1
|
Elattar MM, Hammoda HM, Ghareeb DA, Abdulmalek SA, Abdelrahim FA, Seif IAK, Dawood HM, Darwish RS. Insights into bioactive constituents of onion (Allium cepa L.) waste: a comparative metabolomics study enhanced by chemometric tools. BMC Complement Med Ther 2024; 24:271. [PMID: 39010091 PMCID: PMC11250982 DOI: 10.1186/s12906-024-04559-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 06/20/2024] [Indexed: 07/17/2024] Open
Abstract
BACKGROUND Onion waste was reported to be a valuable source of bioactive constituents with potential health-promoting benefits. This sparked a surge of interest among scientists for its valorization. This study aims to investigate the chemical profiles of peel and root extracts of four onion cultivars (red, copper-yellow, golden yellow and white onions) and evaluate their erectogenic and anti-inflammatory potentials. METHODS UPLC-QqQ-MS/MS analysis and chemometric tools were utilized to determine the chemical profiles of onion peel and root extracts. The erectogenic potential of the extracts was evaluated using the PDE-5 inhibitory assay, while their anti-inflammatory activity was determined by identifying their downregulating effect on the gene expression of IL-6, IL-1β, IFN-γ, and TNF-α in LPS-stimulated WBCs. RESULTS A total of 103 metabolites of diverse chemical classes were identified, with the most abundant being flavonoids. The organ's influence on the chemical profiles of the samples outweighed the influence of the cultivar, as evidenced by the close clustering of samples from the same organ compared to the distinct separation of root and peel samples from the same cultivar. Furthermore, the tested extracts demonstrated promising PDE-5 and anti-inflammatory potentials and effectively suppressed the upregulation of pro-inflammatory markers in LPS-stimulated WBCs. The anti-inflammatory activities exerted by peel samples surpassed those of root samples, highlighting the importance of selecting the appropriate organ to maximize activity. The main metabolites correlated with PDE-5 inhibition were cyanidin 3-O-(malonyl-acetyl)-glucoside and quercetin dimer hexoside, while those correlated with IL-1β inhibition were γ-glutamyl-methionine sulfoxide, γ-glutamyl glutamine, sativanone, and stearic acid. Taxifolin, 3'-hydroxymelanettin, and oleic acid were highly correlated with IL-6 downregulation, while quercetin 4'-O-glucoside, isorhamnetin 4'-O-glucoside, and p-coumaroyl glycolic acid showed the highest correlation to IFN-γ and TNF-α inhibition. CONCLUSION This study provides a fresh perspective on onion waste as a valuable source of bioactive constituents that could serve as the cornerstone for developing new, effective anti-PDE-5 and anti-inflammatory drug candidates.
Collapse
Affiliation(s)
- Mariam M Elattar
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Hala M Hammoda
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Doaa A Ghareeb
- Bio-screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
- Center of Excellence for Drug Preclinical Studies (CE-DPS), Pharmaceutical and Fermentation Industry Development Center, City of Scientific Research & Technological Applications (SRTA- city), New Borg El Arab, Alexandria, Egypt
- Research Projects Unit, Pharos University, Alexandria, Egypt
| | - Shaymaa A Abdulmalek
- Bio-screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Fatma A Abdelrahim
- Bio-screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Inas A K Seif
- Bio-screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Hend M Dawood
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Reham S Darwish
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt.
| |
Collapse
|
2
|
Lu M, Pan J, Hu Y, Ding L, Li Y, Cui X, Zhang M, Zhang Z, Li C. Advances in the study of vascular related protective effect of garlic (Allium sativum) extract and compounds. J Nutr Biochem 2024; 124:109531. [PMID: 37984733 DOI: 10.1016/j.jnutbio.2023.109531] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/01/2023] [Accepted: 11/10/2023] [Indexed: 11/22/2023]
Abstract
Garlic (Allium sativum) is a functional food containing multiple bioactive compounds that find widespread applications in culinary and medicinal practices. It consists of multiple chemical components, including allicin and alliin. This article offers a comprehensive review of the protective effects of garlic extracts and their active constituents on the vascular system. In vitro and in vivo experiments have shown that garlic extracts and their active ingredients possess various bioactive properties. These substances demonstrate beneficial effects on blood vessels by demonstrating anti-inflammatory and antioxidant activities, inhibiting lipid accumulation and migration, preventing lipid peroxidation, promoting angiogenesis, reducing platelet aggregation, enhancing endothelial function, and inhibiting endothelial cell apoptosis. In clinical studies, garlic and its extracts have demonstrated their efficacy in managing vascular system diseases, including atherosclerosis, diabetes, and high cholesterol levels. In summary, these studies highlight the potential therapeutic roles and underlying mechanisms of garlic and its constituents in managing conditions like diabetes, atherosclerosis, ischemic diseases, and other vascular disorders.
Collapse
Affiliation(s)
- Mengkai Lu
- Innovation Research Institute of traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jinyuan Pan
- Innovation Research Institute of traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuanlong Hu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Liang Ding
- Innovation Research Institute of traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuan Li
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xinhai Cui
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Muxin Zhang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhiyuan Zhang
- Innovation Research Institute of traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chao Li
- Innovation Research Institute of traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
3
|
Wojaczyńska E, Wojaczyński J. Sulfoxides in medicine. Curr Opin Chem Biol 2023; 76:102340. [PMID: 37307682 DOI: 10.1016/j.cbpa.2023.102340] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 06/14/2023]
Abstract
In the review, current status of sulfoxides on the pharmaceutical market is discussed. In the first part of the article, natural sulfoxides will be described with a special focus on sulforaphane and amanitin, a mushroom toxin which has been developed as payload in antibody drug conjugates in the possible cancer treatment. Controversies associated with the medical use of dimethylsulfoxide are briefly described in the next section. In the part devoted to PPIs, the benefits of using pure enantiomers (chiral switch) are discussed. An interesting approach, repositioning of drugs is exemplified by new possible applications of modafinil and sulindac. The review is concluded by presentation of cenicriviroc and adezmapimod, both with the status of promising drug candidates.
Collapse
Affiliation(s)
- Elżbieta Wojaczyńska
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50 370, Wrocław, Poland.
| | - Jacek Wojaczyński
- Faculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie St., 50 383, Wrocław, Poland
| |
Collapse
|
4
|
Štefanová I, Bittnerová P, Zápal J, Kuzma M, Kubec R. Organosulfur Compounds of Allium Subgenus Nectaroscordum Species. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:5712-5720. [PMID: 37010146 DOI: 10.1021/acs.jafc.3c00317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Organosulfur compounds formed upon comminuting the bulbs of two Allium subgenus Nectaroscordum species (Allium siculum and Allium tripedale) were analyzed by HPLC-PDA-MS/MS. The major organosulfur components were isolated and structurally characterized (MS, NMR), including several previously unknown compounds. It was found that the organosulfur chemistry occurring when these plants are cut is very similar to that observed in onion (Allium cepa). In all cases, however, the organosulfur compounds found in Nectaroscordum species were higher homologues of those observed in onion, being formed by various combinations of C1 and C4 building blocks derived from methiin and homoisoalliin/butiin, respectively. Thiosulfinates, bis-sulfine, cepaenes, and several cepaene-like compounds were identified among the major organosulfur components present in the homogenized bulbs. Several groups of 3,4-diethylthiolane-based compounds, structurally homologous with onionin A, cepathiolane A, allithiolanes A-H, and cepadithiolactone A, found in onion, were also detected.
Collapse
Affiliation(s)
- Iveta Štefanová
- Department of Applied Chemistry, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Petra Bittnerová
- Department of Applied Chemistry, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Jakub Zápal
- Laboratory of Molecular Structure Characterization, Institute of Microbiology, The Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Marek Kuzma
- Laboratory of Molecular Structure Characterization, Institute of Microbiology, The Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Roman Kubec
- Department of Applied Chemistry, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic
| |
Collapse
|
5
|
Wang C, Zhang B, Li Y, Hou J, Fu C, Wang Z, Zhang J. Integrated transcriptomic and volatilomic profiles to explore the potential mechanism of aroma formation in Toona sinensis. Food Res Int 2023; 165:112452. [PMID: 36869447 DOI: 10.1016/j.foodres.2022.112452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/30/2022] [Accepted: 12/31/2022] [Indexed: 01/05/2023]
Abstract
As an important quality determinant of Toona sinensis, the unique aroma largely impacts the purchasing behavior of consumers. However, the underlying formation mechanism of the characteristic aroma of T. sinensis remains poorly understood. In this work, integrative volatile/nonvolatile compounds profiling and RNA sequencing were used to characterize six T. sinensis cultivars. Volatile sulfur compounds (VSCs) and terpenoids were the main volatile organic compounds (VOCs) in T. sinensis, accounting for 36.95-67.27% and 17.75-31.36% of the total VOC content, respectively. Notably, the VOCs originated from terpenoid biosynthesis, and the degradation of unsaturated fatty acids (UFAs) played important roles in reconciling the irritating odor of VSCs. The above differential metabolic profiles are the main sources of the specific aroma of different T. sinensis cultivars. Furthermore, 13 volatile organic compounds were identified as potential biomarkers to distinguish these T. sinensis cultivars by chemometric analysis. Based on the analysis of transcriptomic datasets, the potential biosynthetic pathways of the key VSCs were firstly confirmed in T. sinensis. It was found that 1-propenylsulfenic acid is a crucial precursor in the formation of characteristic VSCs in T. sinensis. Additionally, two potential mechanisms were proposed to explain the differences of the key VSCs among six T. sinensis cultivars. These results provide theoretical guidance for improving the aroma quality of T. sinensis.
Collapse
Affiliation(s)
- Cheng Wang
- Department of Forestry Engineering, College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Beibei Zhang
- Department of Forestry Engineering, College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanfang Li
- Department of Forestry Engineering, College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jing Hou
- Department of Forestry Engineering, College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chendan Fu
- Department of Forestry Engineering, College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zihui Wang
- Department of Forestry Engineering, College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jingfang Zhang
- Department of Forestry Engineering, College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
6
|
Hill CR, Shafaei A, Balmer L, Lewis JR, Hodgson JM, Millar AH, Blekkenhorst LC. Sulfur compounds: From plants to humans and their role in chronic disease prevention. Crit Rev Food Sci Nutr 2022; 63:8616-8638. [PMID: 35380479 DOI: 10.1080/10408398.2022.2057915] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Sulfur is essential for the health of plants and is an indispensable dietary component for human health and disease prevention. Its incorporation into our food supply is heavily reliant upon the uptake of sulfur into plant tissue and our subsequent intake. Dietary requirements for sulfur are largely calculated based upon requirements for the sulfur-containing amino acids (SAA), cysteine and methionine, to meet the demands for synthesis of proteins, enzymes, co-enzymes, vitamins, and hormones. SAA are found in abundance in animal sources and are relatively low in plants. However, some plants, particularly cruciferous and allium vegetables, produce many protective sulfur-containing secondary metabolites, such as glucosinolates and cysteine sulfoxides. The variety and quantity of these sulfur-containing metabolites are extensive and their effects on human health are wide-reaching. Many benefits appear to be related to sulfur's role in redox biochemistry, protecting against uncontrolled oxidative stress and inflammation; features consistent within cardiometabolic dysfunction and many chronic metabolic diseases of aging. This narrative explores the origins and importance of sulfur, its incorporation into our food supply and dietary sources. It also explores the overarching potential of sulfur for human health, particularly around the amelioration of oxidative stress and chronic inflammation, and subsequent chronic disease prevention.
Collapse
Affiliation(s)
- Caroline R Hill
- Nutrition & Health Innovation Research Institute, School of Medical and Health Science, Edith Cowan University, Perth, Australia
- Royal Perth Hospital Research Foundation, Perth, Australia
| | - Armaghan Shafaei
- Centre for Integrative Metabolomics and Computational Biology, School of Science, Edith Cowan University, Joondalup, Australia
| | - Lois Balmer
- Centre for Precision Health, School of Medical and Health Science, Edith Cowan University, Perth, Australia
- Centre for Diabetes Research, Harry Perkins Institute of Medical Research, The University of Western Australia, Nedlands, Australia
| | - Joshua R Lewis
- Nutrition & Health Innovation Research Institute, School of Medical and Health Science, Edith Cowan University, Perth, Australia
- Royal Perth Hospital Research Foundation, Perth, Australia
- Medical School, The University of Western Australia, Nedlands, Australia
- Centre for Kidney Research, Children's Hospital at Westmead School of Public Health, Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Jonathan M Hodgson
- Nutrition & Health Innovation Research Institute, School of Medical and Health Science, Edith Cowan University, Perth, Australia
- Royal Perth Hospital Research Foundation, Perth, Australia
- Medical School, The University of Western Australia, Nedlands, Australia
| | - A Harvey Millar
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Australia
| | - Lauren C Blekkenhorst
- Nutrition & Health Innovation Research Institute, School of Medical and Health Science, Edith Cowan University, Perth, Australia
- Royal Perth Hospital Research Foundation, Perth, Australia
- Medical School, The University of Western Australia, Nedlands, Australia
| |
Collapse
|
7
|
Lu Y, Zhang M, Huang D. Dietary Organosulfur-Containing Compounds and Their Health-Promotion Mechanisms. Annu Rev Food Sci Technol 2022; 13:287-313. [DOI: 10.1146/annurev-food-052720-010127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Dietary organosulfur-containing compounds (DOSCs) in fruits, vegetables, and edible mushrooms may hold the key to the health-promotion benefits of these foods. Yet their action mechanisms are not clear, partially due to their high reactivity, which leads to the formation of complex compounds during postharvest processing. Among postharvest processing methods, thermal treatment is the most common way to process these edible plants rich in DOSCs, which undergo complex degradation pathways with the generation of numerous derivatives over a short time. At low temperatures, DOSCs are biotransformed slowly during fermentation to different metabolites (e.g., thiols, sulfides, peptides), whose distinctive biological activity remains largely unexplored. In this review, we discuss the bioavailability of DOSCs in human digestion before illustrating their potential mechanisms for health promotion related to cardiovascular health, cancer chemoprevention, and anti-inflammatory and antimicrobial activities. In particular, it is interesting that different DOSCs react with glutathione or cysteine, leading to the slow release of hydrogen sulfide (H2S), which has broad bioactivity in chronic disease prevention. In addition, DOSCs may interact with protein thiol groups of different protein targets of importance related to inflammation and phase II enzyme upregulation, among other action pathways critical for health promotion. Expected final online publication date for the Annual Review of Food Science and Technology, Volume 13 is March 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Yuyun Lu
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, Singapore
| | - Molan Zhang
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, Singapore
| | - Dejian Huang
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, Singapore
- National University of Singapore (Suzhou) Research Institute, Jiangsu, China
| |
Collapse
|
8
|
Zhao R, Zou H, Zhao R, Li N, Zheng Z, Qiao X. Effect of amino acids on formation of pigment precursors in garlic discoloration using UPLC–ESI-Q-TOF-MS analysis. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2021.104231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Nohara T, Fujiwara Y, El-Aasr M, Ikeda T, Ono M, Nakano D, Kinjo J. Thiolane-type sulfides from garlic, onion, and Welsh onion. J Nat Med 2021; 75:741-751. [PMID: 34081271 PMCID: PMC8397685 DOI: 10.1007/s11418-021-01533-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/15/2021] [Indexed: 11/01/2022]
Abstract
In this paper, we review our work in the last 10 years wherein we examined the sulfides in the acetone extracts of garlic (Allium sativum), onion (A. cepa), and Welsh onion (A. fistulosum), obtained and characterized the structures of new sulfides, three 3,4-dimethylthiolane-type sulfides from onion and Welsh onion, respectively, and four acyclic-type, nine 3,4-dimethyl- thiolane-type, four 2-methylthiolane (and thiane)-type, two 1,2-dithiolane-type, and two 2-oxothiolane-type sulfides, together with (E)-ajoene and one kujounin-type sulfide from garlic. During this process, structural corrections were made in onionin A group, garlicnin A, and garlicnin B group in some 3,4-dimethylthiolane-type sulfides. Next, hypothetical pathways for the production of the aforementioned sulfides were proposed. Furthermore, it was revealed that a typical 3,4-dimethylthiolane-type sulfide, onionin A1 obtained from onion, having the isomeric structure of garlicnin B1 obtained from garlic, decreased tumor proliferation and controlled tumor metastasis. These results showed that onionin A1 is an effective agent for controlling tumors, and that the antitumor effects observed in vivo are likely caused by reversing the antitumor immune system. Activation of the antitumor immune system by onionin A1 might be an effective adjuvant therapy for patients with osteosarcoma, ovarian cancer and other malignant tumors.
Collapse
Affiliation(s)
- Toshihiro Nohara
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1, Ikeda, Nishi-ku, Kumamoto, 860-0082, Japan.
| | - Yukio Fujiwara
- Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Mona El-Aasr
- Faculty of Pharmacy, Tanta University, Tanta, 31111, Egypt
| | - Tsuyoshi Ikeda
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1, Ikeda, Nishi-ku, Kumamoto, 860-0082, Japan
| | - Masateru Ono
- School of Agriculture, Tokai University, 9-1-1, Toroku, Higashi-ku, Kumamoto, 862-8652, Japan
| | - Daisuke Nakano
- Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - Junei Kinjo
- Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| |
Collapse
|
10
|
Rodrigues L, Tilve SG, Majik MS. Synthetic access to thiolane-based therapeutics and biological activity studies. Eur J Med Chem 2021; 224:113659. [PMID: 34237621 DOI: 10.1016/j.ejmech.2021.113659] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/26/2022]
Abstract
Secondary metabolites isolated from bioactive extracts of natural sources iteratively pioneer the research in drug discovery. Modern medicine is often inspired by bioactive natural products or the bio-functional motifs embedded in them. One of such consequential bio-functional motifs is the thiolane unit. Thiolane-based bioactive organic compounds have manifested a plethora of astonishing biological activities such as anti-viral, anti-cancer, anti-platelet, α-glucosidase inhibition, anti-HIV, immunosuppressive and anti-microbial activities which renders them excellent candidates in drug discovery. Hence, to scale up the accessibility of thiolane-based therapeutics its chemical syntheses is essential and in addition; a sneak peek in its biosynthesis would give a perspective for developing biomimetic syntheses. This review highlights the development of important thiolane-based therapeutics such as (i) Nuphar sesquiterpene thioalkaloids (ii) Thiosugar sulphonium salts from Salacia sp. (iii) Albomycins (iv) Thiolane-based therapeutics from Allium sp. (v) 4'-thionucleosides summarizing various synthetic strategies, biosynthesis and biological activity studies, covering literature till 2021. We anticipate that this review will inspire chemists and biochemists to take up the challenges encountered in the synthesis and development of thiolane-based therapeutics.
Collapse
Affiliation(s)
- Lima Rodrigues
- School of Chemical Sciences, Goa University, Taleigao Plateau, Goa, 403 206, India
| | - Santosh G Tilve
- School of Chemical Sciences, Goa University, Taleigao Plateau, Goa, 403 206, India
| | - Mahesh S Majik
- Department of Chemistry, Government College of Arts, Science and Commerce, Khandola Marcela, Goa, 403 107, India; Directorate of Higher Education, Porvorim, Goa 403 521, India.
| |
Collapse
|
11
|
Aoyagi M, Imai S, Kamoi T. Novel bisthiolane polysulfides from lachrymatory factor synthase-suppressed onion and their in vitro cyclooxygenase-1 inhibitory activity. Food Chem 2020; 344:128636. [PMID: 33223294 DOI: 10.1016/j.foodchem.2020.128636] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 11/10/2020] [Accepted: 11/10/2020] [Indexed: 11/28/2022]
Abstract
Two novel bisthiolane polysulfides (compounds 1 and 2), trivially named thiolanotrisulfide and thiolanotetrasulfide, were isolated from a reaction model of tearless onion (in which lachrymatory factor synthase is suppressed), and the presence of another novel bisthiolane polysulfide (3), trivially named thiolanopentasulfide, was confirmed. On the basis of spectroscopic and mass spectrometric analyses, it was found that these bisthiolane polysulfides were bis(5-hydroxy-3,4-dimethylthiolan-2-yl)-tri/tetra/pentasulfide with the general formulas of C12H22O2S5 (tri-), C12H22O2S6 (tetra-) and C12H22O2S7 (penta-), and they were confirmed to exist in authentic tearless onion juice. Thiolanotrisulfide (1) and thiolanotetrasulfide (2) inhibited cyclooxygenase-1 activity with IC50 values of 720 ± 78 and 464 ± 48 μM respectively, compared with 3282 ± 188 μM for aspirin.
Collapse
Affiliation(s)
- Morihiro Aoyagi
- Research & Development Headquarters, House Foods Group Inc., Yotsukaido, Japan.
| | - Shinsuke Imai
- Research & Development Headquarters, House Foods Group Inc., Yotsukaido, Japan
| | - Takahiro Kamoi
- Research & Development Headquarters, House Foods Group Inc., Yotsukaido, Japan
| |
Collapse
|