu
- Poultry Institute, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Biao Chen
- Poultry Institute, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Wen Li
- Agriculture and Rural Affairs Bureau of Ningdu County, Ganzhou, China
| | - Chonghua Wu
- Poultry Institute, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Ting Xiong
- Poultry Institute, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Suwang Xi
- Poultry Institute, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Huirong Mao
- Poultry Institute, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Sanfeng Liu
- Poultry Institute, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
22
|
Punicic Acid Triggers Ferroptotic Cell Death in Carcinoma Cells. Nutrients 2021; 13:nu13082751. [PMID: 34444911 PMCID: PMC8399984 DOI: 10.3390/nu13082751] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/05/2021] [Accepted: 08/09/2021] [Indexed: 12/24/2022] Open
Abstract
Plant-derived conjugated linolenic acids (CLnA) have been widely studied for their preventive and therapeutic properties against diverse diseases such as cancer. In particular, punicic acid (PunA), a conjugated linolenic acid isomer (C18:3 c9t11c13) present at up to 83% in pomegranate seed oil, has been shown to exert anti-cancer effects, although the mechanism behind its cytotoxicity remains unclear. Ferroptosis, a cell death triggered by an overwhelming accumulation of lipid peroxides, has recently arisen as a potential mechanism underlying CLnA cytotoxicity. In the present study, we show that PunA is highly cytotoxic to HCT-116 colorectal and FaDu hypopharyngeal carcinoma cells grown either in monolayers or as three-dimensional spheroids. Moreover, our data indicate that PunA triggers ferroptosis in carcinoma cells. It induces significant lipid peroxidation and its effects are prevented by the addition of ferroptosis inhibitors. A combination with docosahexaenoic acid (DHA), a known polyunsaturated fatty acid with anticancer properties, synergistically increases PunA cytotoxicity. Our findings highlight the potential of using PunA as a ferroptosis-sensitizing phytochemical for the prevention and treatment of cancer.
Collapse
|
23
|
DFT Calculations of 1H NMR Chemical Shifts of Geometric Isomers of Conjugated Linolenic Acids, Hexadecatrienyl Pheromones, and Model Triene-Containing Compounds: Structures in Solution and Revision of NMR Assignments. Molecules 2021; 26:molecules26113477. [PMID: 34200468 PMCID: PMC8201138 DOI: 10.3390/molecules26113477] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 11/29/2022] Open
Abstract
A DFT study of the 1H NMR chemical shifts, δ(1H), of geometric isomers of 18:3 conjugated linolenic acids (CLnAs), hexadecatrienyl pheromones, and model triene-containing compounds is presented, using standard functionals (B3LYP and PBE0) as well as corrections for dispersion interactions (B3LYP-D3, APFD, M06–2X and ωB97XD). The results are compared with literature experimental δ(1H) data in solution. The closely spaced “inside” olefinic protons are significantly more deshielded due to short-range through-space H…H steric interactions and appear close to or even beyond δ-values of aromatic systems. Several regularities of the computational δ(1H) of the olefinic protons of the conjugated double bonds are reproduced very accurately for the lowest-energy DFT-optimized single conformer for all functionals used and are in very good agreement with experimental δ(1H) in solution. Examples are provided of literature studies in which experimental resonance assignments deviate significantly from DFT predictions and, thus, should be revised. We conclude that DFT calculations of 1H chemical shifts of trienyl compounds are powerful tools (i) for the accurate prediction of δ(1H) even with less demanding functionals and basis sets; (ii) for the unequivocal identification of geometric isomerism of conjugated trienyl systems that occur in nature; (iii) for tackling complex problems of experimental resonance assignments due to extensive signal overlap; and (iv) for structure elucidation in solution.
Collapse
|
24
|
The Egg Yolk Content in ω-3 and Conjugated Fatty Acids Can Be Sustainably Increased upon Long-Term Feeding of Laying Hens with a Diet Containing Flaxseeds and Pomegranate Seed Oil. Foods 2021; 10:foods10051134. [PMID: 34069647 PMCID: PMC8160806 DOI: 10.3390/foods10051134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/12/2021] [Accepted: 05/16/2021] [Indexed: 11/28/2022] Open
Abstract
Long-term feeding trials examining the incorporation of conjugated linolenic acids (CLnA) into the diet of laying hens are lacking. In the present study, we compared two diets in sixty-six red Sex-Link hens (33 hens/treatment), fed for 26 weeks. The control diet was high in oleic acid, while the test diet was high in α-linolenic acid (ALA) and punicic acid (PunA). No significant differences were observed between treatments for hens’ performance, egg weight and yolk weight. In contrast, dietary ALA and PunA resulted in a significant increase in n-3 PUFA, rumenic acid (RmA) and PunA contents in egg yolk, as well as in the liver, heart, muscle and adipose tissue of the hens. Other conjugated dienes resulting from the metabolism of PunA or RmA also accumulated in the egg yolk and tissues. Unlike DHA, which was exclusively distributed in phospholipids, ALA, RmA and PunA were preferably distributed in triglycerides.
Collapse
|
25
|
Hajjar G, Haddad L, Rizk T, Akoka S, Bejjani J. High-resolution 1H NMR profiling of triacylglycerols as a tool for authentication of food from animal origin: Application to hen egg matrix. Food Chem 2021; 360:130056. [PMID: 34020363 DOI: 10.1016/j.foodchem.2021.130056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/05/2021] [Accepted: 05/05/2021] [Indexed: 11/27/2022]
Abstract
Metabolomics of complex biological matrices conducted by means of 1H NMR leads to spectra suffering from severe signal overlapping. Previously, we have developed a high-resolution spectral treatment method to help solving this issue in 1H NMR of triacylglycerols. In this work, we tested the potential of the developed method in the characterization and authentication of food products from animal origin using egg yolk as a model matrix. The approach consisted in a spectral deconvolution guided by the precision obtained on the deconvoluted peaks after reference lineshape adjustment of spectra. Thus, 135 peaks were quantitated and successfully used as biomarkers of origin, of hens breed, and of farming system. This required multivariate statistical analyses for classification. The same pool of variables allowed construction of multivariate quantitation models for individual fatty acids. Furthermore, minute amounts of conjugated fatty acids were quantitated and used as fingerprints of samples from backyard and free-range farming.
Collapse
Affiliation(s)
- Ghina Hajjar
- Laboratory of Metrology and Isotopic Fractionation, Research Unit: Technologies et Valorisation Agroalimentaire (TVA), Faculty of Science, Saint Joseph University of Beirut, P.O. Box 17-5208 Mar Mikhael, Beirut 1104 2020, Lebanon; Université de Nantes, CNRS, CEISAM, UMR 6230, F-44000 Nantes, France
| | - Lenny Haddad
- Laboratory of Metrology and Isotopic Fractionation, Research Unit: Technologies et Valorisation Agroalimentaire (TVA), Faculty of Science, Saint Joseph University of Beirut, P.O. Box 17-5208 Mar Mikhael, Beirut 1104 2020, Lebanon; Université de Nantes, CNRS, CEISAM, UMR 6230, F-44000 Nantes, France
| | - Toufic Rizk
- Laboratory of Metrology and Isotopic Fractionation, Research Unit: Technologies et Valorisation Agroalimentaire (TVA), Faculty of Science, Saint Joseph University of Beirut, P.O. Box 17-5208 Mar Mikhael, Beirut 1104 2020, Lebanon
| | - Serge Akoka
- Université de Nantes, CNRS, CEISAM, UMR 6230, F-44000 Nantes, France
| | - Joseph Bejjani
- Laboratory of Metrology and Isotopic Fractionation, Research Unit: Technologies et Valorisation Agroalimentaire (TVA), Faculty of Science, Saint Joseph University of Beirut, P.O. Box 17-5208 Mar Mikhael, Beirut 1104 2020, Lebanon.
| |
Collapse
|
26
|
Beatty A, Singh T, Tyurina YY, Tyurin VA, Samovich S, Nicolas E, Maslar K, Zhou Y, Cai KQ, Tan Y, Doll S, Conrad M, Subramanian A, Bayır H, Kagan VE, Rennefahrt U, Peterson JR. Ferroptotic cell death triggered by conjugated linolenic acids is mediated by ACSL1. Nat Commun 2021; 12:2244. [PMID: 33854057 PMCID: PMC8046803 DOI: 10.1038/s41467-021-22471-y] [Citation(s) in RCA: 119] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 03/11/2021] [Indexed: 12/21/2022] Open
Abstract
Ferroptosis is associated with lipid hydroperoxides generated by the oxidation of polyunsaturated acyl chains. Lipid hydroperoxides are reduced by glutathione peroxidase 4 (GPX4) and GPX4 inhibitors induce ferroptosis. However, the therapeutic potential of triggering ferroptosis in cancer cells with polyunsaturated fatty acids is unknown. Here, we identify conjugated linoleates including α-eleostearic acid (αESA) as ferroptosis inducers. αESA does not alter GPX4 activity but is incorporated into cellular lipids and promotes lipid peroxidation and cell death in diverse cancer cell types. αESA-triggered death is mediated by acyl-CoA synthetase long-chain isoform 1, which promotes αESA incorporation into neutral lipids including triacylglycerols. Interfering with triacylglycerol biosynthesis suppresses ferroptosis triggered by αESA but not by GPX4 inhibition. Oral administration of tung oil, naturally rich in αESA, to mice limits tumor growth and metastasis with transcriptional changes consistent with ferroptosis. Overall, these findings illuminate a potential approach to ferroptosis, complementary to GPX4 inhibition.
Collapse
Affiliation(s)
| | - Tanu Singh
- Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Yulia Y Tyurina
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Vladimir A Tyurin
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Svetlana Samovich
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Kristen Maslar
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Yan Zhou
- Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Kathy Q Cai
- Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Yinfei Tan
- Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Sebastian Doll
- Institute of Metabolism and Cell Death, Helmholtz Zentrum München, Neuherberg, Germany
| | - Marcus Conrad
- Institute of Metabolism and Cell Death, Helmholtz Zentrum München, Neuherberg, Germany
- National Research Medical University, Laboratory of Experimental Oncology, Ostrovityanova 1, Moscow, 117997, Russia
| | | | - Hülya Bayır
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Valerian E Kagan
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, PA, USA
- Laboratory of Navigational Redox Lipidomics, IM Sechenov Moscow State Medical University, Moscow, Russia
| | | | | |
Collapse
|
27
|
Baker EJ, Miles EA, Calder PC. A review of the functional effects of pine nut oil, pinolenic acid and its derivative eicosatrienoic acid and their potential health benefits. Prog Lipid Res 2021; 82:101097. [PMID: 33831456 DOI: 10.1016/j.plipres.2021.101097] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 04/02/2021] [Accepted: 04/02/2021] [Indexed: 12/26/2022]
Abstract
Pine nut oil (PNO) is rich in a variety of unusual delta-5-non-methylene-interrupted fatty acids (NMIFAs), including pinolenic acid (PLA; all cis-5,-9,-12 18:3) which typically comprises 14 to 19% of total fatty acids. PLA has been shown to be metabolised to eicosatrienoic acid (ETA; all cis-7,-11,-14 20:3) in various cells and tissues. Here we review the literature on PNO, PLA and its metabolite ETA in the context of human health applications. PNO and PLA have a range of favourable effects on body weight as well as fat deposition through increased energy expenditure (fatty acid oxidation) and decreased food energy intake (reduced appetite). PNO and PLA improve blood and hepatic lipids in animal models and insulin sensitivity in vitro and reduce inflammation and modulate immune function in vitro and in animal models. The few studies which have examined effects of ETA indicate it has anti-inflammatory properties. Another NMIFA from PNO, sciadonic acid (all cis-5,-11,-14 20:3), has generally similar properties to PLA where these have been investigated. There is potential for human health benefits from PNO, its constituent NMIFA PLA and the PLA derivative ETA. However further studies are needed to explore the effects in humans.
Collapse
Affiliation(s)
- Ella J Baker
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.
| | - Elizabeth A Miles
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Philip C Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom; NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, United Kingdom
| |
Collapse
|
28
|
Kung WM, Lin MS. Beneficial Impacts of Alpha-Eleostearic Acid from Wild Bitter Melon and Curcumin on Promotion of CDGSH Iron-Sulfur Domain 2: Therapeutic Roles in CNS Injuries and Diseases. Int J Mol Sci 2021; 22:ijms22073289. [PMID: 33804820 PMCID: PMC8037269 DOI: 10.3390/ijms22073289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 03/20/2021] [Accepted: 03/21/2021] [Indexed: 02/05/2023] Open
Abstract
Neuroinflammation and abnormal mitochondrial function are related to the cause of aging, neurodegeneration, and neurotrauma. The activation of nuclear factor κB (NF-κB), exaggerating these two pathologies, underlies the pathogenesis for the aforementioned injuries and diseases in the central nervous system (CNS). CDGSH iron-sulfur domain 2 (CISD2) belongs to the human NEET protein family with the [2Fe-2S] cluster. CISD2 has been verified as an NFκB antagonist through the association with peroxisome proliferator-activated receptor-β (PPAR-β). This protective protein can be attenuated under circumstances of CNS injuries and diseases, thereby causing NFκB activation and exaggerating NFκB-provoked neuroinflammation and abnormal mitochondrial function. Consequently, CISD2-elevating plans of action provide pathways in the management of various disease categories. Various bioactive molecules derived from plants exert protective anti-oxidative and anti-inflammatory effects and serve as natural antioxidants, such as conjugated fatty acids and phenolic compounds. Herein, we have summarized pharmacological characters of the two phytochemicals, namely, alpha-eleostearic acid (α-ESA), an isomer of conjugated linolenic acids derived from wild bitter melon (Momordica charantia L. var. abbreviata Ser.), and curcumin, a polyphenol derived from rhizomes of Curcuma longa L. In this review, the unique function of the CISD2-elevating effect of α-ESA and curcumin are particularly emphasized, and these natural compounds are expected to serve as a potential therapeutic target for CNS injuries and diseases.
Collapse
Affiliation(s)
- Woon-Man Kung
- Department of Exercise and Health Promotion, College of Kinesiology and Health, Chinese Culture University, Taipei 11114, Taiwan;
| | - Muh-Shi Lin
- Division of Neurosurgery, Department of Surgery, Kuang Tien General Hospital, Taichung 43303, Taiwan
- Department of Biotechnology and Animal Science, College of Bioresources, National Ilan University, Yilan 26047, Taiwan
- Department of Biotechnology, College of Medical and Health Care, Hung Kuang University, Taichung 43302, Taiwan
- Department of Health Business Administration, College of Medical and Health Care, Hung Kuang University, Taichung 43302, Taiwan
- Correspondence: ; Tel.: +886-4-2665-1900
| |
Collapse
|
29
|
A Molecular Networking Strategy: High-Throughput Screening and Chemical Analysis of Brazilian Cerrado Plant Extracts against Cancer Cells. Cells 2021; 10:cells10030691. [PMID: 33804755 PMCID: PMC8004027 DOI: 10.3390/cells10030691] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 12/22/2022] Open
Abstract
Plants have historically been a rich source of successful anticancer drugs and chemotherapeutic agents, with research indicating that this trend will continue. In this contribution, we performed high-throughput cytotoxicity screening of 702 extracts from 95 plant species, representing 40 families of the Brazilian Cerrado biome. Activity was investigated against the following cancer cell lines: colon (Colo205 and Km12), renal (A498 and U031), liver (HEP3B and SKHEP), and osteosarcoma (MG63 and MG63.3). Dose-response tests were conducted with 44 of the most active extracts, with 22 demonstrating IC50 values ranging from <1.3 to 20 µg/mL. A molecular networking strategy was formulated using the Global Natural Product Social Molecular Networking (GNPS) platform to visualize, analyze, and annotate the compounds present in 17 extracts active against NCI-60 cell lines. Significant cytotoxic activity was found for Salacia crassifolia, Salacia elliptica, Simarouba versicolor, Diospyros hispida, Schinus terebinthifolia, Casearia sylvestris var. lingua, Magonia pubescens, and Rapanea guianensis. Molecular networking resulted in the annotation of 27 compounds. This strategy provided an initial overview of a complex and diverse natural product data set, yielded a large amount of chemical information, identified patterns and known compounds, and assisted in defining priorities for further studies.
Collapse
|
30
|
Wang X, Ha D, Mori H, Chen S. White button mushroom (Agaricus bisporus) disrupts androgen receptor signaling in human prostate cancer cells and patient-derived xenograft. J Nutr Biochem 2020; 89:108580. [PMID: 33388344 DOI: 10.1016/j.jnutbio.2020.108580] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 02/07/2023]
Abstract
White button mushroom (WBM) (Agaricus bisporus) is a potential prostate cancer (PCa) chemo-preventative and therapeutic agent. Our clinical phase І trial of WBM powder in patients with biochemically recurrent PCa indicated that WBM intake reduced the circulating levels of prostate-specific antigen (PSA). We hypothesized that WBM exerts its effects on PCa through the androgen receptor (AR) signaling axis. Therefore, we conducted a reverse translational study with androgen-dependent PCa cell lines (LNCaP and VCaP) and patient-derived-xenografts (PDX) from a prostate tumor (TM00298). In both LNCaP and VCaP cells, western blots and qRT-PCR assays indicated that WBM extract (6-30 mg/mL) suppressed DHT-induced PSA expression and cell proliferation in a dose-dependent manner. Immunofluorescence analysis of AR revealed that WBM extract interrupted the AR nuclear-cytoplasmic distribution. PSA promotor-luciferase assay suggested that WBM extract inhibited DHT-induced luciferase activity. RNA-Seq on WBM-treated LNCaP cells confirmed that WBM treatment suppressed the androgen response pathways and cell-cycle control pathways. Our PDX showed that oral intake of WBM extract (200 mg/kg/d) suppressed tumor growth and decreased PSA levels in both tumors and serum. In the present study, we also identified a conjugated linoleic acid isomer (CLA-9Z11E) as a strong AR antagonist by performing LanthaScreen TR-FRET AR Coactivator Interaction Assays. The inhibitory effect of CLA-9Z11E (IC50: 350 nM) was nearly two times stronger than the known AR antagonist, cyproterone acetate (IC50: 672 nM). The information gained from this study improves the overall understanding of how WBM may contribute to the prevention and treatment of PCa.
Collapse
Affiliation(s)
- Xiaoqiang Wang
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Desiree Ha
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Hitomi Mori
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Shiuan Chen
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, CA, USA.
| |
Collapse
|
31
|
Ngo Njembe MT, Dormal E, Gardin C, Mignolet E, Debier C, Larondelle Y. Effect of the dietary combination of flaxseed and Ricinodendron heudelotii or Punica granatum seed oil on the fatty acid profile of eggs. Food Chem 2020; 344:128668. [PMID: 33267981 DOI: 10.1016/j.foodchem.2020.128668] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 10/08/2020] [Accepted: 11/14/2020] [Indexed: 01/07/2023]
Abstract
The health promoting omega-3, -7, and -5 fatty acids, α-linolenic acid (ALA), docosahexaenoic acid (DHA), rumenic acid (RmA), and α-eleostearic acid (α-ESA)/punicic acid (PunA), are not currently combined in frequently consumed food items. We have evaluated the impact of supplementing laying hens' feeds with flaxseeds combined with oil derived from seeds of either Ricinodendron heudelotii, an α-ESA source, or Punica granatum, a PunA source, on the egg fatty acid profile. The supplemented diets increased the egg content in ALA, DHA, RmA, as well as α-ESA or PunA. The combination of dietary lipids did not affect the conversion rate of ALA into DHA. Hens fed on R. heudelotii or P. granatum seed oil both accumulated RmA in egg yolk, indicating an efficient conversion from the α-ESA or PunA precursors through a Δ-13 reductase activity. The accumulation of PunA in eggs was largely higher than that of α-ESA.
Collapse
Affiliation(s)
- M T Ngo Njembe
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, 1348 Louvain-la-Neuve, Belgium.
| | - E Dormal
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, 1348 Louvain-la-Neuve, Belgium.
| | - C Gardin
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, 1348 Louvain-la-Neuve, Belgium.
| | - E Mignolet
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, 1348 Louvain-la-Neuve, Belgium.
| | - C Debier
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, 1348 Louvain-la-Neuve, Belgium.
| | - Y Larondelle
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, 1348 Louvain-la-Neuve, Belgium.
| |
Collapse
|
32
|
Zhang Y, Ke W, Bai J, Li F, Xu D, Ding Z, Guo X. The effect of Pediococcus acidilactici J17 with high-antioxidant activity on antioxidant, α‑tocopherol, β‑carotene, fatty acids, and fermentation profiles of alfalfa silage ensiled at two different dry matter contents. Anim Feed Sci Technol 2020. [DOI: 10.1016/j.anifeedsci.2020.114614] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
33
|
Gong M, Wei W, Hu Y, Jin Q, Wang X. Structure determination of conjugated linoleic and linolenic acids. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1153:122292. [PMID: 32755819 DOI: 10.1016/j.jchromb.2020.122292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/23/2020] [Accepted: 07/27/2020] [Indexed: 12/14/2022]
Abstract
Conjugated linoleic and linolenic acids (CLA and CLnA) can be found in dairy, ruminant meat and oilseeds, these types of unsaturated fatty acids consist of various positional and geometrical isomers, and have demonstrated health-promoting potential for human beings. Extensive reviews have reported the physiological effects of CLA, CLnA, while little is known regarding their isomer-specific effects. However, the isomers are difficult to identify, owing to (i) the similar retention time in common chromatographic methods; and (ii) the isomers are highly sensitive to high temperature, pH changes, and oxidation. The uncertainties in molecular structure have hindered investigations on the physiological effects of CLA and CLnA. Therefore, this review presents a summary of the currently available technologies for the structural determination of CLA and CLnA, including the presence confirmation, double bond position determination, and the potential stereo-isomer determination. Special focus has been projected to the novel techniques for structure determination of CLA and CLnA. Some possible future directions are also proposed.
Collapse
Affiliation(s)
- Mengyue Gong
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Wei Wei
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Yulin Hu
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, Ontario N6A 3K7, Canada
| | - Qingzhe Jin
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Xingguo Wang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
34
|
Oleochemistry potential from Brazil northeastern exotic plants. Biochimie 2020; 178:96-104. [PMID: 32941939 DOI: 10.1016/j.biochi.2020.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/08/2020] [Accepted: 09/08/2020] [Indexed: 11/24/2022]
Abstract
Caatinga is a Brazilian semi-arid ecosystem that stands out for presenting unique environmental characteristics with a dry, spiny and deciduous shrub/forest vegetation with several species that can be renewable oil sources with potential applicability in oleochemical and nutrition. Caatinga oilseeds have a high content of unsaturated fatty acids, phytosterols and sterols, and this composition is related to its nutritional potential. The present review summarizes the knowledge on the oil contents and fatty acid profiles of seeds from six representatives caatinga species. It was observed that plants species like Caju (Anacardium occidentale L.), Favela (Cnidoscolus quercifolius Pohl), Licuri (Syagrus coronata (Mart.) Becc.), Pinhão-bravo (Jatropha mollissima Pohl Baill), Pequi (Caryocar brasiliense Camb) and Oiticica (Licania rígida Benth) contains approximately 33.1, 33.5, 49.2, 18.3, 70.16 and 57.0% w/w of oil, respectively, on a dry weight basis. Their fatty acid profiles are mostly saturated for Licuri oil, with a high content of lauric acid (up to 40%) and unsaturated for Favela, Pinhão-bravo, Cashew nut, Pequi and Oiticica oils. Oiticica oil shows a high concentration of unusual conjugated polyunsaturated fatty acids, like α-Eleostearic and Licanic acid with 16.90 and 43.20% w/w, respectively.
Collapse
|
35
|
Cancer diets for cancer patients: Lessons from mouse studies and new insights from the study of fatty acid metabolism in tumors. Biochimie 2020; 178:56-68. [PMID: 32890677 DOI: 10.1016/j.biochi.2020.08.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/29/2020] [Accepted: 08/30/2020] [Indexed: 12/15/2022]
Abstract
Specific diets for cancer patients have the potential to offer an adjuvant modality to conventional anticancer therapy. If the concept of starving cancer cells from nutrients to inhibit tumor growth is quite simple, the translation into the clinics is not straightforward. Several diets have been described including the Calorie-restricted diet based on a reduction in carbohydrate intake and the Ketogenic diet wherein the low carbohydrate content is compensated by a high fat intake. As for other diets that deviate from normal composition only by one or two amino acids, these diets most often revealed a reduction in tumor growth in mice, in particular when associated with chemo- or radiotherapy. By contrast, in cancer patients, the interest of these diets is almost exclusively supported by case reports precluding any conclusions on their real capacity to influence disease outcome. In parallel, the field of tumor lipid metabolism has emerged in the last decade offering a better understanding of how fatty acids are captured, synthesized or stored as lipid droplets in cancers. Fatty acids participate to cancer cell survival in the hypoxic and acidic tumor microenvironment and also support proliferation and invasiveness. Interestingly, while such addiction for fatty acids may account for cancer progression associated with high fat diet, it could also represent an Achilles heel for tumors. In particular n-3 polyunsaturated fatty acids represent a class of lipids that can exert potent cytotoxic effects in tumors and therefore represent an attractive diet supplementation to improve cancer patient outcomes.
Collapse
|
36
|
Barrea L, Gallo M, Ruggeri RM, Giacinto PD, Sesti F, Prinzi N, Adinolfi V, Barucca V, Renzelli V, Muscogiuri G, Colao A, Baldelli R. Nutritional status and follicular-derived thyroid cancer: An update. Crit Rev Food Sci Nutr 2020; 61:25-59. [PMID: 31997660 DOI: 10.1080/10408398.2020.1714542] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The incidence of differentiated thyroid cancer has been increasing in the last decades all over the world. Such a steady growth cannot be entirely attributable to more intensive thyroid nodule screening and more sensitive diagnostic procedures. Several environmental factors have changed with sufficient rapidity in the same time frame and may represent credible candidates for this increase. They include modified iodine intake, lifestyle-associated risk factors, exposure to various toxic compounds, pollutants and xenobiotics, nutritional deficiencies, eating habits and comorbidities. Foremost, nutritional patterns have gained high interest as possible promoters and modifiable risk factors for thyroid cancer in recent years. The aim of this narrative review is to focus on the relationship between thyroid cancer and nutritional factors, dietary habits and obesity. Low iodine intake has been associated to increased risk of thyroid cancer, favoring the development of more aggressive histotypes. Moreover, correction of iodine deficiency can shift thyroid cancer subtypes toward less aggressive forms, without affecting the overall risk for cancer. Actually, evidence regarding the association between selenium and vitamin D deficiency and thyroid cancer is very limited, despite their well-known anti-cancer potentials, and the clinical usefulness of their supplementation is still uncertain in this setting. Albeit the relationship between single foods and thyroid cancer is difficult to examine, fish and iodine-rich foods, vegetables, and fruits might exert protective effects on thyroid cancer risk. Conversely, no clear association has been found for other foods to date. Lastly, a clear association between obesity and the risk of thyroid cancer, with more aggressive behavior, seems to emerge from most studies, likely involving variations in thyroid function and chronic inflammation mediated by cytokines, insulin, leptin and adiponectins. Although no definite association between dietary factors and thyroid cancer has been firmly established so far, some nutritional patterns, together with excessive weight, seem to play a relevant role in thyroid cancer carcinogenesis as well as in its severity and aggressiveness. These effects may play an additive role to the well-established one exerted by environmental carcinogens, such as pollutants and radiation exposure.
Collapse
Affiliation(s)
- Luigi Barrea
- Unit of Endocrinology, Dipartimento di Medicina Clinica e Chirurgia, Federico II University Medical School of Naples, Naples, Italy
| | - Marco Gallo
- Oncological Endocrinology Unit, Department of Medical Sciences, University of Turin, AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - Rosaria Maddalena Ruggeri
- Unit of Endocrinology, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Paola Di Giacinto
- Endocrinology Unit, Department of Oncology and Medical Specialities, A.O. San Camillo-Forlanini, Rome, Italy
| | - Franz Sesti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Natalie Prinzi
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale Tumori Milano, ENETS Center of Excellence, Milan, Italy
| | - Valerio Adinolfi
- Endocrinology and Diabetology Unit, ASL Verbano Cusio Ossola, Domodossola, Italy
| | - Viola Barucca
- Digestive and Liver Disease Unit, S. Andrea Hospital, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - Valerio Renzelli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Giovanna Muscogiuri
- Unit of Endocrinology, Dipartimento di Medicina Clinica e Chirurgia, Federico II University Medical School of Naples, Naples, Italy
| | - Annamaria Colao
- Unit of Endocrinology, Dipartimento di Medicina Clinica e Chirurgia, Federico II University Medical School of Naples, Naples, Italy
| | - Roberto Baldelli
- Endocrinology Unit, Department of Oncology and Medical Specialities, A.O. San Camillo-Forlanini, Rome, Italy
| | | |
Collapse
|