1
|
Kong Z, Li Z, Zhang L, Dai L, Wang Y, Sun Q, McClements DJ, Cheng Y, Zhang Z, Wang C, Xu X. Development of pea protein nanoparticle/hydrolyzed rice glutelin fibril emulsion gels for encapsulation of curcumin. Int J Biol Macromol 2024; 276:133640. [PMID: 38969047 DOI: 10.1016/j.ijbiomac.2024.133640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/22/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
The potential of using emulsion gels stabilized by binary plant protein nanoparticle mixtures for the encapsulation and delivery of lipophilic nutraceuticals was evaluated. The particle characteristics, physical stability, water diffusivity, microrheology, large amplitude oscillating shear (LAOS) properties, and in vitro digestion of emulsion gels prepared by different ratios of hydrolyzed rice glutelin fibrils (HRGFs) and pea protein nanoparticle (PNP) were characterized. The emulsion gel with P/H = 2:1 (0.84 μm) exhibited the best storage stability and freeze-thaw stability, as seen by the smaller oil droplet size (1.02 and 1.42 μm, respectively). Low-field pulsed NMR indicated that the majority of water in samples was highly mobile. All the samples were predominantly elastic-like materials. The P/H 2:1 emulsion gel had the lowest FI value (6.21 × 10-4 Hz), the highest MVI value (5.57 s/nm2), G'/ G″ values and enclosed area, showing that it had denser 3D network structures, higher stiffness values, and a high sensitivity to changes in strain. Additionally, P/H 2:1 emulsion gel had a relatively high lipid digestibility (96.1 %), curcumin bioaccessibility (58.9 %), and curcumin stability (94.2 %). This study showed that emulsion gels stabilized by binary protein nanoparticle mixtures (PNP/HRGF) have potential as edible delivery systems for lipophilic nutraceuticals.
Collapse
Affiliation(s)
- Zhihao Kong
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China; Qingdao Special Food Research Institute, Qingdao, Shandong 266109, China
| | - Zhiying Li
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China; Qingdao Special Food Research Institute, Qingdao, Shandong 266109, China
| | - Liwen Zhang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China; Qingdao Special Food Research Institute, Qingdao, Shandong 266109, China
| | - Lei Dai
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China; Qingdao Special Food Research Institute, Qingdao, Shandong 266109, China
| | - Yanfei Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China; Qingdao Special Food Research Institute, Qingdao, Shandong 266109, China
| | - Qingjie Sun
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China; Qingdao Special Food Research Institute, Qingdao, Shandong 266109, China
| | | | - Yongqiang Cheng
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Zhao Zhang
- Shandong Sinoglory Health Food Co., Ltd, Liaocheng, Shandong Province 252400, China
| | - Caili Wang
- Shandong Sinoglory Health Food Co., Ltd, Liaocheng, Shandong Province 252400, China
| | - Xingfeng Xu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China; Qingdao Special Food Research Institute, Qingdao, Shandong 266109, China; Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
2
|
Zhang S, Du R, Li Q, Xu M, Yang Y, Fang S, Wan Z, Yang X. Food-grade emulsion gels and oleogels prepared by all-natural dual nanofibril system from citrus fiber and glycyrrhizic acid. Food Res Int 2024; 192:114830. [PMID: 39147519 DOI: 10.1016/j.foodres.2024.114830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/20/2024] [Accepted: 07/21/2024] [Indexed: 08/17/2024]
Abstract
The natural dual nanofibril system consisting of the rigid semicrystalline nanofibrils disintegrated from citrus fiber (CF) and soft semiflexible nanofibrils self-assembled from glycyrrhizic acid (GA) has been recently shown to be effective structural building blocks for fabrication of emulsion gels. In this work, the effect of the CF nanofibrils prepared by different mechanical disintegration approaches (i.e., high-pressure microfluidization and hydrodynamic cavitation) on the interfibrillar CF-GA interactions and the subsequent formation and properties of emulsion gels were investigated, with the aim of evaluating the potential of the dual nanofibril-stabilized emulsion gels as templates for synthesizing all-natural edible oleogels. The obtained results demonstrate that compared to the cavitation, the high-pressure microfluidization is more capable of generating CF nanofibrils with a higher degree of nanofibrillation and individualization, thus forming a denser CF-GA gel network with higher viscoelasticity and structural stability due to the stronger multiple intrafibrillar and interfibrillar interactions. The emulsion gels stabilized by the dual nanofibril system are demonstrated to be an efficient template to fabricate solid-like oleogels, and the structural properties of the oleogels can be well tuned by the mechanical disintegration of CF and the GA nanofibril concentration. The prepared oleogels possess high oil loading capacity, dense network microstructure, superior rheological and large deformation compression performances, and satisfactory thermal stability, which is attributed to the compact and ordered CF-GA dual nanofibrillar network via multiple hydrogen-bonding interactions in the continuous phase as well as at the droplet surface. This study highlights the unique use of all-natural dual nanofibrils to develop oil structured soft materials for sustainable applications.
Collapse
Affiliation(s)
- Shiqi Zhang
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Ruijie Du
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Qing Li
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Mengyue Xu
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China; Laboratory of Physics and Physical Chemistry of Foods, Wageningen University, Bornse Weilanden 9, 6708WG Wageningen, The Netherlands
| | - Yunyi Yang
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | | | - Zhili Wan
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China.
| | - Xiaoquan Yang
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
3
|
Guo X, Luo W, Wu L, Zhang L, Chen Y, Li T, Li H, Zhang W, Liu Y, Zheng J, Wang Y. Natural Products from Herbal Medicine Self-Assemble into Advanced Bioactive Materials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403388. [PMID: 39033533 PMCID: PMC11425287 DOI: 10.1002/advs.202403388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/09/2024] [Indexed: 07/23/2024]
Abstract
Novel biomaterials are becoming more crucial in treating human diseases. However, many materials require complex artificial modifications and synthesis, leading to potential difficulties in preparation, side effects, and clinical translation. Recently, significant progress has been achieved in terms of direct self-assembly of natural products from herbal medicine (NPHM), an important source for novel medications, resulting in a wide range of bioactive supramolecular materials including gels, and nanoparticles. The NPHM-based supramolecular bioactive materials are produced from renewable resources, are simple to prepare, and have demonstrated multi-functionality including slow-release, smart-responsive release, and especially possess powerful biological effects to treat various diseases. In this review, NPHM-based supramolecular bioactive materials have been revealed as an emerging, revolutionary, and promising strategy. The development, advantages, and limitations of NPHM, as well as the advantageous position of NPHM-based materials, are first reviewed. Subsequently, a systematic and comprehensive analysis of the self-assembly strategies specific to seven major classes of NPHM is highlighted. Insights into the influence of NPHM structural features on the formation of supramolecular materials are also provided. Finally, the drivers and preparations are summarized, emphasizing the biomedical applications, future scientific challenges, and opportunities, with the hope of igniting inspiration for future research and applications.
Collapse
Affiliation(s)
- Xiaohang Guo
- School of Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Weikang Luo
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Lingyu Wu
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Lianglin Zhang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yuxuan Chen
- Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, 519087, China
| | - Teng Li
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Haigang Li
- Hunan key laboratory of the research and development of novel pharmaceutical preparations, Changsha Medical University, Changsha, 410219, China
| | - Wei Zhang
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yawei Liu
- School of Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Jun Zheng
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yang Wang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| |
Collapse
|
4
|
Sabeghi Y, Varidi M, Nooshkam M. Bioactive foamulsion gels: a unique structure prepared with gellan gum and Acanthophyllum glandulosum extract. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:3853-3864. [PMID: 38243763 DOI: 10.1002/jsfa.13267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/24/2023] [Accepted: 01/05/2024] [Indexed: 01/21/2024]
Abstract
BACKGROUND Foamulsions have become increasingly popular in the food industry due to their ability to enhance the textural, sensory and health-promoting properties of food products. This study was therefore aimed to design and prepare a novel gelled structure, foamulsion gel containing 0-600 g L-1 oil, with gellan gum (GG; 7, 10 and 13 g L-1) and saponin-rich antioxidant Acanthophyllum glandulosum extract (AGE; 2, 6 and 10 g L-1). RESULTS The interaction between components was confirmed by infrared spectroscopy. The overrun and porosity of the foamulsion gels increased with antioxidant AGE (1.30 times) and reduced with oil (up to ca 70% and 30%, respectively) and GG levels. The systems were highly stable, and no water or oil was released during the physical stability experiments. Microscopic images showed that the size of air cells was significantly larger than that of oil droplets. The foamulsion gels based on 13 g L-1 GG and 10 g L-1 AGE had markedly higher elastic (G') and viscous (G'') moduli than other samples, and exhibited an elastic and solid-like behavior (G' > G''). The highest gel firmness was found in oil-free sample, and the presence of oil resulted in a lower firmness induced by the larger size and lubrication effect of oil droplets. CONCLUSION As a result, the interactions between AGE, GG and oil could lead to the creation of new aerated structures known as bioactive foamulsion gels. These gels exhibit excellent foamability, stability and viscoelasticity and may find applications in the development of novel, healthy and low-calorie aerated foods. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yeganeh Sabeghi
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad (FUM), Mashhad, Iran
| | - Mehdi Varidi
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad (FUM), Mashhad, Iran
| | - Majid Nooshkam
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad (FUM), Mashhad, Iran
| |
Collapse
|
5
|
Xia C, Xu Z, Xu M, Zhang C, Xu B, Liu B, Yan X, Zheng Z, Zhang R. Body temperature responsive capsules templated from Pickering emulsion for thermally triggered release of β-carotene. Int J Biol Macromol 2024; 266:130940. [PMID: 38521331 DOI: 10.1016/j.ijbiomac.2024.130940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/09/2024] [Accepted: 03/14/2024] [Indexed: 03/25/2024]
Abstract
In recent years, functional foods with lipophilic nutraceutical ingredients are gaining more and more attention because of its potential healthy and commercial value, and developing of various bioderived food-grade particles for use in fabrication of Pickering emulsion has attracted great attentions. Herein, the bio-originated sodium caseinate-lysozyme (Cas-Lyz) complex particles were firstly designed to be used as a novel interfacial emulsifier for Pickering emulsions. Pickering emulsions of various food oils were all successfully stabilized by the Cas-Lyz particles without addition of any synthetic surfactants, while the fluorescence microscopy and SEM characterizations clearly evidenced Cas-Lyz particles were attached on the surface of emulsion droplets. Additionally, the Cas-Lyz particles stabilized emulsion can also be used to encapsulate the β-carotene-loaded soybean oil, suggestion a potential method to carry lipophilic bioactive ingredients in an aqueous formulation for food, cosmetic and medical industry. At last, we present a Pickering emulsion strategy that utilizes biocompatible, edible and body temperature-responsive lard oil as the core material in microcapsules, which can achieve hermetic sealing and physiological temperature-triggered release of model nutraceutical ingredient (β-carotene).
Collapse
Affiliation(s)
- Chunmiao Xia
- Anhui Laboratory of Clean Energy Materials and Chemistry for Sustainable Conversion of Natural Resources, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China.
| | - Zihui Xu
- Anhui Laboratory of Clean Energy Materials and Chemistry for Sustainable Conversion of Natural Resources, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Maodong Xu
- Anhui Laboratory of Clean Energy Materials and Chemistry for Sustainable Conversion of Natural Resources, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Cuige Zhang
- Anhui Laboratory of Clean Energy Materials and Chemistry for Sustainable Conversion of Natural Resources, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Bo Xu
- Anhui Laboratory of Clean Energy Materials and Chemistry for Sustainable Conversion of Natural Resources, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Benhai Liu
- Anhui Laboratory of Clean Energy Materials and Chemistry for Sustainable Conversion of Natural Resources, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Xin Yan
- Anhui Laboratory of Clean Energy Materials and Chemistry for Sustainable Conversion of Natural Resources, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Zhenan Zheng
- Fujian Province University Key Laboratory of Modern Analytical Science and Separation Technology, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China
| | - Rongli Zhang
- Anhui Laboratory of Clean Energy Materials and Chemistry for Sustainable Conversion of Natural Resources, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China.
| |
Collapse
|
6
|
Du L, Ma C, Liu B, Liu W, Zhu Y, Wang Z, Chen T, Huang L, Pang Y. Green Synthesis of Blumea balsamifera Oil Nanoemulsions Stabilized by Natural Emulsifiers and Its Effect on Wound Healing. Molecules 2024; 29:1994. [PMID: 38731484 PMCID: PMC11085480 DOI: 10.3390/molecules29091994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/14/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024] Open
Abstract
In this study, we developed a green and multifunctional bioactive nanoemulsion (BBG-NEs) of Blumea balsamifera oil using Bletilla striata polysaccharide (BSP) and glycyrrhizic acid (GA) as natural emulsifiers. The process parameters were optimized using particle size, PDI, and zeta potential as evaluation parameters. The physicochemical properties, stability, transdermal properties, and bioactivities of the BBG-NEs under optimal operating conditions were investigated. Finally, network pharmacology and molecular docking were used to elucidate the potential molecular mechanism underlying its wound-healing properties. After parameter optimization, BBG-NEs exhibited excellent stability and demonstrated favorable in vitro transdermal properties. Furthermore, it displayed enhanced antioxidant and wound-healing effects. SD rats wound-healing experiments demonstrated improved scab formation and accelerated healing in the BBG-NE treatment relative to BBO and emulsifier groups. Pharmacological network analyses showed that AKT1, CXCL8, and EGFR may be key targets of BBG-NEs in wound repair. The results of a scratch assay and Western blotting assay also demonstrated that BBG-NEs could effectively promote cell migration and inhibit inflammatory responses. These results indicate the potential of the developed BBG-NEs for antioxidant and skin wound applications, expanding the utility of natural emulsifiers. Meanwhile, this study provided a preliminary explanation of the potential mechanism of BBG-NEs to promote wound healing through network pharmacology and molecular docking, which provided a basis for the mechanistic study of green multifunctional nanoemulsions.
Collapse
Affiliation(s)
- Lingfeng Du
- College of Chinese Medicine Resources, Guangdong Pharmaceutical University, Yunfu 527325, China; (L.D.); (C.M.); (B.L.); (W.L.)
| | - Chunfang Ma
- College of Chinese Medicine Resources, Guangdong Pharmaceutical University, Yunfu 527325, China; (L.D.); (C.M.); (B.L.); (W.L.)
| | - Bingnan Liu
- College of Chinese Medicine Resources, Guangdong Pharmaceutical University, Yunfu 527325, China; (L.D.); (C.M.); (B.L.); (W.L.)
| | - Wei Liu
- College of Chinese Medicine Resources, Guangdong Pharmaceutical University, Yunfu 527325, China; (L.D.); (C.M.); (B.L.); (W.L.)
| | - Yue Zhu
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; (Y.Z.); (Z.W.)
- Nano-Drug Technology Research Center, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Zuhua Wang
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; (Y.Z.); (Z.W.)
- Nano-Drug Technology Research Center, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Teng Chen
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; (Y.Z.); (Z.W.)
- Nano-Drug Technology Research Center, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Luqi Huang
- China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yuxin Pang
- College of Chinese Medicine Resources, Guangdong Pharmaceutical University, Yunfu 527325, China; (L.D.); (C.M.); (B.L.); (W.L.)
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; (Y.Z.); (Z.W.)
- Yunfu Traditional Chinese Medicine Resources and Germplasm Resources Database Management Center, Yunfu 527325, China
| |
Collapse
|
7
|
Liu B, Zhao Y, Li Y, Tao L, Pan P, Bi Y, Song S, Yu L. Investigation of the structure, rheology and 3D printing characteristics of corn starch regulated by glycyrrhizic acid. Int J Biol Macromol 2024; 263:130277. [PMID: 38378116 DOI: 10.1016/j.ijbiomac.2024.130277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/16/2023] [Accepted: 02/16/2024] [Indexed: 02/22/2024]
Abstract
This study aimed to construct a novel corn starch-glycyrrhizic acid (CS-GA) ink and systematically investigate the effects of GA on the water distribution, microstructure, rheology and 3D printing properties of CS hydrogels. The results showed that the CS chains could form strong hydrogen bonds with GA molecules, inhibit the formation of short-range ordered structure of CS and reduce the content of B-type starch. The low-field nuclear magnetic results showed that the introduction of GA could increase bound water content in CS-GA hydrogels. With the increase of GA content, the CS-GA hydrogel changed from CS-dominated to a GA-dominated gel network system. Rheological results showed that all samples exhibited typical shear thinning behavior. High GA concentration was beneficial to increasing the self-supporting properties and thixotropic recovery of CS-GA hydrogels. Compared with the pure CS hydrogel, the 3D printing characteristics of CS-GA hydrogels were significantly enhanced due to the increased bound water content and the enhancement of rheological properties. At 40 % GA content, CS-GA hydrogel showed the highest printing accuracy of 96.4 % ± 0.30 %. The printed product could perfectly replicate the preset model. Therefore, this study provided a theoretical basis for regulating starch's rheology and 3D printing characteristics and developing novel food-grade 3D printing inks.
Collapse
Affiliation(s)
- Bo Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China
| | - Yilin Zhao
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China
| | - Yufei Li
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China
| | - Li Tao
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China
| | - Pengyuan Pan
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China
| | - Yunfeng Bi
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China; National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun 130118, PR China
| | - Shixin Song
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China.
| | - Lei Yu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China; National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun 130118, PR China.
| |
Collapse
|
8
|
Chen Y, Chen X, Luo S, Chen T, Ye J, Liu C. Complex bio-nanoparticles assembled by a pH-driven method: environmental stress stability and oil-water interfacial behavior. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:1971-1983. [PMID: 37897157 DOI: 10.1002/jsfa.13085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/22/2023] [Accepted: 10/28/2023] [Indexed: 10/29/2023]
Abstract
BACKGROUND Protein-based nanoparticles have gained considerable interest in recent years due to their biodegradability, biocompatibility, and functional properties. However, nanoparticles formed from hydrophobic proteins are prone to instability under environmental stress, which restricts their potential applications. It is therefore of great importance to develop green approaches for the fabrication of hydrophobic protein-based nanoparticles and to improve their physicochemical performance. RESULTS Gliadin/shellac complex nanoparticles (168.87 ~ 403.67 nm) with various gliadin/shellac mass ratios (10:0 ~ 5:5) were prepared using a pH-driven approach. In comparison with gliadin nanoparticles, complex nanoparticles have shown enhanced stability against neutral pH, ions, and boiling. They remained stable under neutral conditions at NaCl concentrations ranging from 0 to 100 mmol L-1 and even when boiled at 100 °C for 90 min. These nanoparticles were capable of effectively reducing oil-water interfacial tension (5 ~ 11 mNm-1 ) but a higher amount of shellac in the nanoparticles compromised their ability to lower interfacial tension. Moreover, the wettability of the nanoparticles changed as the gliadin/shellac mass ratio changed, leading to a range of three-phase contact angles from 52.41° to 84.85°. Notably, complex nanoparticles with a gliadin/shellac mass ratio of 8:2 (G/S 8:2) showed a contact angle of 84.85°, which is considered suitable for the Pickering stabilization mechanism. Moreover, these nanoparticles exhibited the highest emulsifying activity of 52.42 m2 g-1 and emulsifying stability of 65.33%. CONCLUSIONS The findings of the study revealed that gliadin/shellac complex nanoparticles exhibited excellent resistance to environmental stress and demonstrated superior oil-water interfacial behavior. They have strong potential for further development as food emulsifiers or as nano-delivery systems for nutraceuticals. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yan Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Xing Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Shunjing Luo
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Tingting Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Jiangping Ye
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Chengmei Liu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| |
Collapse
|
9
|
Cai J, Wu J, Yu X, Wan Z, Yang X. Interfacial assembly and rheology of multi-responsive glycyrrhizic acid at liquid interfaces. SOFT MATTER 2024; 20:1173-1185. [PMID: 38164656 DOI: 10.1039/d3sm00973d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Glycyrrhizic acid (GA), a naturally derived food-grade saponin molecule, is a promising alternative to synthetic surfactants for stabilizing multiphase systems including emulsions and foams, due to its biological activity and surface-active properties. Understanding the interfacial behavior of GA, particularly in relation to its complex self-assembly behaviors in water induced by multiple environmental stimuli, is crucial to its application in multiphase systems. In this study, we comprehensively investigate the interfacial structure and rheological properties of GA systems, as a function of pH and temperature, through Langmuir-Blodgett films combined with atomic force microscopy, interfacial particle tracking, adsorption kinetics, stress-relaxation behavior and interfacial dilatational rheology. The variation of solution pH provokes pronounced changes in the interfacial properties of GA. At pH 2 and 4, GA fibril aggregates/fibrils adsorb rapidly, followed by rearrangement into large lamellar and rod-like structures, forming a loose and heterogeneous fibrous network at the interface, which exhibit a stretchable gel-like behavior. In contrast, GA at pH 6 and 8, featuring micelles or monomers in solutions, adsorb slowly to the interface and re-assemble partially into small micelle-like or irregular structures, which lead to a dense and homogeneous interfacial layer with stiffer glassy-like responses. With successively elevated temperature, the GA structures (pH 4) at the interface break into smaller fragments and further adsorption is promoted. Upon cooling, the interfacial tension of GA further decreases and a highly elastic interfacial layer may be formed. The diverse GA assemblies in bulk solution impart them with rich and intriguing interfacial behaviors, which may provide valuable mechanistic insights for the development of novel edible soft matter stabilized by GA.
Collapse
Affiliation(s)
- Jiyang Cai
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China.
| | - Jiahao Wu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Xinke Yu
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China.
| | - Zhili Wan
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China.
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| | - Xiaoquan Yang
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
10
|
Qayum A, Rashid A, Liang Q, Kang L, Ahmed Z, Hussain M, Virk MS, Ekumah JN, Ren X, Ma H, Miao S. Multi-scale ultrasound induced composite coacervates of whey protein and pullulan polysaccharide on emulsion forming and stabilizing mechanisms. Colloids Surf B Biointerfaces 2024; 234:113709. [PMID: 38159329 DOI: 10.1016/j.colsurfb.2023.113709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/03/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024]
Abstract
A non-destructive technique known as multi-scale ultrasound (MSU) was employed to modify the emulsion consisting of glycosylated bovine whey protein (WP) and pullulan (Pu). To assess the effect on the structural and emulsifying properties of the WP-Pu, the formulated emulsion, was treated with divergent MSU at (single: 20 kHz, 40 kHz, and 60 kHz; dual: 20-40 kHz, 40-60 kHz, and 20-60 kHz; and tri: 20-40-60 kHz) frequency for a duration of 30 min. The tri-frequency, treated emulsion showed improved emulsifying stability compared to the control and MSU-treated single, and dual-frequency samples, as indicated by the particle size, structural morphology, and adsorbed protein. The molecular docking and numerous spectral analysis provided evidence that WP can undergo successful phenolation. This modified form of WP then interacts with Pu through various forces, including H-bonding and other mechanisms, resulting in the formation of a composite emulsion. The rheological properties revealed that both the control emulsion and the MSU-treated emulsion exhibited non-Newtonian pseudoplastic flow behavior. This behavior is characterized by shear thinning, where the viscosity decreases with increasing shear rate. The shear rates tested ranged from 1 to 300 1/s, additionally, the degree of crystallinity increased from 18.2° to 19.4°. Overall, the tri-frequency effect was most pronounced compared to single and dual-frequency. Ultrasonication, an emerging non-thermal technology, proves to be an efficient approach for the formulation of WP-Pu composites. These composites have significant potential for use in drug delivery systems and functional foods.
Collapse
Affiliation(s)
- Abdul Qayum
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Arif Rashid
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Qiufang Liang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China.
| | - Lixin Kang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Zahoor Ahmed
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Muhammad Hussain
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Muhammad Safiullah Virk
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - John-Nelson Ekumah
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Xiaofeng Ren
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China.
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Song Miao
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| |
Collapse
|
11
|
Huang L, Xu C, Gao W, Rojas OJ, Jiao W, Guo S, Li J. Formulation and stabilization of high internal phase emulsions via mechanical cellulose nanofibrils/ethyl lauroyl arginate complexes. Carbohydr Polym 2024; 324:121541. [PMID: 37985062 DOI: 10.1016/j.carbpol.2023.121541] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/26/2023] [Accepted: 10/29/2023] [Indexed: 11/22/2023]
Abstract
Motivated by the quest for biocompatibility, we report on oil-in-water (O/W), high-internal-phase Pickering emulsions stabilized via complexes of mechanical cellulose nanofibrils (CNF) and food-grade cationic surfactant ethyl lauroyl arginate (LAE). The complexation of oppositely charged CNF and LAE can be held together by electrostatic interaction. Their effect on suspensions electrostatic stabilization, heteroaggregation state, and emulsifying ability was studied and related to properties of resultant interfacial tension between oil and water and 3D printing of emulsions. The Pickering system with adjustable droplet diameter and stability against creaming and oiling-off during storage was achieved resting with LAE loading. Complexes formed by LAE adjustment act as Pickering stabilizers and three-dimensional networks in emulsion system, forming a scaffold with elastoplastic rheological properties that flows above critical stress while, without any additional treatment, exhibiting the required self-standing properties for 3D printing. By understanding the properties of CNF/LAE behavior in bulk and on interfaces, printing edible functional foods of CNF/LAE-based emulgel inks has been demonstrated to enable regulation of oil release.
Collapse
Affiliation(s)
- Luyao Huang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Chuan Xu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Wenhua Gao
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Orlando J Rojas
- Bioproducts Institute, Department of Chemical & Biological Engineering, Department of Chemistry, and Department of Wood Science, 2360 East Mall, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Wenjuan Jiao
- Sericulture & Agri-food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Shasha Guo
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Jun Li
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
12
|
Zhou Q, Xu Z, Wei Z. Precise control of aggregation morphology: Effective strategy to tune the properties of ovotransferrin particles. Int J Biol Macromol 2023; 253:126850. [PMID: 37703969 DOI: 10.1016/j.ijbiomac.2023.126850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/25/2023] [Accepted: 09/09/2023] [Indexed: 09/15/2023]
Abstract
Different aggregation morphologies of ovotransferrin (OVT) aggregates were successfully obtained through precise control, and the effects on structural, physical, liquid-liquid and gas-liquid interfacial characteristics as well as mechanisms were explored for the first time. It was observed that the surface hydrophobicity of OVT fibrils was higher than OVT spheres due to the acid-heat treatment. The exploration of liquid-liquid interface behaviors indicated that OVT fibrils possessed higher adsorption capacity at the interface, revealing the higher surface activity at the oil-water interface. During adsorption process, fibrils exhibited higher diffusion rate, while spheres were easier to penetrate and rearrange at the interface. The interfacial film composed of fibrils possessed more elastic solid-like behaviors owing to the higher surface activity of individual fibrous aggregates and rapid fibril-fibril interactions. The analysis of gas-liquid interface characteristics presented that OVT spheres possessed lower interfacial tension and higher interfacial viscoelasticity, and showed significantly higher FC and FS values in comparation to fibrils. These findings will facilitate the reader's understanding of the relationship between protein aggregate structure and properties, and lay a foundation for broadening the application of OVT and even other proteins.
Collapse
Affiliation(s)
- Qi Zhou
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Ziyuan Xu
- School of Basic Medical Sciences, Weifang Medical University, Weifang 261053, China
| | - Zihao Wei
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China.
| |
Collapse
|
13
|
Guo S, Guo Q, Zhang Y, Peng X, Ma C, McClements DJ, Liu X, Liu F. Preparation of enzymatically cross-linked α-lactalbumin nanoparticles and their application for encapsulating lycopene. Food Chem 2023; 429:136394. [PMID: 37478605 DOI: 10.1016/j.foodchem.2023.136394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 05/06/2023] [Accepted: 05/13/2023] [Indexed: 07/23/2023]
Abstract
High internal phase Pickering emulsions (HIPPEs) stabilized by protein nanoparticles have been widely reported, but the use of enzymatic methods for preparing these nanoparticles remains underexplored. Our hypothesis is that enzymatically crosslinked α-lactalbumin (ALA) nanoparticles (ALATGs) prepared using transglutaminase will demonstrate improved properties as stabilizers for HIPPEs. In this study, we investigated the physicochemical properties and microstructures of ALATGs, finding that enzymatic crosslinking could be enhanced by removing Ca2+ ions from ALA and preheating the proteins (85 °C, 15 min). The electrical charge, secondary structure, and surface hydrophobicity of ALATGs were found to depend on crosslinking conditions. HIPPEs formed with an ALA concentration of 10 mg/mL and an enzyme activity of 120 U/g exhibited the highest apparent viscosity and mechanical strength, as well as significantly improved loading capacity and photostability for the encapsulated lycopene. Overall, our results support the hypothesis that ALATG-nanoparticles show superior performance as emulsifiers compared to ALA-nanoparticles.
Collapse
Affiliation(s)
- Siqi Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China; College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Qing Guo
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yifan Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaoke Peng
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Cuicui Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | | | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Fuguo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
14
|
Falsafi SR, Topuz F, Bajer D, Mohebi Z, Shafieiuon M, Heydari H, Rawal S, Sathiyaseelan A, Wang MH, Khursheed R, Enayati MH, Rostamabadi H. Metal nanoparticles and carbohydrate polymers team up to improve biomedical outcomes. Biomed Pharmacother 2023; 168:115695. [PMID: 37839113 DOI: 10.1016/j.biopha.2023.115695] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/28/2023] [Accepted: 10/09/2023] [Indexed: 10/17/2023] Open
Abstract
The convergence of carbohydrate polymers and metal nanoparticles (MNPs) holds great promise for biomedical applications. Researchers aim to exploit the capability of carbohydrate matrices to modulate the physicochemical properties of MNPs, promote their therapeutic efficiency, improve targeted drug delivery, and enhance their biocompatibility. Therefore, understanding various attributes of both carbohydrates and MNPs is the key to harnessing them for biomedical applications. The many distinct types of carbohydrate-MNP systems confer unique capabilities for drug delivery, wound healing, tissue engineering, cancer treatment, and even food packaging. Here, we introduce distinct physicochemical/biological properties of carbohydrates and MNPs, and discuss their potentials and shortcomings (alone and in combination) for biomedical applications. We then offer an overview on carbohydrate-MNP systems and how they can be utilized to improve biomedical outcomes. Last but not least, future perspectives toward the application of such systems are highlighted.
Collapse
Affiliation(s)
- Seid Reza Falsafi
- Safiabad Agricultural Research and Education and Natural Resources Center, Agricultural Research, Education and Extension Organization (AREEO), Dezful P.O. Box 333, Iran
| | - Fuat Topuz
- Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, Sariyer 34469, Istanbul, Turkey
| | - Dagmara Bajer
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| | - Zahra Mohebi
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Maryam Shafieiuon
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Hajar Heydari
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Shruti Rawal
- Department of Pharmaceutical Technology, L.J. Institute of Pharmacy, L J University, Ahmedabad 382210, India; Department of Pharmaceutics, Institute of Pharmacy, Nirma University, S.G. Highway, Chharodi, Ahmedabad, Gujarat 382481, India
| | - Anbazhagan Sathiyaseelan
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 200-701, South Korea
| | - Myeong-Hyeon Wang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 200-701, South Korea
| | - Rubiya Khursheed
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - M H Enayati
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Hadis Rostamabadi
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran.
| |
Collapse
|
15
|
Han Q, Wang H, Zhou T, Wang Y, Shen Z, Yu D, Liu X, Liu W, Lv W. Ultrastable Emulsion Stabilized by the Konjac Glucomannan-Xanthan Gum Complex. ACS OMEGA 2023; 8:31344-31352. [PMID: 37663472 PMCID: PMC10468834 DOI: 10.1021/acsomega.3c03796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/07/2023] [Indexed: 09/05/2023]
Abstract
Surfactant-free emulsions are currently gaining increased interest due to their technofunctional, health-promoting, economic, biocompatible, and sustainable characteristics. Herein, we report an ultrastable, surfactant-free emulsion stabilized by the konjac glucomannan (KGM)-xanthan gum (XG) complex. The results suggested that KGM-XG tended to adsorb onto the oil/water interface, causing a reduction in interfacial tension. The emulsion droplets were less than 1 μm in diameter and had a narrow size distribution. Using laser confocal microscopy and cryo-SEM, it was observed that KGM-XG generated a compact film on the surface of emulsion droplets while simultaneously constructing a three-dimensional network in the continuous phase. Both of these factors contributed to the stability of the emulsion. The present study presents a straightforward approach for producing highly stable emulsions stabilized by polysaccharides. These emulsions can be effectively utilized to enhance the water resistance of cellulose paper, which is extensively employed in the packaging industry.
Collapse
Affiliation(s)
- Qian Han
- State
Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of
Science, Jinan 250353, China
| | - Huili Wang
- State
Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of
Science, Jinan 250353, China
| | - Tongxin Zhou
- State
Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of
Science, Jinan 250353, China
| | - Yantao Wang
- State
Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of
Science, Jinan 250353, China
| | - Zhenpeng Shen
- State
Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of
Science, Jinan 250353, China
| | - Dehai Yu
- State
Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of
Science, Jinan 250353, China
| | - Xiaona Liu
- State
Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of
Science, Jinan 250353, China
| | - Wenxia Liu
- State
Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of
Science, Jinan 250353, China
| | - Wenzhi Lv
- College
of Chemistry and Chemical Engineering, Qiannan
Normal-University for Nationalities, Duyun 558000, China
| |
Collapse
|
16
|
Fu X, Ni Y, Wang G, Nie R, Wang Y, Yao R, Yan D, Guo M, Li N. Synergistic and Long-Lasting Wound Dressings Promote Multidrug-Resistant Staphylococcus Aureus-Infected Wound Healing. Int J Nanomedicine 2023; 18:4663-4679. [PMID: 37605733 PMCID: PMC10440117 DOI: 10.2147/ijn.s418671] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/09/2023] [Indexed: 08/23/2023] Open
Abstract
Background Multidrug-resistant staphylococcus aureus infected wounds can lead to nonhealing, systemic infections, and even death. Although advanced dressings are effective in protecting, disinfecting, and maintaining moist microenvironments, they often have limitations such as single functionality, inadequate drug release, poor biosafety, or high rates of drug resistance. Methods Here, a novel wound dressing comprising glycyrrhizic acid (GA) and tryptophan-sorbitol carbon quantum dots (WS-CQDs) was developed, which exhibit synergistic and long-lasting antibacterial and anti-inflammatory effects. We investigated the characterization, mechanical properties, synergistic antibacterial effects, sustained-release properties, and cytotoxicity of GA/WS-CQDs hydrogels in vitro. Additionally, we performed transcriptome sequence analysis to elucidate the antibacterial mechanism. Furthermore, we evaluated the biosafety, anti-inflammatory effects, and wound healing ability of GA/WS-CQDs dressings using an in vivo mouse model of methicillin-resistant staphylococcus aureus (MRSA)-infected wounds. Results The prepared GA/WS-CQDs hydrogels demonstrated superior anti-MRSA effects compared to common antibiotics in vitro. Furthermore, the sustained release of WS-CQDs from GA/WS-CQDs hydrogels lasted for up to 60 h, with a cumulative release of exceeding 90%. The sustained-released WS-CQDs exhibited excellent anti-MRSA effects, with low drug resistance attributed to DNA damage and inhibition of bacterial biofilm formation. Notably, in vivo experiments showed that GA/WS-CQDs dressings reduced the expression of inflammatory factors (TNF-α, IL-1β, and IL-6) and significantly promoted the healing of MRSA-infected wounds with almost no systemic toxicity. Importantly, the dressings did not require replacement during the treatment process. Conclusion These findings emphasize the high suitability of GA/WS-CQDs dressings for MRSA-infected wound healing and their potential for clinical translation.
Collapse
Affiliation(s)
- Xiangjie Fu
- Department of Blood Transfusion, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
| | - Yaqiong Ni
- Hunan Provincial Key Laboratory of Micro&Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People’s Republic of China
| | - Guanchen Wang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, People’s Republic of China
| | - Runda Nie
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, People’s Republic of China
| | - Yang Wang
- Institute of Integrative Medicine, Key Laboratory of Hunan Province for Liver Manifestation of Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
| | - Run Yao
- Department of Blood Transfusion, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
| | - Danyang Yan
- Department of Blood Transfusion, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
| | - Mingming Guo
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, People’s Republic of China
| | - Ning Li
- Department of Blood Transfusion, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
| |
Collapse
|
17
|
Liu Y, Zhang H, Chen XW, Yang T, Sun C, Sun SD. Fabrication and characterization of novel thermoresponsive emulsion gels and oleogels stabilizied by assembling nanofibrous from dual natural triterpenoid saponins. Food Chem X 2023; 18:100751. [PMID: 37397186 PMCID: PMC10314201 DOI: 10.1016/j.fochx.2023.100751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/27/2023] [Accepted: 06/09/2023] [Indexed: 07/04/2023] Open
Abstract
Novel thermoresponsive emulsion gels and oleogels were fabricated by assembling nanofibrous from natural triterpenoid Quillaja saponin (QS) and glycyrrhizic acid (GA). The viscoelasticity of QS-coated emulsion was observed to be remarkably improved by GA and thus obtain the advantages of excellent gelatinous, thermoresponsive and reversible manner due to the viscoelastic texture from GA nanofibrous as scaffolds in continuous phase. In the gelled emulsions, the phase transition of the GA fibrosis network structure upon heating and cooling was attributed to a thermal sensitivity, whereas interface-induced fibrosis assembly of amphiphilic QS endowed the formation of stable emulsion droplets. Then these emulsion gels were further used as an effective template to fabricate soft-solid oleogels with high oil content of 96%. These findings open up new opportunities for the use of all-natural and sustainable ingredients to develop smart soft materials for replace trans and saturated fats in food industry and other fields.
Collapse
Affiliation(s)
- Yao Liu
- College of Food Science and Engineering, National Engineering Laboratory/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou 450001 China
| | - Huan Zhang
- College of Food Science and Engineering, National Engineering Laboratory/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou 450001 China
| | - Xiao-Wei Chen
- College of Food Science and Engineering, National Engineering Laboratory/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou 450001 China
| | - Tao Yang
- School of Pharmacy, Hainan Medical University, Haikou 571199, China
| | - Cong Sun
- College of Food Science and Engineering, National Engineering Laboratory/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou 450001 China
| | - Shang-De Sun
- College of Food Science and Engineering, National Engineering Laboratory/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou 450001 China
| |
Collapse
|
18
|
Xiao L, Hou Y, Xue Z, Bai L, Wang W, Chen H, Yang H, Yang L, Wei D. Soy Protein Isolate/Genipin-Based Nanoparticles for the Stabilization of Pickering Emulsion to Design Self-Healing Guar Gum-Based Hydrogels. Biomacromolecules 2023; 24:2087-2099. [PMID: 37079862 DOI: 10.1021/acs.biomac.2c01507] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Nowadays, stretchable self-healing hydrogels designed by biomass-based materials have gathered remarkable attention in numerous frontier fields such as wound healing, health monitoring issues, and electronic skin. In this study, soy protein isolate (SPI), a common plant protein, was cross-linked to nanoparticles (SPI NPs) by Genipin, (Gen) which was attracted from the native Geniposide. Oil-in-water (O/W) Pickering emulsion was formed by SPI NPs wrapping the linseed oil, and further implanted into poly(acrylic acid)/guar gum (PAA/GG)-based self-healing hydrogels by multiple reversible weak interactions. With the addition of Pickering emulsion, the hydrogels have achieved a remarkable self-healing ability (self-healing efficiency could reach 91.6% within 10 h) and mechanical properties (tensile strength of 0.89 MPa and strain of 853.2%). Therefore, these hydrogels with good reliable durability have outstanding application prospects in sustainable materials.
Collapse
Affiliation(s)
- Lixuan Xiao
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China
| | - Yaning Hou
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China
| | - Zhiyan Xue
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China
| | - Liangjiu Bai
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China
| | - Wenxiang Wang
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China
| | - Hou Chen
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China
| | - Huawei Yang
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China
| | - Lixia Yang
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China
| | - Donglei Wei
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China
| |
Collapse
|
19
|
Tavakolian M, Koshani R, Tufenkji N, van de Ven TGM. Antibacterial Pickering emulsions stabilized by bifunctional hairy nanocellulose. J Colloid Interface Sci 2023; 643:328-339. [PMID: 37080040 DOI: 10.1016/j.jcis.2023.04.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 02/22/2023] [Accepted: 04/10/2023] [Indexed: 04/22/2023]
Abstract
HYPOTHESIS Pickering emulsions, defined as emulsions that are stabilized by colloidal particles, provide dispersion stability by preventing coalescence of the dispersed phase. In this study, we used a bifunctional hairy nanocellulose (BHNC) bearing both aldehyde and carboxylic acid groups as an stabilizer. We hypothesize that these particles as Pickering stabilizers can effectively reside at the oil-water interface, better than hairy nanocelluloses containing only carboxyl groups or aldehyde groups, and provide long-term stability without the need of any surfactants. EXPERIMENTS Varying concentrations of BHNC were tested to explore the optimal concentration that provides emulsion stability. The effects of various preparation conditions such as salt and pH were also studied. Finally, carvacrol, an antibacterial essential oil, was loaded in the oil phase to develop antibacterial emulsions. FINDINGS It was shown that a 1% BHNC suspension provides 90% and 80% stability for a duration of 30 and 60 days, respectively. A theoretical model using nuclear magnetic resonance relaxometry data is developed to prove that only a monolayer of BHNC covers oil droplets. Increasing the concentration of BHNC decreased the size of oil droplets, which as a result increases the surface area available for monolayer coverage. It was also shown that the antibacterial emulsions are highly effective against Gram-negative (i.e. E. coli) and Gram-positive (i.e. S. aureus) bacteria. Accordingly, BHNC as a highly functionalized bio-derived colloidal particle opens new opportunities for engineering highly stable Pickering emulsions.
Collapse
Affiliation(s)
- Mandana Tavakolian
- Department of Chemical Engineering, McGill University, 3610 University Street, Montreal, QC H3A 0C5, Canada; Pulp and Paper Research Centre, McGill University, 3420 University Street, Montreal, QC H3A 2A7, Canada; Quebec Centre for Advanced Materials (QCAM), 3420 University Street, Montreal, QC H3A 2A7, Canada.
| | - Roya Koshani
- Pulp and Paper Research Centre, McGill University, 3420 University Street, Montreal, QC H3A 2A7, Canada; Quebec Centre for Advanced Materials (QCAM), 3420 University Street, Montreal, QC H3A 2A7, Canada; Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada.
| | - Nathalie Tufenkji
- Department of Chemical Engineering, McGill University, 3610 University Street, Montreal, QC H3A 0C5, Canada; Quebec Centre for Advanced Materials (QCAM), 3420 University Street, Montreal, QC H3A 2A7, Canada.
| | - Theo G M van de Ven
- Pulp and Paper Research Centre, McGill University, 3420 University Street, Montreal, QC H3A 2A7, Canada; Quebec Centre for Advanced Materials (QCAM), 3420 University Street, Montreal, QC H3A 2A7, Canada; Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada.
| |
Collapse
|
20
|
Edible oil to powder technologies: Concepts and advances. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
21
|
Li XL, Liu WJ, Xu BC, Zhang B, Wang W, Su DL. OSA-linear dextrin enhances the compactness of pea protein isolate nanoparticles: Increase of high internal phase emulsions stability. Food Chem 2023; 404:134590. [DOI: 10.1016/j.foodchem.2022.134590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 09/27/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022]
|
22
|
Ke C, Li L. Influence mechanism of polysaccharides induced Maillard reaction on plant proteins structure and functional properties: A review. Carbohydr Polym 2023; 302:120430. [PMID: 36604091 DOI: 10.1016/j.carbpol.2022.120430] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/18/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Plant proteins have high nutritional value, a wide range of sources and low cost. However, it is easily affected by the environmental factors of processing and lead the problem of poor functionality. These problems of plant proteins can be improved by the polysaccharides induced Maillard reaction. The interaction between proteins and polysaccharides through Maillard reaction can change the structure of proteins as well as improve the functional properties and biological activity. The products of Maillard reaction, such as reductone intermediates, heterocyclic compounds and melanoidins have certain antioxidant, antibacterial and other biological activities. However, heterocyclic amines, acrylamide, and products generated in the advanced stage of the Maillard reaction also have a negative impact, which may increase cytotoxicity and be associated with chronic diseases. Therefore, it is necessary to effectively control the process of Maillard reaction. This review focuses on the modification of plant proteins by polysaccharide-induced Maillard reaction and the effects of Maillard reaction on protein structure, functional properties and biological activity. It also points out how to accurately reflect the changes of protein structure in Maillard reaction. In addition, it also points out the application ways of plant protein-polysaccharide complexes in the food industry, for example, emulsifiers, delivery carriers of functional substances, and natural antioxidants due to their improved solubility, emulsifying, gelling and antioxidant properties. This review provides theoretical support for controlling Maillard reaction based on protein structure.
Collapse
Affiliation(s)
- Chuxin Ke
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Liang Li
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
23
|
Cao J, Tong X, Cheng J, Peng Z, Yang S, Cao X, Wang M, Wu H, Wang H, Jiang L. Impact of pH on the interaction between soy whey protein and gum Arabic at oil–water interface: Structural, emulsifying, and rheological properties. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
24
|
He WY, Wang XC, Gong W, Huang HB, Hou YY, Wang R, Hu JN. Construction of an antibacterial hydrogel based on diammonium glycyrrhizinate and gallic acid for bacterial- infected wound healing. Colloids Surf B Biointerfaces 2023; 222:112975. [PMID: 36442387 DOI: 10.1016/j.colsurfb.2022.112975] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/08/2022] [Accepted: 10/23/2022] [Indexed: 11/16/2022]
Abstract
The current antibacterial wound dressings with antibiotic substances or metal bactericidal agents may lead to severe multidrug resistance and poor biocompatibilities. Herein, we report an inherent antibacterial hydrogel constructed by only two naturally small molecules gallic acid (GA) and diammonium glycyrrhizinate (DG) for promoting Staphylococcus aureus (S. aureus)-infected wound healing. The resultant GAD hydrogel can be fabricated by co-assembly of these two materials through simple steps. Thanks to the incorporation of GA and DG, GAD hydrogel enabled a strong mechanical performance and great self-healing property with a sustained-release of drugs into skin wounds. Moreover, the cell viability assays showed that GAD hydrogel had good cytocompatibility by promoting cell proliferation and migration. In addition, GAD hydrogel had broad antibacterial efficiency against both Gram-positive and Gram-negative bacteria. Taken together, GAD hydrogel is a promising dressing to accelerate bacterial-infected wound healing through reconstructing an intact and thick epidermis without antibiotics or cytokines.
Collapse
Affiliation(s)
- Wan-Ying He
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xin-Chuang Wang
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Wei Gong
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Hai-Bo Huang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yi-Yang Hou
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Ran Wang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Jiang-Ning Hu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
25
|
Zhang J, Xu D, Cao Y. Physical stability, microstructure and interfacial properties of solid-oil-in-water (S/O/W) emulsions stabilized by sodium caseinate/xanthan gum complexes. Food Res Int 2023; 164:112370. [PMID: 36737958 DOI: 10.1016/j.foodres.2022.112370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/07/2022] [Accepted: 12/24/2022] [Indexed: 12/28/2022]
Abstract
Calcium carbonate (CaCO3) has poor suspension stability, which severely limits its application in food processing and products. In this study, sodium caseinate (NaCas) and sodium caseinate (NaCas)-xanthan gum (XG) mixtures were compared for the stable preparation of solid/oil/water (S/O/W) emulsions for the delivery of calcium carbonate (CaCO3) to solve the problem of poor suspension stability. The physical stability, particle size distribution, and microstructure of S/O/W emulsions were investigated to prove the successful construction of the system. The dynamic surface pressure and surface swelling properties of 2.0 wt% NaCas with different concentrations of XG were investigated to clarify the effect of interfacial properties of NaCas-XG mixtures on the emulsion stability of S/O/W emulsions. The results showed that the addition of XG resulted in enhanced physical stability, reduced particle size distribution, and enhanced encapsulation effect of the emulsion, forming a more three-dimensional core-shell structure via dendritic links. XG had a significant effect on the dynamic properties of the NaCas adsorption membrane: NaCas interacted with XG and the diffusion (kdiff) of NaCas to the interface decreased in short adsorption time, thus limiting the protein adsorption effectiveness; the presence of XG reduced the penetration (kP) and rearrangement (kR) rates at the interface during long adsorption times. Meanwhile, the NaCas-XG mixture has a high swelling elasticity. The results of this study can be used to improve the quality of related emulsion products or to prepare delivery systems for bioactive compounds.
Collapse
Affiliation(s)
- Jie Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Key Laboratory of Flavor Chemistry, Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University, Beijing, China
| | - Duoxia Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Key Laboratory of Flavor Chemistry, Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University, Beijing, China.
| | - Yanping Cao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Key Laboratory of Flavor Chemistry, Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University, Beijing, China.
| |
Collapse
|
26
|
Qiu C, Wang C, Li X, Sang S, McClements DJ, Chen L, Long J, Jiao A, Wang J, Jin Z. Preparation of high internal phase Pickering emulsion gels stabilized by glycyrrhizic acid-zein composite nanoparticles: Gelation mechanism and 3D printing performance. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Song S, Li Y, Zhu Q, Zhang X, Wang Y, Tao L, Yu L. Structure and properties of Pickering emulsions stabilized solely with novel buckwheat protein colloidal particles. Int J Biol Macromol 2023; 226:61-71. [PMID: 36493922 DOI: 10.1016/j.ijbiomac.2022.12.047] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
In this paper, buckwheat protein colloidal particles (BPCPs) were prepared by heat treatment to stabilize oil-water interface. The results of particle size, surface hydrophobicity and wettability indicated that the prepared BPCPs could be used as novel Pickering emulsifier. The effects of BPCPs concentration, ionic strength and heat treatment on the structure and properties of Pickering emulsions were explored. The microstructure results showed that BPCPs could tightly coated on the surface of oil droplets to form a tight interfacial film, confirming that BPCPs could be used as an effective Pickering-like stabilizer. With the increase of BPCPs concentration, the droplet size of the Pickering emulsion gradually decreased, and the viscoelasticity and storage stability of the emulsion were effectively improved. Different from the effect of ionic strength, heat treatment was beneficial to increasing the viscoelasticity of BPCPs-stabilized Pickering emulsion. The Pickering emulsions exhibited certain flocculation at different temperatures and ionic strengths, while still maintained good solid-like behavior. These results suggest that the structure and properties of BPCPs-stabilized Pickering emulsion could be regulated by changing the ionic strength and temperature.
Collapse
Affiliation(s)
- Shixin Song
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China
| | - Yufei Li
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China
| | - Qiyuan Zhu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China
| | - Xin Zhang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China
| | - Yang Wang
- National Engineering Research Center for Information Technology in Agriculture, Beijing 100097, PR China
| | - Li Tao
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China
| | - Lei Yu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China; National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun 130118, PR China.
| |
Collapse
|
28
|
Liu L, Zhang J, Wang P, Tong Y, Li Y, Chen H. Functional Properties of Corn Byproduct-Based Emulsifier Prepared by Hydrothermal-Alkaline. Molecules 2023; 28:molecules28020665. [PMID: 36677721 PMCID: PMC9865437 DOI: 10.3390/molecules28020665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/30/2022] [Accepted: 01/02/2023] [Indexed: 01/11/2023] Open
Abstract
As consumers' interest in nature-sourced additives has increased, zein has been treated hydrothermally under alkaline conditions to prepare a nature-sourced emulsifier. The effects of mild hydrothermal-alkaline treatment with different temperatures or alkaline concentrations on the emulsifying properties of zein were investigated. The emulsification activity and stability index of zein hydrolysates increased by 39% and 164%, respectively. The optimal simple stabilized emulsion was uniform and stable against heat treatment up to 90 °C, sodium chloride up to 200 mmol/L, and pH values ranging from 6 to 9. Moreover, it presented excellent storage stability compared to commonly used food emulsifiers. The surface hydrophobicity caused the depolymerization of the tertiary structure of zein and the dissociation of subunits along with exposure of hydrophilic groups. The amino acid composition and circular dichroism results reveal that the treatment dissociated protein subunits and transformed α-helices into anti-parallel β-sheets and random coil. In conclusion, mild hydrothermal-alkaline treatment may well contribute to the extended functional properties of zein as a nature-sourced emulsifier.
Collapse
Affiliation(s)
- Lu Liu
- Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Jijun Zhang
- National Engineering Research Center for Corn Deep Processing, Changchun 130000, China
- Nutrition & Health Research Institute, China Oil and Foodstuffs Corporation, Beijing 102200, China
| | - Pengjie Wang
- Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Yi Tong
- China Oil and Foodstuffs Biotechnology Corporation, Changchun 130000, China
| | - Yi Li
- China Oil and Foodstuffs Biotechnology Corporation, Changchun 130000, China
| | - Han Chen
- Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
- Correspondence:
| |
Collapse
|
29
|
Properties and microstructure of pickering emulsion synergistically stabilized by silica particles and soy hull polysaccharides. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Zou L, Li Q, Hou Y, Chen M, Xu X, Wu H, Sun Z, Ma G. Self-assembled glycyrrhetinic acid derivatives for functional applications: a review. Food Funct 2022; 13:12487-12509. [PMID: 36413139 DOI: 10.1039/d2fo02472a] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Glycyrrhetinic acid (GA), a famous natural product, has been attracting more attention recently because of its remarkable biological activity, natural sweetness, and good biocompatibility. In the past few years, a considerable amount of literature has grown up around the theme of GA-based chemical modification to broaden its functional applications. Promising structures including gels, micelles, nanoparticles, liposomes, and so forth have been constantly reported. On the one hand, the assembly mechanisms of various materials based on GA derivatives have been elucidated via modern analytical techniques. On the other hand, their potential application prospects in edible additives, intelligent drug delivery, and other fields have been investigated fully due to availability, biocompatibility, and controllable degradability. Inspired by these findings, a systematic summary and classification of the materials formed by GA derivatives seems necessary and meaningful. This review sums up the new functional applications of GA derivatives for the first time and provides better prospects for their application and development.
Collapse
Affiliation(s)
- Linjun Zou
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
| | - Qinglong Li
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
| | - Yong Hou
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
| | - Meiying Chen
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
| | - Xudong Xu
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
| | - Haifeng Wu
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
| | - Zhaocui Sun
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
| | - Guoxu Ma
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
| |
Collapse
|
31
|
Wu X, Liu X, Qin J, Zhou J, Chen J. Controlled flavor release from high internal phase emulsions as fat mimetics based on glycyrrhizic acid and phytosterol. Food Res Int 2022; 161:111810. [DOI: 10.1016/j.foodres.2022.111810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/27/2022] [Accepted: 08/18/2022] [Indexed: 11/24/2022]
|
32
|
Yu D, Luo Q, Yang C, Yang C, Li S, Wang Z, Wang Q, Liu W, Wang H, Ji D. Electrostatic complexes of ethyl lauroyl arginate/nano-montmorillonite as a food-grade pickering stabiliser: Emulsification performance and mechanism. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
33
|
Xia C, Han L, Zhang C, Xu M, Liu Z, Chen Y, Zhu Y, Yu M, Wu W, Yin S, Huang J, Zheng Z, Zhang R. Preparation and optimization of Pickering emulsion stabilized by alginate-lysozyme nanoparticles for β-carotene encapsulation. Colloid Polym Sci 2022. [DOI: 10.1007/s00396-022-05024-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
34
|
Effect of soybean protein isolate-pectin composite nanoparticles and hydroxypropyl methyl cellulose on the formation, stabilization and lipidolysis of food-grade emulsions. Food Chem 2022; 389:133102. [DOI: 10.1016/j.foodchem.2022.133102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 11/21/2022]
|
35
|
Enhancement of the Bioavailability and Anti-Inflammatory Activity of Glycyrrhetinic Acid via Novel Soluplus®—A Glycyrrhetinic Acid Solid Dispersion. Pharmaceutics 2022; 14:pharmaceutics14091797. [PMID: 36145545 PMCID: PMC9504515 DOI: 10.3390/pharmaceutics14091797] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/08/2022] [Accepted: 08/08/2022] [Indexed: 11/25/2022] Open
Abstract
Glycyrrhetinic acid (GA) is an anti-inflammatory drug with potential for development. However, the poor solubility of GA in water leads to extremely low bioavailability, which limits its clinical applications. Solid dispersions have become some of the most effective strategies for improving the solubility of poorly soluble drugs. Soluplus®, a non-cytotoxic amphiphilic solubilizer, significantly improves the solubility of BCS II drugs and improves the bioavailability of insoluble drugs. l-arginine (L-Arg) can be used as a small molecular weight excipient to assist in improving the solubility of insoluble drugs. In this study, we developed a new formulation for oral administration by reacting GA and L-Arg to form salts by co-solvent evaporation and then adding the polymer-solvent Soluplus® with an amphiphilic chemical structure to prepare a solid dispersion GA-SD. The chemical and physical properties of GA-SD were characterized by DLS, TEM, XRD, FT-IR and TG. The anti-inflammatory activity of GA-SD was verified by LPS stimulation of RAW 267.5 cells simulating a cellular inflammation model, TPA-induced ear edema model in mice, and ethanol-induced gastric ulcer model. The results showed that the amide bond and salt formation of GA-SD greatly improved GA solubility. GA-SD effectively improved the anti-inflammatory effect of free GA in vivo and in vitro, and GA-SD had no significant effect on liver and kidney function, no significant tissue toxicity, and good biosafety. In conclusion, GA-SD with L-Arg and Soluplus® is an effective method to improve the solubility and bioavailability of GA. As a safe and effective solid dispersion, it is a promising anti-inflammatory oral formulation and provides some references for other oral drug candidates with low bioavailability.
Collapse
|
36
|
Fibrous and Spherical Aggregates of Ovotransferrin as Stabilizers for Oleogel-Based Pickering Emulsions: Preparation, Characteristics and Curcumin Delivery. Gels 2022; 8:gels8080517. [PMID: 36005118 PMCID: PMC9407489 DOI: 10.3390/gels8080517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/14/2022] [Accepted: 08/18/2022] [Indexed: 12/03/2022] Open
Abstract
This study aimed to explore the effects and mechanisms of differently shaped aggregates of ovotransferrin (OVT) particles on oleogel-based Pickering emulsions (OPEs). Medium-chain triglyceride oil-based oleogels were constructed using beeswax, and their gel-sol melting temperatures were investigated. Atomic force microscopy confirmed that both OVT fibrils and OVT spheres were successfully prepared, and the three-phase contact angle measurements indicated that fibrous and spherical aggregates of OVT particles possessed great potential to stabilize the OPEs. Afterward, the oil-in-water OPEs were fabricated using oleogel as the oil phase and OVT fibrils/spheres as the emulsifiers. The results revealed that OPEs stabilized with OVT fibrils (FIB-OPEs) presented a higher degree of emulsification, smaller droplet size, better physical stability and stronger apparent viscosity compared with OPEs stabilized with OVT spheres (SPH-OPEs). The freeze–thaw stability test showed that the FIB-OPEs remained stable after three freeze–thaw cycles, while the SPH-OPEs could barely withstand one freeze–thaw cycle. An in vitro digestion study suggested that OVT fibrils conferred distinctly higher lipolysis (46.0%) and bioaccessibility (62.8%) of curcumin to OPEs.
Collapse
|
37
|
Jiang Q, Geng M, Meng Z. Enhancement effect of fat crystal network on oleogels prepared by methyl‐cellulose and xanthan gum using the cryogel‐templated method. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Qinbo Jiang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology Jiangnan University Wuxi Jiangsu People's Republic of China
| | - Mengli Geng
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology Jiangnan University Wuxi Jiangsu People's Republic of China
| | - Zong Meng
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology Jiangnan University Wuxi Jiangsu People's Republic of China
| |
Collapse
|
38
|
Song X, Song Y, Guo Z, Tan M. Influence of protein coronas between carbon nanoparticles extracted from roasted chicken and pepsin on the digestion of soy protein isolate. Food Chem 2022; 385:132714. [DOI: 10.1016/j.foodchem.2022.132714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/10/2022] [Accepted: 03/13/2022] [Indexed: 01/18/2023]
|
39
|
pH-dependent micellar properties of edible biosurfactant steviol glycosides and their oil-water interfacial interactions with soy proteins. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
40
|
High internal phase Pickering emulsions stabilized by tannic acid-ovalbumin complexes: Interfacial property and stability. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107332] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
41
|
Chang C, Li J, Su Y, Gu L, Yang Y, Zhai J. Protein particle-based vehicles for encapsulation and delivery of nutrients: Fabrication, digestion, and release properties. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.106963] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
42
|
Liu Y, Xia H, Guo S, Lu X, Zeng C. Development and characterization of a novel naturally occurring pentacyclic triterpene self-stabilized pickering emulsion. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
43
|
Shen P, Zhao M, Zhou F. Design of soy protein/peptide-based colloidal particles and their role in controlling the lipid digestion of emulsions. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2021.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
44
|
|
45
|
Yang Y, Xu M, Wan Z, Yang X. Novel functional properties and applications of steviol glycosides in foods. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2021.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
46
|
Xu M, Ma L, Li Q, Wu J, Wan Z, Ngai T, Yang X. Robust and highly adaptable high internal phase gel emulsions stabilized solely by a natural saponin hydrogelator glycyrrhizic acid. Food Funct 2022; 13:280-289. [PMID: 34889340 DOI: 10.1039/d1fo01656c] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we report a new class of high internal phase gel emulsions (gel-HIPEs) that are mechanically robust, adaptable, and processable. They can be synthesized facilely by using the natural food-grade saponin glycyrrhizic acid (GA) as the sole stabilizer, which is shown to be versatile for various oils. The structural properties of these HIPEs including appearance, viscoelasticity and processability are well controlled by simply changing the concentration of GA nanofibrils. When the GA nanofibril concentration exceeds 0.3 wt%, the unique gel-HIPEs can be produced through the formation of fibrillar hydrogel networks in the continuous phase. When the nanofibril concentration only increases to 5 wt%, it is surprising to see that these gel-HIPEs display an extremely high mechanical strength, and the storage moduli as well as the yield stress values can reach 408.5 kPa and 3340 Pa (or even more), respectively. We conjecture that such remarkable mechanical performance is mainly attributed to the highly viscoelastic GA nanofibrillar networks in the continuous phase of gel-HIPEs, which can actively trap the nanofibril-coated emulsion droplets and thus strengthen the gel matrix. Consequently, the robust gel-HIPEs can be used as a solid template to fabricate stable porous materials without the need for crosslinking of the continuous phase, and the open- and closed-cell foam microstructures are controlled by the nanofibril concentration. Furthermore, the nanofibril-based HIPEs are promising long-term delivery vehicles with controlled-release properties for lipophilic active cargoes, since the strong fibrillar networks at the droplet surfaces and in the continuous phase can effectively retard the active release.
Collapse
Affiliation(s)
- Mengyue Xu
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Lulu Ma
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Qing Li
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Jiahao Wu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong, China.
| | - Zhili Wan
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China.,Department of Chemistry, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong, China. .,Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| | - To Ngai
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong, China.
| | - Xiaoquan Yang
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
47
|
Reducing off-flavors in plant-based omega-3 oil emulsions using interfacial engineering: Coating algae oil droplets with pea protein/flaxseed gum. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107069] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
48
|
Development and characterization of nanoparticles formed by soy peptide aggregate and epigallocatechin-3-gallate as an emulsion stabilizer. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112385] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
49
|
Wu J, Guan X, Wang C, Ngai T, Lin W. pH-Responsive Pickering high internal phase emulsions stabilized by Waterborne polyurethane. J Colloid Interface Sci 2021; 610:994-1004. [PMID: 34865740 DOI: 10.1016/j.jcis.2021.11.156] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/13/2022]
Abstract
HYPOTHESIS Waterborne polyurethane (WPU) is a common colloidal dispersion that can aggregate in the aqueous phase to form nanoparticles with hydrophobic polyurethane chains as the core and hydrophilic ionic groups as the shell. Considering their structure and pH-responsive functional groups, WPU nanoparticles could be ideal particulate emulsifiers for preparing pH-responsive Pickering high internal phase emulsions (HIPEs). EXPERIMENTS A series of anionic WPU with different content of 2,2-bis(hydroxymethyl)propionic acid (DMPA) side chains were synthesized via a polyaddition reaction. The DMPA content, size, ζ-potential, and interfacial behaviors of WPU were then investigated. Furthermore, the effects of particle concentration, internal phase fraction (ϕ), oil type, and pH values on the Pickering HIPEs' morphology, stability, and rheological behaviors were systematically studied. Finally, we demonstrated the emulsification-demulsification process of WPU-stabilized Pickering HIPEs and discussed its mechanism. FINDINGS Oil-in-water (O/W) Pickering HIPEs with tailored morphology and excellent pH-responsiveness were prepared from anionic WPU nanoparticles. The WPU concentration, ϕ, and oil type had a large impact on the formation and mean droplet size of the WPU-stabilized emulsions. Rheology analysis demonstrated that the strictly limited movement of droplets endowed the WPU-stabilized HIPEs with high stability, shear sensitivity, and excellent thixotropic recovery. By simply changing the aqueous-phase pH value, the WPU-stabilized HIPEs could undergo more than ten emulsification-demulsification cycles, as the physical and interfacial properties of WPU nanoparticles were pH-dependent. The excellent performance of the WPU-stabilized pH-responsive Pickering HIPEs exhibited their potential practical applications, such as for oil transportation and recovery, emulsion polymerization, and heterogeneous catalysis.
Collapse
Affiliation(s)
- Jianhui Wu
- Department of Biomass and Leather Engineering, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China; Department of Chemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | - Xin Guan
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | - Chunhua Wang
- Department of Biomass and Leather Engineering, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
| | - To Ngai
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong.
| | - Wei Lin
- Department of Biomass and Leather Engineering, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
50
|
Xu M, Wan Z, Yang X. Recent Advances and Applications of Plant-Based Bioactive Saponins in Colloidal Multiphase Food Systems. Molecules 2021; 26:6075. [PMID: 34641618 PMCID: PMC8512339 DOI: 10.3390/molecules26196075] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 11/16/2022] Open
Abstract
The naturally occurring saponins exhibit remarkable interfacial activity and also possess many biological activities linking to human health benefits, which make them particularly attractive as bifunctional building blocks for formulation of colloidal multiphase food systems. This review focuses on two commonly used food-grade saponins, Quillaja saponins (QS) and glycyrrhizic acid (GA), with the aim of clarifying the relationship between the structural features of saponin molecules and their subsequent self-assembly and interfacial properties. The recent applications of these two saponins in various colloidal multiphase systems, including liquid emulsions, gel emulsions, aqueous foams and complex emulsion foams, are then discussed. A particular emphasis is on the unique use of GA and GA nanofibrils as sole stabilizers for fabricating various multiphase food systems with many advanced qualities including simplicity, ultrastability, stimulability, structural viscoelasticity and processability. These natural saponin and saponin-based colloids are expected to be used as sustainable, plant-based ingredients for designing future foods, cosmetics and pharmaceuticals.
Collapse
Affiliation(s)
- Mengyue Xu
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China; (M.X.); (X.Y.)
| | - Zhili Wan
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China; (M.X.); (X.Y.)
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| | - Xiaoquan Yang
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China; (M.X.); (X.Y.)
| |
Collapse
|