1
|
Gao W, Dong Q, Wu X, Wang Y, Li J, Zhang Q, Lu F, Liu F. Bifunctional Inhibitor Lentinan Inhibits Fibrillogenesis of Amyloid-β Protein and α-Synuclein and Alleviates Their Cytotoxicity: In Vitro and In Vivo Studies. ACS Chem Neurosci 2024; 15:3437-3448. [PMID: 39264814 DOI: 10.1021/acschemneuro.4c00164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024] Open
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) are the two most common neurodegenerative diseases in the world. Misfolding of β-amyloid (Aβ) and α-synuclein (α-syn) and subsequent fibril formation are closely associated with the pathogenesis of AD and PD, respectively. Lentinan is a natural product commonly used in medicine and dietary supplements. It has potential antitumor, anti-inflammatory, and antiviral effects, but the underlying mechanism of its action on AD and PD remains unclear. In this study, lentinan inhibited the formation of Aβ and α-syn fibers in a dose-dependent manner and disrupted their mature fibers. Lentinan inhibited the conversion of Aβ and α-syn conformations to β-sheet-rich conformations. Additionally, lentinan protected Caenorhabditis elegans against damage caused by the accumulation of Aβ and α-syn aggregation and prolonged their lifespan. Notably, the beneficial effects of lentinan in AD and PD mice were also demonstrated, including ameliorating the cognitive and memory impairments in AD mice and behavioral deficits in PD mice. Finally, molecular interactions between lentinan and Aβ/α-syn pentamers were also explored using molecular docking.
Collapse
Affiliation(s)
- Wen Gao
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, P. R. China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, P. R. China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Qinchen Dong
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, P. R. China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, P. R. China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Xinni Wu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, P. R. China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, P. R. China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Yang Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, P. R. China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, P. R. China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Jinbi Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, P. R. China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, P. R. China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Qingfu Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, P. R. China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, P. R. China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, P. R. China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, P. R. China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Fufeng Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, P. R. China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, P. R. China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| |
Collapse
|
2
|
Zhang S, Xiang H, Tao Y, Li J, Zeng S, Xu Q, Xiao H, Lv S, Song C, Cheng Y, Li M, Zhu Z, Zhang S, Sun B, Li D, Xiang S, Tan L, Liu C. Inhibitor Development for α-Synuclein Fibril's Disordered Region to Alleviate Parkinson's Disease Pathology. J Am Chem Soc 2024. [PMID: 39327912 DOI: 10.1021/jacs.4c08869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
The amyloid fibrils of α-synuclein (α-syn) are crucial in the pathology of Parkinson's disease (PD), with the intrinsically disordered region (IDR) of its C-terminal playing a key role in interacting with receptors like LAG3 and RAGE, facilitating pathological neuronal spread and inflammation. In this study, we identified Givinostat (GS) as an effective inhibitor that disrupts the interaction of α-syn fibrils with receptors such as LAG3 and RAGE through high-throughput screening. By exploring the structure-activity relationship and optimizing GS, we developed several lead compounds, including GSD-16-24. Utilizing solution-state and solid-state NMR, along with cryo-EM techniques, we demonstrated that GSD-16-24 binds directly to the C-terminal IDR of α-syn monomer and fibril, preventing the fibril from binding to the receptors. Furthermore, GSD-16-24 significantly inhibits the association of α-syn fibrils with membrane receptors, thereby reducing neuronal propagation and pro-inflammatory effects of α-syn fibrils. Our findings introduce a novel approach to mitigate the pathological effects of α-syn fibrils by targeting their IDR with small molecules, offering potential leads for the development of clinical drugs to treat PD.
Collapse
Affiliation(s)
- Shenqing Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 201203, China
| | - Huaijiang Xiang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Shijingshan District, Beijing 100049, China
| | - Youqi Tao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 201203, China
| | - Juan Li
- MOE Key Lab for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026 Anhui, China
| | - Shuyi Zeng
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 201203, China
| | - Qianhui Xu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Shijingshan District, Beijing 100049, China
| | - Haonan Xiao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 201203, China
| | - Shiran Lv
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Shijingshan District, Beijing 100049, China
| | - Caiwei Song
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Shijingshan District, Beijing 100049, China
| | - Yan Cheng
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Martin Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 201203, China
| | - Zeyun Zhu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Shengnan Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Bo Sun
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Dan Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 201203, China
| | - ShengQi Xiang
- MOE Key Lab for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026 Anhui, China
| | - Li Tan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
3
|
Rojas EM, Zhang H, Velu SE, Wu H. Tetracyclic homoisoflavanoid (+)-brazilin: a natural product inhibits c-di-AMP-producing enzyme and Streptococcus mutans biofilms. Microbiol Spectr 2024; 12:e0241823. [PMID: 38591917 PMCID: PMC11064632 DOI: 10.1128/spectrum.02418-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 03/02/2024] [Indexed: 04/10/2024] Open
Abstract
The tenacious biofilms formed by Streptococcus mutans are resistant to conventional antibiotics and current treatments. There is a growing need for novel therapeutics that selectively inhibit S. mutans biofilms while preserving the normal oral microenvironment. Previous studies have shown that increased levels of cyclic di-AMP, an important secondary messenger synthesized by diadenylate cyclase (DAC), favored biofilm formation in S. mutans. Thus, targeting S. mutans DAC is a novel strategy to inhibit S. mutans biofilms. We screened a small NCI library of natural products using a fluorescence detection assay. (+)-Brazilin, a tetracyclic homoisoflavanoid found in the heartwood of Caesalpinia sappan, was identified as one of the 11 "hits," with the greatest reduction (>99%) in fluorescence at 100 µM. The smDAC inhibitory profiles of the 11 "hits" established by a quantitative high-performance liquid chromatography assay revealed that (+)-brazilin had the most enzymatic inhibitory activity (87% at 100 µM) and was further studied to determine its half maximal inhibitory concentration (IC50 = 25.1 ± 0.98 µM). (+)-Brazilin non-competitively inhibits smDAC's enzymatic activity (Ki = 140.0 ± 27.13 µM), as determined by a steady-state Michaelis-Menten kinetics assay. In addition, (+)-brazilin's binding profile with smDAC (Kd = 11.87 µM) was illustrated by a tyrosine intrinsic fluorescence quenching assay. Furthermore, at low micromolar concentrations, (+)-brazilin selectively inhibited the biofilm of S. mutans (IC50 = 21.0 ± 0.60 µM) and other oral bacteria. S. mutans biofilms were inhibited by a factor of 105 in colony-forming units when treated with 50 µM (+)-brazilin. In addition, a significant dose-dependent reduction in extracellular DNA and glucan levels was evident by fluorescence microscopy imaging of S. mutans biofilms exposed to different concentrations of (+)-brazilin. Furthermore, colonization of S. mutans on a representative model of enamel using suspended hydroxyapatite discs showed a >90% reduction with 50 µM (+)-brazilin. In summary, we have identified a drug-like natural product inhibitor of S. mutans biofilm that not only binds to smDAC but can also inhibit the function of smDAC. (+)-Brazilin could be a good candidate for further development as a potent therapeutic for the prevention and treatment of dental caries.IMPORTANCEThis study represents a significant advancement in our understanding of potential therapeutic options for combating cariogenic biofilms produced by Streptococcus mutans. The research delves into the use of (+)-brazilin, a natural product, as a potent inhibitor of Streptococcus mutans' diadenylate cyclase (smDAC), an enzyme crucial in the formation of biofilms. The study establishes (+)-brazilin as a non-competitive inhibitor of smDAC while providing initial insights into its binding mechanism. What makes this finding even more promising is that (+)-brazilin does not limit its inhibitory effects to S. mutans alone. Instead, it demonstrates efficacy in hindering biofilms in other oral bacteria as well. The broader spectrum of anti-biofilm activity suggests that (+)-brazilin could potentially serve as a versatile tool in a natural product-based treatment for combating a range of conditions caused by resilient biofilms.
Collapse
Affiliation(s)
- Edwin M. Rojas
- School of Dentistry, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Hua Zhang
- Division of Biomaterial & Biomedical Sciences, School of Dentistry, Oregon Health & Science University, Portland, Oregon, USA
| | - Sadanandan E. Velu
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Hui Wu
- Division of Biomaterial & Biomedical Sciences, School of Dentistry, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
4
|
Wang Y, Liu W, Sun Y, Dong X. Transthyretin-Penetratin: A Potent Fusion Protein Inhibitor against Alzheimer's Amyloid-β Fibrillogenesis with High Blood Brain Barrier Crossing Capability. Bioconjug Chem 2024; 35:419-431. [PMID: 38450606 DOI: 10.1021/acs.bioconjchem.4c00073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
The design of a potent amyloid-β protein (Aβ) inhibitor plays a pivotal role in the prevention and treatment of Alzheimer's disease (AD). Despite endogenous transthyretin (TTR) being recognized as an Aβ inhibitor, the weak inhibitory and blood brain barrier (BBB) crossing capabilities hinder it for Aβ aggregation inhibition and transport. Therefore, we have herein designed a recombinant TTR by conjugating a cationic cell penetrating peptide (penetratin, Pen), which not only enabled the fusion protein, TTR-Pen (TP), to present high BBB penetration but also greatly enhanced the potency of Aβ inhibition. Namely, the protein fusion made TP positively charged, leading to a potent suppression of Aβ40 fibrillization at a low concentration (1.5 μM), while a TTR concentration as high as 12.5 μM was required to gain a similar function. Moreover, TP could mitigate Aβ-induced neuronal death, increase cultured cell viability from 72% to 92% at 2.5 μM, and extend the lifespan of AD nematodes from 14 to 18 d. Thermodynamic studies revealed that TP, enriched in positive charges, presented extensive electrostatic interactions with Aβ40. Importantly, TP showed excellent BBB penetration performance, with a 10 times higher BBB permeability than TTR, which would allow TP to enter the brain of AD patients and participate in the transport of Aβ species out of the brain. Thus, it is expected that the fusion protein has great potential for drug development in AD treatment.
Collapse
Affiliation(s)
- Ying Wang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Wei Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Yan Sun
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Xiaoyan Dong
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| |
Collapse
|
5
|
Peng C, Wei W, Zhang H, Wang Y, Chang B, Zhao W, Jia L, Li L, Lu F, Liu F. Heterologous expression and fibrillary characterization of the microtubule-binding domain of tau associated with tauopathies. Mol Biol Rep 2024; 51:184. [PMID: 38261107 DOI: 10.1007/s11033-024-09231-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024]
Abstract
BACKGROUND Neurofibrillary tangles (NFTs) are one of the most common pathological characteristics of Alzheimer's disease. The NFTs are mainly composed of hyperphosphorylated microtubule-associated tau. Thus, recombinant tau is urgently required for the study of its fibrillogenesis and its associated cytotoxicity. METHODS AND RESULTS Heterologous expression, purification, and fibrillation of the microtubule-binding domain (MBD) of tau (tauMBD) were performed. The tauMBD was heterologously expressed in E. coli. Ni-chelating affinity chromatography was then performed to purify the target protein. Thereafter, tauMBD was systematically identified using the SDS-PAGE, western blot and MALDI-TOF MS methods. The aggregation propensity of the tauMBD was explored by both the thioflavin T fluorescence and atomic force microscopy experiments. CONCLUSIONS The final yield of the recombinant tauMBD was ~ 20 mg L-1. It is shown that TauMBD, in the absence of an inducer, self-assembled into the typical fibrils at a faster rate than wild-type tau. Finally, the in vitro cytotoxicity of tauMBD aggregates was validated using PC12 cells. The heterologously expressed tau in this study can be further used in the investigation of the biophysical and cellular cytotoxic properties of tau.
Collapse
Affiliation(s)
- Chong Peng
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China
| | - Wei Wei
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China
| | - Huitu Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin, 300457, P. R. China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin, 300457, P. R. China
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China
| | - Ying Wang
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China
| | - Baogen Chang
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China
| | - Wenping Zhao
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China
| | - Longgang Jia
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China
| | - Li Li
- College of Marine and Environmental Sciences, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin, 300457, P. R. China.
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin, 300457, P. R. China.
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China.
| | - Fufeng Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin, 300457, P. R. China.
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin, 300457, P. R. China.
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China.
| |
Collapse
|
6
|
Jerom JP, Madhukumar S, Nair RH, Narayanan SP. Anti-amyloid potential of some phytochemicals against Aβ-peptide and α-synuclein, tau, prion, and Huntingtin protein. Drug Discov Today 2023; 28:103802. [PMID: 37858630 DOI: 10.1016/j.drudis.2023.103802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/04/2023] [Accepted: 10/12/2023] [Indexed: 10/21/2023]
Abstract
Some molecules self-assemble to create complex structures through molecular self-assembly. Hydrogel preparation, tissue repair, and therapeutic drug delivery are a few applications of molecular self-assembly. However, the self-assembly of amino acids, peptides, and proteins forms amyloid fibrils, resulting in various disorders, most notably neurodegenerative ailments. Examples include the self-assembly of phenylalanine, which causes phenylketonuria; Aβ, which causes Alzheimer's disease; the tau protein, which causes both Alzheimer's and Parkinson's diseases; and α-synuclein, which causes Parkinson's illness. This review provides information related to phytochemicals of great significance that can prevent the formation of, or destabilize, amino acid, peptide, and protein self-assemblies.
Collapse
Affiliation(s)
| | - Sooryalekshmi Madhukumar
- NMR Facility, Institute for Integrated Programmes and Research in Basic Sciences. Mahatma Gandhi University, Kottayam, Kerala 686560, India
| | | | - Sunilkumar Puthenpurackal Narayanan
- NMR Facility, Institute for Integrated Programmes and Research in Basic Sciences. Mahatma Gandhi University, Kottayam, Kerala 686560, India.
| |
Collapse
|
7
|
Khatooni Z, Akhtari K, Wilson HL. Conformational dynamics of α-synuclein and study of its intramolecular forces in the presence of selected compounds. Sci Rep 2023; 13:19020. [PMID: 37923923 PMCID: PMC10624887 DOI: 10.1038/s41598-023-46181-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/29/2023] [Indexed: 11/06/2023] Open
Abstract
Protein misfolding and aggregation play crucial roles in amyloidogenic diseases through the self-assembly of intrinsically disordered proteins (IDPs) in type II diabetes (T2D), Alzheimer's disease (AD) and Parkinson's disease (PD). PD is the most common neurodegenerative disorder after AD, and is associated with the loss of dopaminergic signaling, which causes motor and nonmotor signs and symptoms. Lewy bodies and Lewy neurites are common pathological hallmarks of PD that are mainly composed of aggregates of disordered α-synuclein (α-Syn). There have been many efforts to develop chemical compounds to prevent aggregation or facilitate disruption of the aggregates. Furthermore, the roles and interactions of many compounds have yet to be revealed at the atomistic level, especially their impacts on the dynamics and chain-chain interactions of the oligomers, which are of interest in this study. The conformational diversity and detailed interactions among homo-oligomer chains of α-Syn are not fully discovered; identifying these might help uncover a practical approach to developing a potent therapy. In this study, we used an in-silico investigation to address the conformational diversity of α-Syn oligomer. The roles of several point mutations in protein aggregation in PD are known; we take this further by evaluating the interaction energies and contributions of all residues in stability and residue-chain interactions. In this study, we docked chemical derivatives of three compounds with high drug-likeness properties to evaluate the roles of our ligands in the conformational dynamicity of the oligomers, with emphasis on intramolecular forces. Free energy evaluation of the modeled inter and intramolecular interactions through MD simulation shows effective interaction and binding between α-Syn and our compounds. However, we find that they do not significantly disrupt the chain-chain interactions, compared to unliganded simulation.
Collapse
Affiliation(s)
- Zahed Khatooni
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK, S7N 5E3, Canada.
| | - Keivan Akhtari
- Department of Physics, University of Kurdistan, P.O. Box 416, Sanandaj, Iran
| | - Heather L Wilson
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK, S7N 5E3, Canada
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada
- School of Public Health, Vaccinology & Immunotherapeutics Program, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada
| |
Collapse
|
8
|
Wang W, Qu L, Cui Z, Lu F, Li L, Liu F. Citrus Flavonoid Hesperetin Inhibits α-Synuclein Fibrillogenesis, Disrupts Mature Fibrils, and Reduces Their Cytotoxicity: In Vitro and In Vivo Studies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:16174-16183. [PMID: 37870747 DOI: 10.1021/acs.jafc.3c06816] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Misfolding and subsequent fibrillogenesis of α-synuclein (αSN) significantly influence the development of Parkinson's disease (PD). This study reports the inhibitory effect of citrus flavonoid hesperetin (Hst) on αSN fibrillation. Based on thioflavin T fluorometry and atomic force microscopy studies, Hst inhibited αSN fibrillation by interfering with initial nucleation and slowing the elongation rate. Furthermore, the inhibitory effect was concentration-dependent with a half-maximal inhibitory concentration of 24.4 μM. Cytotoxicity experiments showed that 100 μM Hst significantly reduced the cytotoxicity of αSN aggregates and maintained 98.4% cell activity. In addition, Hst disassembled the preprepared αSN fibrils into smaller and less-toxic aggregates. Excitingly, supplementation with 100 μM Hst inhibited the accumulation of 36.3% αSN in NL5901 and restored the amyloid-induced reduction in NL5901 lipid abundance, extending the mean lifespan of NL5901 to 23 d. These findings could support the use of Hst as a dietary supplement to regulate αSN fibrillation and prevent the development of PD.
Collapse
Affiliation(s)
- Wenqian Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, P. R. China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, P. R. China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Lili Qu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, P. R. China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, P. R. China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Zhan Cui
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, P. R. China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, P. R. China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, P. R. China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, P. R. China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Li Li
- College of Science, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Fufeng Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, P. R. China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, P. R. China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| |
Collapse
|
9
|
Shekhar C, Satyanarayana G. Acid-Mediated Cascade Cyclization Pathway to Indeno[2,1- c]chromen-6(7 H)-ones. J Org Chem 2023; 88:13404-13417. [PMID: 37721969 DOI: 10.1021/acs.joc.3c01459] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Developing mild and effective synthetic strategies for producing significant molecules starting from readily available starting materials is indispensable in organic synthesis. Herein, we present a triflic acid-driven dual cyclization pathway to produce functionalized indeno[2,1-c]chromen-6(7H)-ones from simple 2-formyl (or 2-acyl) cinnamate esters and phenols. Notably, this protocol enabled the construction of two C-C bonds and one C-O bond under metal-free reaction conditions via the activation of the unreactive ester moiety in a single pot. The isolation of intermediate indenol-ester might suggest self-intramolecular cycloaddition by the proximate double bond of the enoate ester with the o-carbonyl moiety, followed by an electrophilic attack with phenol and a subsequent cyclocondensation pathway. In addition, the photophysical properties have also been examined.
Collapse
Affiliation(s)
- Chander Shekhar
- Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502 284, India
| | - Gedu Satyanarayana
- Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502 284, India
| |
Collapse
|
10
|
Wang G, Zhu L, Wu X, Qian Z. Influence of Protonation on the Norepinephrine Inhibiting α-Synuclein 71-82 Oligomerization. J Phys Chem B 2023; 127:7848-7857. [PMID: 37683121 DOI: 10.1021/acs.jpcb.3c03270] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
The pathogenesis of Parkinson's disease (PD) is closely linked to the massive presence of Lewy vesicles and Lewy axons in the cytoplasm of neurons, mainly consisting of α-synuclein (αS). Norepinephrine (NE), whose secretion can be increased by exercise, has been demonstrated to prevent the fibrillation of αS and to break down the mature αS fibrils. In this work, we focus on the influence of protonation on the inhibitory ability of NE by using amyloid core fragment αS71-82 as a template. All-atom replica-exchange molecular dynamics simulations (accumulating to 33.6 μs) in explicit water were performed to explore the inhibitory effect of protonated and nonprotonated NE on αS oligomerization. Our results show that NE/NE+ can lead to a significant decrease in β-sheet content with increasing temperature, while isolated αS maintains relatively higher β-sheet conformations until 363 K, implying that both NE and NE+ can lower the critical temperature required for αS fibril decomposition. NE and NE+ also lead to the formation of less compact αS oligomers by preventing the backbone hydrogen bonds and the side-chain packing. The protonation would affect the binding affinity, interaction modes, and binding intensity of NE with αS. Interesting, NE and NE+ have a distinct binding free energy in the electrostatic and solvation terms, which mostly counter each other and produce a weak binding intensity with αS. Our work contributes to a better understanding of the inhibitory mechanism of NE and NE+ on αS oligomerization relevant to PD pathogenesis, which may provide clues for the design of antiamyloid medicine.
Collapse
Affiliation(s)
- Gang Wang
- Key Laboratory of Exercise and Health Sciences (Ministry of Education), Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, and School of Exercise and Health, Shanghai University of Sport, 399 Changhai Road, Shanghai 200438, China
| | - Lili Zhu
- Key Laboratory of Exercise and Health Sciences (Ministry of Education), Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, and School of Exercise and Health, Shanghai University of Sport, 399 Changhai Road, Shanghai 200438, China
- Shang Xing School, 6 Shangli Road, Shenzhen 518100, Guangdong, China
| | - Xiaoxiao Wu
- Key Laboratory of Exercise and Health Sciences (Ministry of Education), Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, and School of Exercise and Health, Shanghai University of Sport, 399 Changhai Road, Shanghai 200438, China
| | - Zhenyu Qian
- Key Laboratory of Exercise and Health Sciences (Ministry of Education), Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, and School of Exercise and Health, Shanghai University of Sport, 399 Changhai Road, Shanghai 200438, China
| |
Collapse
|
11
|
Kaur G, Mankoo OK, Goyal D, Goyal B. Unveiling How Hydroxytyrosol Destabilizes α-Syn Oligomers Using Molecular Simulations. J Phys Chem B 2023. [PMID: 37319389 DOI: 10.1021/acs.jpcb.3c02434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The etiology of Parkinson's disease (PD) is mainly linked to the α-synuclein (α-Syn) fibrillogenesis. Hydroxytyrosol (HT), also known as 3,4-dihydroxyphenylethanol, is a naturally occurring polyphenol, found in extra virgin olive oil, and has been shown to have cardioprotective, anticancer, antiobesity, and antidiabetic properties. HT has neuroprotective benefits in neurodegenerative diseases and lessens the severity of PD by reducing the aggregation of α-Syn and destabilizing the preformed toxic α-Syn oligomers. However, the molecular mechanism by which HT destabilizes α-Syn oligomers and alleviates the accompanying cytotoxicity remains unexplored. The impact of HT on the α-Syn oligomer structure and its potential binding mechanism was examined in this work by employing molecular dynamics (MD) simulations. The secondary structure analysis depicted that HT significantly reduces the β-sheet and concomitantly increases the coil content of α-Syn trimer. Visualization of representative conformations from the clustering analysis depicted the hydrogen bond interactions of the hydroxyl groups in HT with the N-terminal and nonamyloid-β component (NAC) region residues of α-Syn trimer, which, in turn, leads to the weakening of interchain interactions in α-Syn trimer and resulted in the disruption of the α-Syn oligomer. The binding free energy calculations depict that HT binds favorably to α-Syn trimer (ΔGbinding = -23.25 ± 7.86 kcal/mol) and a notable reduction in the interchain binding affinity of α-Syn trimer on the incorporation of HT, which, in turn, highlights its potential to disrupt α-Syn oligomers. The current research provided mechanistic insights into the destabilization of α-Syn trimer by HT, which, in turn, will provide new clues for developing therapeutics against PD.
Collapse
Affiliation(s)
- Gagandeep Kaur
- Department of Chemistry, Faculty of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib-140406, Punjab, India
| | - Opinder Kaur Mankoo
- Department of Chemistry, Faculty of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib-140406, Punjab, India
| | - Deepti Goyal
- Department of Chemistry, DAV College, Sector 10, Chandigarh-160011, India
| | - Bhupesh Goyal
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala-147004, Punjab, India
| |
Collapse
|
12
|
Altwaijry N, Almutairi GS, Khan MS, Alokail MS, Alafaleq N, Ali R. The effect of novel antihypertensive drug valsartan on lysozyme aggregation: A combined in situ and in silico study. Heliyon 2023; 9:e15270. [PMID: 37123968 PMCID: PMC10130856 DOI: 10.1016/j.heliyon.2023.e15270] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 03/10/2023] [Accepted: 03/31/2023] [Indexed: 05/02/2023] Open
Abstract
Protein misfolding can result in amyloid fiber aggregation, which is associated with various types of diseases. Therefore, preventing or treating abnormally folded proteins may provide therapeutic intervention for these diseases. Valsartan (VAL) is an angiotensin II receptor blocker (ARB) that is used to treat hypertension. In this study, we examine the anti-aggregating effect of VAL against hen egg-white lysozyme (HEWL) amyloid fibrils through spectroscopy, docking, and microscopic analysis. In vitro formation of HEWL amyloid fibrils was indicated by increased turbidity, RLS (Rayleigh light scattering), and ThT fluorescence intensity. 10 μM VAL, amyloid/aggregation was inhibited up to 83% and 72% as measured by ThT and RLS respectively. In contrast, 100 μM VAL significantly increases the fibril aggregation of HEWL. CD spectroscopy results show a stabilization of HEWL α-helical structures in the presence of 10 μM VAL while the increase in β-sheet was detected at 100 μM concentration of VAL. The hydrophobicity of HEWL was increased at 100 μM VAL, suggesting the promotion of aggregation via its self-association. Steady-state quenching revealed that VAL and HEWL interact spontaneously via hydrogen bonds and van der Waals forces. Transmission electron microscopy (TEM) images illustrate that the needle-like fibers of HEWL amyloid were reduced at 10 μM VAL, while at 100 μM the fibrils of amyloid were increased. Additionally, our computational studies showed that VAL could bind to two binding sites within HEWL. In the BS-1 domain of HEWL, VAL binds to ASN59, ILE98, ILE58, TRP108, VAL109, SER50, ASP52, ASN59, ALA107, and TRP108 residues with a binding energy of -9.72 kcal mol-1. Also, it binds to GLU7, ALA10, ALA11, CYS6, ARG128, and ARG14 in the BS-2 domain with a binding energy of -5.89 kcal mol-1. VAL, therefore, appears to have dual effect against HEWL aggregation. We suggest that VAL stabilizes HEWL's aggregation-prone region (APR) at 10 μM, preventing aggregation. Also, we assume that at 100 μM, VAL occupies BS-2 beside BS-1 and destabilizes the folding structure of HEWL, resulting in aggregation. Further studies are needed to investigate the mechanism of action and determine its potential side effects.
Collapse
Affiliation(s)
- Nojood Altwaijry
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
- Corresponding author.
| | - Ghaliah S. Almutairi
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohd Shahhnawaz Khan
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
- Corresponding author.
| | - Majed S. Alokail
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Nouf Alafaleq
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Rizwan Ali
- King Abdullah International Medial Research Center (KAIMRC), Medical Research Core Facility and Platforms (MRCFP), King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard Health Affairs (MNGHA), Riyadh, 11481, Saudi Arabia
| |
Collapse
|
13
|
Qiu W, Liu H, Liu Y, Lu X, Wang L, Hu Y, Feng F, Li Q, Sun H. Regulation of beta-amyloid for the treatment of Alzheimer's disease: Research progress of therapeutic strategies and bioactive compounds. Med Res Rev 2023. [PMID: 36945751 DOI: 10.1002/med.21947] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/09/2023] [Accepted: 02/26/2023] [Indexed: 03/23/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease that is difficult to treat. Extracellular amyloid is the principal pathological criterion for the diagnosis of AD. Amyloid β (Aβ) interacts with various receptor molecules on the plasma membrane and mediates a series of signaling pathways that play a vital role in the occurrence and development of AD. Research on receptors that interact with Aβ is currently ongoing. Overall, there are no effective medications to treat AD. In this review, we first discuss the importance of Aβ in the pathogenesis of AD, then summarize the latest progress of Aβ-related targets and compounds. Finally, we put forward the challenges and opportunities in the development of effective AD therapies.
Collapse
Affiliation(s)
- Weimin Qiu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hui Liu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yijun Liu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xin Lu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Lei Wang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yanyu Hu
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
| | - Feng Feng
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
- Department of Natural Medicinal Chemistry, Jiangsu Food and Pharmaceuticals Science College, Institute of Food and Pharmaceuticals Research, Jiangsu, Huaian, China
| | - Qi Li
- Department of Pharmacology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Haopeng Sun
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
14
|
Mankoo OK, Kaur A, Goyal D, Goyal B. Unravelling the destabilization potential of ellagic acid on α-synuclein fibrils using molecular dynamics simulations. Phys Chem Chem Phys 2023; 25:8128-8143. [PMID: 36877087 DOI: 10.1039/d2cp06006j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
The aberrant deposition of α-synuclein (α-Syn) protein into the intracellular neuronal aggregates termed Lewy bodies and Lewy neurites characterizes the devastating neurodegenerative condition known as Parkinson's disease (PD). The disruption of pre-existing disease-relevant α-Syn fibrils is recognized as a viable therapeutic approach for PD. Ellagic acid (EA), a natural polyphenolic compound, is experimentally proven as a potential candidate that prevents or reverses the α-Syn fibrillization process. However, the detailed inhibitory mechanism of EA against the destabilization of α-Syn fibril remains largely unclear. In this work, the influence of EA on α-Syn fibril and its putative binding mechanism were explored using molecular dynamics (MD) simulations. EA interacted primarily with the non-amyloid-β component (NAC) of α-Syn fibril, disrupting its β-sheet content and thereby increasing the coil content. The E46-K80 salt bridge, critical for the stability of Greek-key-like α-Syn fibril, was disrupted in the presence of EA. The binding free energy analysis using the MM-PBSA method demonstrates the favourable binding of EA to α-Syn fibril (ΔGbinding = -34.62 ± 11.33 kcal mol-1). Interestingly, the binding affinity between chains H and J of the α-Syn fibril was significantly reduced on the incorporation of EA, which highlights the disruptive ability of EA towards α-Syn fibril. The MD simulations provide mechanistic insights into the α-Syn fibril disruption by EA, which gives a valuable direction for the development of potential inhibitors of α-Syn fibrillization and its associated cytotoxicity.
Collapse
Affiliation(s)
- Opinder Kaur Mankoo
- Department of Chemistry, Faculty of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib 140406, Punjab, India
| | - Anupamjeet Kaur
- Department of Chemistry, Faculty of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib 140406, Punjab, India
| | - Deepti Goyal
- Department of Chemistry, DAV College, Sector 10, Chandigarh 160011, India.
| | - Bhupesh Goyal
- School of Chemistry & Biochemistry, Thapar Institute of Engineering & Technology, Patiala 147004, Punjab, India.
| |
Collapse
|
15
|
Yang Z, Yao Y, Zhou Y, Li X, Tang Y, Wei G. EGCG attenuates α-synuclein protofibril-membrane interactions and disrupts the protofibril. Int J Biol Macromol 2023; 230:123194. [PMID: 36623616 DOI: 10.1016/j.ijbiomac.2023.123194] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/15/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
The fibrillary aggregates of α-synuclein (α-syn) are closely associated with the etiology of Parkinson's disease (PD). Mounting evidence shows that the interaction of α-syn with biological membranes is a culprit for its aggregation and cytotoxicity. While some small molecules can effectively inhibit α-syn fibrillization in solution, their potential roles in the presence of membrane are rarely studied. Among them, green tea extract epigallocatechin gallate (EGCG) is currently under active investigation. Herein, we investigated the effects of EGCG on α-syn protofibril (an intermediate of α-syn fibril formation) in the presence of a model membrane and on the interactions between α-syn protofibril and the membrane, as well as the underlying mechanisms, by performing microsecond all-atom molecular dynamics simulations. The results show that EGCG has destabilization effects on α-syn protofibril, albeit to a lesser extent than that in solution. Intriguingly, we find that EGCG forms overwhelming H-bonding and cation-π interactions with membrane and thus attenuates protofibril-membrane interactions. Moreover, the decreased protofibril-membrane interactions impede the membrane damage by α-syn protofibril and enable the membrane integrity. These findings provide atomistic understanding towards the attenuation of α-syn protofibril-induced cytotoxicity by EGCG in cellular environment, which is helpful for the development of EGCG-based therapeutic strategies against PD.
Collapse
Affiliation(s)
- Zhongyuan Yang
- State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Department of Physics, Fudan University, Shanghai 200438, People's Republic of China
| | - Yifei Yao
- State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Department of Physics, Fudan University, Shanghai 200438, People's Republic of China
| | - Yun Zhou
- State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Department of Physics, Fudan University, Shanghai 200438, People's Republic of China
| | - Xuhua Li
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Yiming Tang
- State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Department of Physics, Fudan University, Shanghai 200438, People's Republic of China.
| | - Guanghong Wei
- State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Department of Physics, Fudan University, Shanghai 200438, People's Republic of China.
| |
Collapse
|
16
|
Effect of Antihypertensive Drug (Chlorothiazide) on Fibrillation of Lysozyme: A Combined Spectroscopy, Microscopy, and Computational Study. Int J Mol Sci 2023; 24:ijms24043112. [PMID: 36834523 PMCID: PMC9959601 DOI: 10.3390/ijms24043112] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 02/08/2023] Open
Abstract
Amyloid fibrils abnormally accumulate together in the human body under certain conditions, which can result in lethal conditions. Thus, blocking this aggregation may prevent or treat this disease. Chlorothiazide (CTZ) is a diuretic and is used to treat hypertension. Several previous studies suggest that diuretics prevent amyloid-related diseases and reduce amyloid aggregation. Thus, in this study we examine the effects of CTZ on hen egg white lysozyme (HEWL) aggregation using spectroscopic, docking, and microscopic approaches. Our results showed that under protein misfolding conditions of 55 °C, pH 2.0, and 600 rpm agitation, HEWL aggregated as evidenced by the increased turbidity and Rayleigh light scattering (RLS). Furthermore, thioflavin-T, as well as trans electron microscope (TEM) analysis confirmed the formation of amyloid structures. An anti-aggregation effect of CTZ is observed on HEWL aggregations. Circular dichroism (CD), TEM, and Thioflavin-T fluorescence show that both CTZ concentrations reduce the formation of amyloid fibrils as compared to fibrillated. The turbidity, RLS, and ANS fluorescence increase with CTZ increasing. This increase is attributed to the formation of a soluble aggregation. As evidenced by CD analysis, there was no significant difference in α-helix content and β-sheet content between at 10 µM CTZ and 100 µM. A TEM analysis of HEWL coincubated with CTZ at different concentrations validated all the above-mentioned results. The TEM results show that CTZ induces morphological changes in the typical structure of amyloid fibrils. The steady-state quenching study demonstrated that CTZ and HEWL bind spontaneously via hydrophobic interactions. HEWL-CTZ also interacts dynamically with changes in the environment surrounding tryptophan. Computational results revealed the binding of CTZ to ILE98, GLN57, ASP52, TRP108, TRP63, TRP63, ILE58, and ALA107 residues in HEWL via hydrophobic interactions and hydrogen bonds with a binding energy of -6.58 kcal mol-1. We suggest that at 10 µM and 100 μM, CTZ binds to the aggregation-prone region (APR) of HEWL and stabilizes it, thus preventing aggregation. Based on these findings, we can conclude that CTZ has antiamyloidogenic activity and can prevent fibril aggregation.
Collapse
|
17
|
Xu B, Chen J, Liu Y. Curcumin Interacts with α-Synuclein Condensates To Inhibit Amyloid Aggregation under Phase Separation. ACS OMEGA 2022; 7:30281-30290. [PMID: 36061735 PMCID: PMC9434619 DOI: 10.1021/acsomega.2c03534] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/03/2022] [Indexed: 05/27/2023]
Abstract
The amyloid aggregation of α-synuclein (α-Syn) is highly associated with Parkinson's disease (PD). Discovering α-Syn amyloid inhibitors is one of the strategies for PD therapies. Recent studies suggested that α-Syn undergoes phase separation to accelerate amyloid aggregation. Molecules modulating α-Syn phase separation or transition have the potential to regulate amyloid aggregation. Here, we discovered that curcumin, a small natural molecule, interacts with α-Syn during phase separation. Our study showed that curcumin neither affects the formation of α-Syn condensates nor influences the initial morphology of α-Syn condensates. However, curcumin decreases the fluidity of α-Syn inside the condensates and efficiently inhibits α-Syn from turning into an amyloid. It also inhibits the amyloid aggregations of PD disease-related α-Syn E46K and H50Q mutants under phase separation. Furthermore, curcumin can destabilize preformed α-Syn amyloid aggregates in the condensates. Together, our findings demonstrate that curcumin regulates α-Syn amyloid formation during protein phase separation and reveal that α-Syn amyloid aggregation under phase separation can be modulated by small molecules.
Collapse
|
18
|
Xuan Q, Zhou J, Jiang F, Zhang W, Wei A, Zhang W, Zhang Q, Shen H, Li H, Chen C, Wang P. Sappanwood-derived polyphenolic antidote of amyloidal toxins achieved detoxification via inhibition/reversion of amyloidal fibrillation. Int J Biol Macromol 2022; 214:446-458. [PMID: 35752334 DOI: 10.1016/j.ijbiomac.2022.06.141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/12/2022] [Accepted: 06/20/2022] [Indexed: 02/04/2023]
Abstract
The formidable virulence of methicillin-resistant staphylococcus aureus (MRSA) have thrown great challenges to biomedicine, which mainly derives from their autocrine phenol-soluble modulins (PSMs) toxins, especially the most toxic member termed phenol-soluble modulins α3 (PSMα3). PSMα3 cytotoxicity is attributed to its amyloidal fibrillation and subsequent formation of cross-α sheet fibrils. Inspired by the multiple biological activity of Sappanwood, herein, we adopted brazilin, a natural polyphenolic compound originated from Caesalpinia sappan, as a potential antidote of PSMα3 toxins, and attempted to prove that the regulation of PSMα3 fibrillation was an effective alexipharmic way for MRSA infections. In vitro results revealed that brazilin suppressed PSMα3 fibrillation and disassembled preformed amyloidal fibrils in a dose-dependent manner, in which molar ratio (brazilin: PSMα3) of efficient inhibition and disassembly were both 1:1. These desired regulations dominated by brazilin benefited from its bonding to core fibrils-forming residues of PSMα3 monomers urged by hydrogen bonding and pi-pi stacking, and such binding modes facilitated brazilin-mediated inhibition or disruption of interactions between neighboring PSMα3 monomers. In this context, these inhibited and disassembled PSMα3 assemblies could not easily insert into cell membrane and subsequent penetration, and thus alleviating the membrane disruption, cytoplasmic leakage, and reactive oxygen species (ROS) generation in normal cells. As such, brazilin dramatically decreased the cytotoxicity borne by toxic PSMα3 fibrils. In addition, in vivo experiments affirmed that brazilin relieved the toxicity of PSMα3 toxins and thus promoted the skin wound healing of mice. This study provides a new antidote of PSMα3 toxins, and also confirms the feasibility of the assembly-regulation strategy in development of antidotes against supramolecular fibrillation-dependent toxins.
Collapse
Affiliation(s)
- Qize Xuan
- State Key Laboratory of Bioreactor Engineering, Biomedical Nanotechnology Center, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - JinFeng Zhou
- State Key Laboratory of Bioreactor Engineering, Biomedical Nanotechnology Center, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Feng Jiang
- Department of Orthopaedics, Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, China
| | - Wei Zhang
- State Key Laboratory of Bioreactor Engineering, Biomedical Nanotechnology Center, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Anqi Wei
- State Key Laboratory of Bioreactor Engineering, Biomedical Nanotechnology Center, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Wenxue Zhang
- State Key Laboratory of Bioreactor Engineering, Biomedical Nanotechnology Center, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Qi Zhang
- State Key Laboratory of Bioreactor Engineering, Biomedical Nanotechnology Center, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Hao Shen
- Department of Orthopaedics, Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, China
| | - Hui Li
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| | - Chao Chen
- State Key Laboratory of Bioreactor Engineering, Biomedical Nanotechnology Center, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China; Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| | - Ping Wang
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, St Paul, MN 55108, USA
| |
Collapse
|
19
|
Ulvan inhibits α-synuclein fibrillation and disrupts the mature fibrils: In vitro and in vivo studies. Int J Biol Macromol 2022; 211:580-591. [PMID: 35561861 DOI: 10.1016/j.ijbiomac.2022.05.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 05/02/2022] [Accepted: 05/06/2022] [Indexed: 11/24/2022]
Abstract
Misfolding and aggregation of α-synuclein (α-syn) play a key role in the pathogenesis of Parkinson's disease (PD). Herein, the inhibitory effect of ulvan on α-syn fibrillogenesis was studied using thioflavin T fluorescence and atomic force microscope assays. It is shown that ulvan could inhibit α-syn fibrillogenesis in a dose-dependent manner. Based on the circular dichroism results, it is found that ulvan delays greatly the conformational transition from its initial random coil to β-sheet rich structure. The protective effect of ulvan against celllular death induced by α-syn aggregates was investigated by MTT colorimetric and cellular staining methods. It is found that ulvan protects greatly PC12 cells from α-syn fibril-induced cytotoxicity. In addition, ulvan disaggregates preformed α-syn fibrils and reduces cytotoxicity in a dose-dependent manner. Thereafter, the inhibitory effects of ulvan against α-syn fibrillogenesis were probed using Caenorhabditis elegans model NL5901 expressing human α-syn. It is found that ulvan extends the lifespan of NL5901 and recovers the lipid deposition by reducing the accumulation of α-syn. Finally, the molecular interactions between ulvan and α-syn pentamer was also explored using molecular docking. These findings suggest that ulvan can be pursued as a novel candidate drug for treatment of PD.
Collapse
|
20
|
Xie Y, Lu J, Yang T, Chen C, Bao Y, Jiang L, Wei H, Wu X, Zhao L, He S, Lin D, Liu F, Liu H, Yan X, Cui W. Phloroglucinol, a clinical-used antispasmodic, inhibits amyloid aggregation and degrades the pre-formed amyloid proteins. Int J Biol Macromol 2022; 213:675-689. [PMID: 35667457 DOI: 10.1016/j.ijbiomac.2022.06.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/24/2022] [Accepted: 06/01/2022] [Indexed: 12/06/2022]
Abstract
Amyloid proteins, such as β-amyloid (Aβ) and α-synuclein (α-syn), could form neurotoxic aggregates during the progression of neurodegenerative disorders. Phloroglucinol, a clinical-used drug for treating spasmodic pain, was predicted to cross the blood brain-barrier and possesses neuroprotective potential. In this study, we have found, for the first time, that phloroglucinol inhibited the formation of amyloid aggregates, and degraded pre-formed amyloid aggregates with the similar efficacy as curcumin, a widely known amyloid aggregation inhibitor. Moreover, phloroglucinol decreased the seeding during aggregation process and inhibited the aggregation of Aβ1-42 with homocysteine (Hcy) seeds. Molecular docking analysis further demonstrated hydrophobic interactions and hydrogen bonds between phloroglucinol and Aβ1-42/α-syn. Furthermore, phloroglucinol inhibited amyloid aggregates-induced cytotoxicity in neuronal cells and prevented Aβ1-42 + Hcy aggregates-induced cognitive impairments in mice. All these results suggested that phloroglucinol possesses the ability to degrade pre-formed amyloid aggregates, to inhibit the seeding during amyloid aggregation, and to reduce the neurotoxicity, indicating the reposition possibility of phloroglucinol as a novel drug for treating neurodegenerative disorders.
Collapse
Affiliation(s)
- Yanfei Xie
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315211, China; Translational Medicine Center of Pain, Emotion and Cognition, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Jiani Lu
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315211, China; Translational Medicine Center of Pain, Emotion and Cognition, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Tiantian Yang
- Department of Microelectronic Science and Engineering, Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, China
| | - Chao Chen
- Department of Microelectronic Science and Engineering, Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, China
| | - Yongjie Bao
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315211, China; Translational Medicine Center of Pain, Emotion and Cognition, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Luying Jiang
- Key Laboratory of Industrial Fermentation Microbiology of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China; State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Hua Wei
- Ningbo College of Health Sciences, Ningbo 315211, China
| | - Xiang Wu
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315211, China
| | - Li Zhao
- Quality Control Department, Shandong Jiejing Group Corporation, Rizhao 276826, China
| | - Shan He
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
| | - Dongdong Lin
- Department of Microelectronic Science and Engineering, Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, China
| | - Fufeng Liu
- Key Laboratory of Industrial Fermentation Microbiology of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China; State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Hao Liu
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315211, China; Translational Medicine Center of Pain, Emotion and Cognition, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Xiaojun Yan
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China; Laboratory of Seafood Processing, Innovative and Application Institute, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Wei Cui
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315211, China; Translational Medicine Center of Pain, Emotion and Cognition, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
21
|
Chen J, Xu J, Huang P, Luo Y, Shi Y, Ma P. The potential applications of traditional Chinese medicine in Parkinson's disease: A new opportunity. Biomed Pharmacother 2022; 149:112866. [PMID: 35367767 DOI: 10.1016/j.biopha.2022.112866] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/20/2022] [Accepted: 03/23/2022] [Indexed: 11/02/2022] Open
Abstract
Parkinson's disease (PD) presents a common challenge for people all over the world and has become a major research hotspot due to the large population affected by the illness and the difficulty of clinical treatment. The prevalence of PD is increasing every year, the pathogenesis is complex, and the current treatment is ineffective. Therefore, it has become imperative to find effective drugs for PD. With the advantages of low cost, high safety and high biological activity, Chinese medicine has great advantages in the prevention and treatment of PD. This review systematically summarizes the potential of Chinese medicine for the treatment of PD, showing that Chinese medicine can exert anti-PD effects through various pathways, such as anti-inflammatory and antioxidant pathways, reducing mitochondrial dysfunction, inhibiting endoplasmic reticulum stress and iron death, and regulating intestinal flora. These mainly involve HMGB1/TLR4, PI3K/Akt, NLRP3/ caspase-1/IL-1β, Nrf2/HO-1, SIRT1/Akt1, PINK1/parkin, Bcl-2/Bax, BDNF-TrkB and other signaling pathways. In sum, based on modern phytochemistry, pharmacology and genomic proteomics, Chinese medicine is likely to be a potential candidate for PD treatment, which requires more clinical trials to further elucidate its importance in the treatment of PD.
Collapse
Affiliation(s)
- Jiaxue Chen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jingke Xu
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ping Huang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yining Luo
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yuanshu Shi
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ping Ma
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
22
|
Correia Soeiro MDN, Vergoten G, Bailly C. Molecular docking of brazilin and its analogs to barrier‐to‐autointegration factor 1 (BAF1). Ann N Y Acad Sci 2022; 1511:154-163. [DOI: 10.1111/nyas.14742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/12/2021] [Accepted: 12/02/2021] [Indexed: 11/30/2022]
Affiliation(s)
| | - Gérard Vergoten
- University of Lille, Inserm, INFINITE ‐ U1286, Institut de Chimie Pharmaceutique Albert Lespagnol (ICPAL) Faculté de Pharmacie Lille France
| | - Christian Bailly
- OncoWitan Scientific Consulting Office Lille (Wasquehal), 59290 France
| |
Collapse
|
23
|
Brazilin: Biological activities and therapeutic potential in chronic degenerative diseases and cancer. Pharmacol Res 2021; 175:106023. [PMID: 34883212 DOI: 10.1016/j.phrs.2021.106023] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/17/2021] [Accepted: 12/03/2021] [Indexed: 12/26/2022]
Abstract
Caesalpinia sappan and Haematoxylum brasiletto belong to the Fabaceae family, predominantly distributed in Southeast Asia and America. The isoflavonoid brazilin has been identified from the bark and heartwood of these plants. This review summarizes the studies describing the biological activities of these plants and brazilin. Mainly, brazilin protects cells from oxidative stress, shows anti-inflammatory and antibacterial properties, and hypoglycemic effect. In addition, it has a biological impact on various pathologies such as Alzheimer's disease, Parkinson's disease, fibrillogenesis, and osteoarthritis. Interestingly, most of the antecedents are related to the anticancer effect of brazilin. In several cancers such as osteosarcoma, neuroblastoma, multiple myeloma, glioblastoma, bladder, melanoma, breast, tongue, colon, cervical, head, and neck squamous cell carcinoma, brazilin induces autophagy by increasing the levels of the LC3-II protein. Furthermore, it inhibits cell proliferation and induces apoptosis through increased expression of Bcl-2, Bcl-XL, p21, p27, activation of caspase-3 and -7, and the cleavage of PARP and inhibiting the expression of Bax. In addition, it blocks the expression of JNK and regulates the nuclear translocation of Nrf2. Together, these data positions brazilin as a compound of natural origin with multiple bioactivities and therapeutic potential in various chronic degenerative diseases and cancer.
Collapse
|
24
|
Zhao W, Jiang L, Wang W, Sang J, Sun Q, Dong Q, Li L, Lu F, Liu F. Design of carboxylated single-walled carbon nanotubes as highly efficient inhibitors against Aβ40 fibrillation based on the HyBER mechanism. J Mater Chem B 2021; 9:6902-6914. [PMID: 34612337 DOI: 10.1039/d1tb00920f] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Misfolding and the subsequent self-assembly of amyloid-β protein (Aβ) is very important in the occurrence of Alzheimer's disease (AD). Thus, inhibition of Aβ aggregation is currently an effective method to alleviate and treat AD. Herein, a carboxylated single-walled carbon nanotube (SWCNT-COOH) was rationally designed based on the hydrophobic binding-electrostatic repulsion (HyBER) mechanism. The inhibitory effect of SWCNT-COOH on Aβ fibrillogenesis was first studied. Based on the results of thioflavin T fluorescence and atomic force microscopy imaging assays, it was shown that SWCNT-COOH can not only effectively inhibit Aβ aggregation, but also depolymerize the mature fibrils of Aβ. In addition, its inhibitory action will be affected by the content of carboxyl groups. Moreover, the influence of SWCNT-COOH on cytotoxicity induced by Aβ was investigated by the MTT method. It was found that SWCNT-COOH can produce an anti-Aβ neuroprotective effect in vitro. Molecular dynamics simulations showed that SWCNT-COOH significantly destroyed the overall and internal structural stability of an Aβ40 trimer. Moreover, SWCNT-COOH interacted strongly with the N-terminal region, turn region and C-terminal region of the Aβ40 trimer via hydrogen bonds, salt bridges and π-π interactions, which triggered a large structural disturbance of the Aβ40 trimer, reduced the β-sheet content of the Aβ40 trimer and led to more disorder in these regions. All the above data not only reveal the suppressive effect of SWCNT-COOH on Aβ aggregation, but also reveal its inhibitory mechanism, which provides a useful clue to exploit anti-Aβ drugs in the future.
Collapse
Affiliation(s)
- Wenping Zhao
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Wang W, Zhang J, Qi W, Su R, He Z, Peng X. Alizarin and Purpurin from Rubia tinctorum L. Suppress Insulin Fibrillation and Reduce the Amyloid-Induced Cytotoxicity. ACS Chem Neurosci 2021; 12:2182-2193. [PMID: 34033711 DOI: 10.1021/acschemneuro.1c00177] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Alizarin (1,2-dihydroxyanthraquinone) and purpurin (1,2,4-trihydroxyanthraquinone), natural anthraquinone compounds from Rubia tinctorum L., are reported to have diverse biological effects including antibacterial, antitumor, antioxidation, and so on, but the inhibition activity against amyloid aggregation has been rarely reported. In this study, we used insulin as a model protein to explore the anti-amyloid effects of the two compounds. The results showed that alizarin and purpurin inhibited the formation of insulin fibrils in a dose-dependent manner and reduced insulin-induced cytotoxicity. Meanwhile, purpurin had a more significant inhibitory effect on insulin amyloid fibrils compared with alizarin. In addition, computer simulations indicated that the two compounds interacted mainly with the hydrophobic residues of insulin chain B and interfered with the binding of phenylalanine residues. The research indicated that natural anthraquinone compounds had potential effects in preventing protein misfolding diseases and could be further used to design effective antiamyloidosis compounds.
Collapse
Affiliation(s)
- Wen Wang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Jiaxing Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Wei Qi
- State Key Laboratory of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Zhimin He
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Xin Peng
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
26
|
Guo X, Xue Z, Xu D, Tu Q, Chang H, Yang X, Huang S. Total synthesis of (-)-brazilane via a lipase-catalyzed desymmetrisation reaction. Nat Prod Res 2021; 36:5125-5133. [PMID: 33970713 DOI: 10.1080/14786419.2021.1922403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Herein, we described the asymmetric total synthesis of (-)-brazilane, an optically active natural product. The key steps of this synthetic approach are a lipase-catalyzed desymmetrisation reaction of a prochiral diol using vinyl acetate to prepare a chiral primary alcohol and a trifluoroacetic acid-catalyzed one pot intramolecular tandem Prins/Friedel-Crafts reaction used to construct the cis-fused chromane and indane framework.
Collapse
Affiliation(s)
- Xiaofeng Guo
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Zhiwei Xue
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Dongdong Xu
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Qidong Tu
- School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, Jiangxi, P.R. China
| | - Honghong Chang
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Xihua Yang
- School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, Jiangxi, P.R. China
| | - Shuangping Huang
- Laboratory Animal Center, Shanxi Cancer Institute, Taiyuan, China
| |
Collapse
|
27
|
Nahass GR, Sun Y, Xu Y, Batchelor M, Reilly M, Benilova I, Kedia N, Spehar K, Sobott F, Sessions RB, Caughey B, Radford SE, Jat PS, Collinge J, Bieschke J. Brazilin Removes Toxic Alpha-Synuclein and Seeding Competent Assemblies from Parkinson Brain by Altering Conformational Equilibrium. J Mol Biol 2021; 433:166878. [PMID: 33610557 PMCID: PMC7610480 DOI: 10.1016/j.jmb.2021.166878] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/06/2021] [Accepted: 02/05/2021] [Indexed: 12/31/2022]
Abstract
Alpha-synuclein (α-syn) fibrils, a major constituent of the neurotoxic Lewy Bodies in Parkinson's disease, form via nucleation dependent polymerization and can replicate by a seeding mechanism. Brazilin, a small molecule derived from red cedarwood trees in Brazil, has been shown to inhibit the fibrillogenesis of amyloid-beta (Aβ) and α-syn as well as remodel mature fibrils and reduce cytotoxicity. Here we test the effects of Brazilin on both seeded and unseeded α-syn fibril formation and show that the natural polyphenol inhibits fibrillogenesis of α-syn by a unique mechanism that alters conformational equilibria in two separate points of the assembly mechanism: Brazilin preserves the natively unfolded state of α-syn by specifically binding to the compact conformation of the α-syn monomer. Brazilin also eliminates seeding competence of α-syn assemblies from Parkinson's disease patient brain tissue, and reduces toxicity of pre-formed assemblies in primary neurons by inducing the formation of large fibril clusters. Molecular docking of Brazilin shows the molecule to interact both with unfolded α-syn monomers and with the cross-β sheet structure of α-syn fibrils. Our findings suggest that Brazilin has substantial potential as a neuroprotective and therapeutic agent for Parkinson's disease.
Collapse
Affiliation(s)
- George R Nahass
- Colorado College, Colorado Springs, CO, USA; Medical Research Council Prion Unit / UCL Institute of Prion Diseases, University College London, London, UK; Washington University in St. Louis, St Louis, MO, USA; Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT, USA
| | - Yuanzi Sun
- Medical Research Council Prion Unit / UCL Institute of Prion Diseases, University College London, London, UK
| | - Yong Xu
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Mark Batchelor
- Medical Research Council Prion Unit / UCL Institute of Prion Diseases, University College London, London, UK
| | - Madeleine Reilly
- Medical Research Council Prion Unit / UCL Institute of Prion Diseases, University College London, London, UK
| | - Iryna Benilova
- Medical Research Council Prion Unit / UCL Institute of Prion Diseases, University College London, London, UK
| | - Niraja Kedia
- Washington University in St. Louis, St Louis, MO, USA
| | - Kevin Spehar
- Washington University in St. Louis, St Louis, MO, USA
| | - Frank Sobott
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | | | - Byron Caughey
- Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT, USA
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Parmjit S Jat
- Medical Research Council Prion Unit / UCL Institute of Prion Diseases, University College London, London, UK
| | - John Collinge
- Medical Research Council Prion Unit / UCL Institute of Prion Diseases, University College London, London, UK
| | - Jan Bieschke
- Medical Research Council Prion Unit / UCL Institute of Prion Diseases, University College London, London, UK; Washington University in St. Louis, St Louis, MO, USA.
| |
Collapse
|
28
|
Jin L, Liu C, Zhang N, Zhang R, Yan M, Bhunia A, Zhang Q, Liu M, Han J, Siebert HC. Attenuation of Human Lysozyme Amyloid Fibrillation by ACE Inhibitor Captopril: A Combined Spectroscopy, Microscopy, Cytotoxicity, and Docking Study. Biomacromolecules 2021; 22:1910-1920. [PMID: 33844512 DOI: 10.1021/acs.biomac.0c01802] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Misfolding proteins could form oligomers or amyloid fibers, which can cause a variety of amyloid-associated diseases. Thus, the inhibition of protein misfolding and fibrillation is a promising way to prevent and treat these diseases. Captopril (CAP) is an angiotensin-converting enzyme inhibitor (ACEI) that is widely used to treat diseases such as hypertension and heart failure. In this study, we found that CAP inhibits human lysozyme (HL) fibrillation through the combination techniques of biophysics and biochemistry. The data obtained by thioflavin-T (ThT) and Congo red (CR) assays showed that CAP hindered the aggregation of HL amyloid fibrils by reducing the β-sheet structure of HL amyloid, with an IC50 value of 34.75 ± 1.23 μM. Meanwhile, the particle size of HL amyloid decreased sharply in a concentration-dependent approach after CAP treatment. According to the visualization of atomic force microscopy (AFM) and transmission electron microscopy (TEM), we verified that in the presence of CAP, the needle-like fibers of HL amyloid were significantly reduced. In addition, CAP incubation dramatically improved the cell survival rate exposed to HL fibers. Our studies also revealed that CAP could form hydrogen bonds with amino acid residues of Glu 35 and Ala 108 in the binding pocket of HL, which help in maintaining the α-helical structure of HL and then prevent the formation of amyloid fibrillation. It can be concluded that CAP has antiamyloidogenic activity and a protective effect on HL amyloid cytotoxicity.
Collapse
Affiliation(s)
- Li Jin
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Chunhong Liu
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Ning Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Ruiyan Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Mingdi Yan
- Department of Chemistry, University of Massachusetts Lowell, 1 University Avenue, Lowell, Massachusetts 01854, United States
| | - Anirban Bhunia
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), 700054 Kolkata, India
| | - Qinxiu Zhang
- School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, China
| | - Min Liu
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Jun Han
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Hans-Christian Siebert
- RI-B-NT Research Institute of Bioinformatics and Nanotechnology, Franziusallee 177, 24148 Kiel, Germany
| |
Collapse
|
29
|
Nguyen PH, Ramamoorthy A, Sahoo BR, Zheng J, Faller P, Straub JE, Dominguez L, Shea JE, Dokholyan NV, De Simone A, Ma B, Nussinov R, Najafi S, Ngo ST, Loquet A, Chiricotto M, Ganguly P, McCarty J, Li MS, Hall C, Wang Y, Miller Y, Melchionna S, Habenstein B, Timr S, Chen J, Hnath B, Strodel B, Kayed R, Lesné S, Wei G, Sterpone F, Doig AJ, Derreumaux P. Amyloid Oligomers: A Joint Experimental/Computational Perspective on Alzheimer's Disease, Parkinson's Disease, Type II Diabetes, and Amyotrophic Lateral Sclerosis. Chem Rev 2021; 121:2545-2647. [PMID: 33543942 PMCID: PMC8836097 DOI: 10.1021/acs.chemrev.0c01122] [Citation(s) in RCA: 403] [Impact Index Per Article: 134.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Protein misfolding and aggregation is observed in many amyloidogenic diseases affecting either the central nervous system or a variety of peripheral tissues. Structural and dynamic characterization of all species along the pathways from monomers to fibrils is challenging by experimental and computational means because they involve intrinsically disordered proteins in most diseases. Yet understanding how amyloid species become toxic is the challenge in developing a treatment for these diseases. Here we review what computer, in vitro, in vivo, and pharmacological experiments tell us about the accumulation and deposition of the oligomers of the (Aβ, tau), α-synuclein, IAPP, and superoxide dismutase 1 proteins, which have been the mainstream concept underlying Alzheimer's disease (AD), Parkinson's disease (PD), type II diabetes (T2D), and amyotrophic lateral sclerosis (ALS) research, respectively, for many years.
Collapse
Affiliation(s)
- Phuong H Nguyen
- CNRS, UPR9080, Université de Paris, Laboratory of Theoretical Biochemistry, IBPC, Fondation Edmond de Rothschild, PSL Research University, Paris 75005, France
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Bikash R Sahoo
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Jie Zheng
- Department of Chemical & Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Peter Faller
- Institut de Chimie, UMR 7177, CNRS-Université de Strasbourg, 4 rue Blaise Pascal, 67000 Strasbourg, France
| | - John E Straub
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Laura Dominguez
- Facultad de Química, Departamento de Fisicoquímica, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Joan-Emma Shea
- Department of Chemistry and Biochemistry, and Department of Physics, University of California, Santa Barbara, California 93106, United States
| | - Nikolay V Dokholyan
- Department of Pharmacology and Biochemistry & Molecular Biology, Penn State University College of Medicine, Hershey, Pennsylvania 17033, United States
- Department of Chemistry, and Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Alfonso De Simone
- Department of Life Sciences, Imperial College London, London SW7 2AZ, U.K
- Molecular Biology, University of Naples Federico II, Naples 80138, Italy
| | - Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland 21702, United States
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Ruth Nussinov
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland 21702, United States
- Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Saeed Najafi
- Department of Chemistry and Biochemistry, and Department of Physics, University of California, Santa Barbara, California 93106, United States
| | - Son Tung Ngo
- Laboratory of Theoretical and Computational Biophysics & Faculty of Applied Sciences, Ton Duc Thang University, 33000 Ho Chi Minh City, Vietnam
| | - Antoine Loquet
- Institute of Chemistry & Biology of Membranes & Nanoobjects, (UMR5248 CBMN), CNRS, Université Bordeaux, Institut Européen de Chimie et Biologie, 33600 Pessac, France
| | - Mara Chiricotto
- Department of Chemical Engineering and Analytical Science, University of Manchester, Manchester M13 9PL, U.K
| | - Pritam Ganguly
- Department of Chemistry and Biochemistry, and Department of Physics, University of California, Santa Barbara, California 93106, United States
| | - James McCarty
- Chemistry Department, Western Washington University, Bellingham, Washington 98225, United States
| | - Mai Suan Li
- Institute for Computational Science and Technology, SBI Building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City 700000, Vietnam
- Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
| | - Carol Hall
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Yiming Wang
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Yifat Miller
- Department of Chemistry and The Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel
| | | | - Birgit Habenstein
- Institute of Chemistry & Biology of Membranes & Nanoobjects, (UMR5248 CBMN), CNRS, Université Bordeaux, Institut Européen de Chimie et Biologie, 33600 Pessac, France
| | - Stepan Timr
- CNRS, UPR9080, Université de Paris, Laboratory of Theoretical Biochemistry, IBPC, Fondation Edmond de Rothschild, PSL Research University, Paris 75005, France
| | - Jiaxing Chen
- Department of Pharmacology and Biochemistry & Molecular Biology, Penn State University College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Brianna Hnath
- Department of Pharmacology and Biochemistry & Molecular Biology, Penn State University College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Birgit Strodel
- Institute of Complex Systems: Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases, and Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Sylvain Lesné
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Guanghong Wei
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Science, Multiscale Research Institute of Complex Systems, Fudan University, Shanghai 200438, China
| | - Fabio Sterpone
- CNRS, UPR9080, Université de Paris, Laboratory of Theoretical Biochemistry, IBPC, Fondation Edmond de Rothschild, PSL Research University, Paris 75005, France
| | - Andrew J Doig
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, U.K
| | - Philippe Derreumaux
- CNRS, UPR9080, Université de Paris, Laboratory of Theoretical Biochemistry, IBPC, Fondation Edmond de Rothschild, PSL Research University, Paris 75005, France
- Laboratory of Theoretical Chemistry, Ton Duc Thang University, 33000 Ho Chi Minh City, Vietnam
- Faculty of Pharmacy, Ton Duc Thang University, 33000 Ho Chi Minh City, Vietnam
| |
Collapse
|
30
|
Wang F, Wang Y, Jiang L, Wang W, Sang J, Wang X, Lu F, Liu F. The food additive fast green FCF inhibits α-synuclein aggregation, disassembles mature fibrils and protects against amyloid-induced neurotoxicity. Food Funct 2021; 12:5465-5477. [PMID: 33997868 DOI: 10.1039/d0fo03301d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
α-Synuclein (α-syn) aggregates into cytotoxic amyloid fibrils, which are recognized as the defining neuropathological feature of Parkinson's disease (PD). Therefore, inhibiting α-syn fibrillogenesis and disrupting the preformed fibrils are both considered attractive strategies to cure PD. We discovered that a safe food additive, fast green FCF, is capable of inhibiting α-synuclein fibrillogenesis and reducing the related cytotoxicity. Thioflavin T fluorescence assays demonstrated that fast green FCF could inhibit the fibrillogenesis α-synuclein. In the presence of 100 μM fast green FCF, amorphous aggregates were formed and observed by atomic force microscopy. Toxicity assays in cell cultures revealed that fast green FCF significantly reduced the cytotoxicity of α-syn. Molecular dynamics simulations revealed the potential mechanism of the interactions between fast green FCF and α-synuclein. Fast green FCF greatly disrupted the α-synuclein pentamer and reduced the β-sheet content by reducing both nonpolar and polar interactions. Furthermore, two binding sites were identified, named region I (Y39-K45) and region II (H50-Q62). Our data reveal that electrostatic interactions, hydrogen bonds, and π-π interactions synergistically contribute to the binding of fast green FCF to the α-synuclein pentamer. These results indicate that fast green FCF is a candidate prototype for the development of drugs against the aggregation of amyloid fibrils in PD.
Collapse
Affiliation(s)
- Fenghua Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education; Tianjin Key Laboratory of Industrial Microbiology; College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, P. R. China.
| | - Ying Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education; Tianjin Key Laboratory of Industrial Microbiology; College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, P. R. China.
| | - Luying Jiang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education; Tianjin Key Laboratory of Industrial Microbiology; College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, P. R. China.
| | - Wenqian Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education; Tianjin Key Laboratory of Industrial Microbiology; College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, P. R. China.
| | - Jingcheng Sang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education; Tianjin Key Laboratory of Industrial Microbiology; College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, P. R. China.
| | - Xinyu Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education; Tianjin Key Laboratory of Industrial Microbiology; College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, P. R. China.
| | - Fuping Lu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education; Tianjin Key Laboratory of Industrial Microbiology; College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, P. R. China.
| | - Fufeng Liu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education; Tianjin Key Laboratory of Industrial Microbiology; College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, P. R. China.
| |
Collapse
|