1
|
Panjaitan FCA, Shie ST, Park SH, Sevi T, Ko WL, Aluko RE, Chang YW. Bioactive Properties of Enzymatic Gelatin Hydrolysates Based on In Silico, In Vitro, and In Vivo Studies. Molecules 2024; 29:4402. [PMID: 39339395 PMCID: PMC11434199 DOI: 10.3390/molecules29184402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/26/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
This current study aims to analyze the potential bioactivities possessed by the enzymatic hydrolysates of commercial bovine, porcine, and tilapia gelatins using bioinformatics in combination with in vitro and in vivo studies. The hydrolysate with superior inhibition of angiotensin converting enzyme (ACE) activity was used to treat the D-galactose (DG)-induced amnesic mice. In silico digestion of the gelatins led to the identification of peptide sequences with potential antioxidant, ACE-inhibitory, and anti-amnestic properties. The results of in vitro digestion revealed that the <1 kDa peptide fraction of porcine gelatin hydrolysate obtained after 1 h digestion with papain (PP) (PP1, <1 kDa) potently inhibited ACE, acetylcholinesterase, and prolyl endopeptidase activities at 87.42%, 21.24%, and 48.07%, respectively. Administering the PP1 to DG-induced amnesic mice ameliorated the spatial cognitive impairment and Morris water maze learning abilities. The dentate area morphology in the PP1-treated mice was relatively similar to the control group. In addition, PP1 enhanced the antioxidant capacity in the DG-induced amnesic mice. This study suggests that PP1 could serve as a potential treatment tool against oxidative stress, hypertension, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Fenny Crista A Panjaitan
- Marine Products Processing Study Program, Marine and Fisheries Polytechnic of Jembrana, Bali 82218, Indonesia
| | - Sin-Ting Shie
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Sung Hoon Park
- Department of Food and Nutrition, College of Life Sciences, Gangneug-Wonju National University, Gangneung 25457, Republic of Korea
| | - Tesalonika Sevi
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Wen-Ling Ko
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Rotimi E Aluko
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T2N2, Canada
| | - Yu-Wei Chang
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan
| |
Collapse
|
2
|
Zhu Y, Chen C, Dai Z, Wang H, Zhang Y, Zhao Q, Xue Y, Shen Q. Identification, screening and molecular mechanisms of natural stable angiotensin-converting enzyme (ACE) inhibitory peptides from foxtail millet protein hydrolysates: a combined in silico and in vitro study. Food Funct 2024; 15:7782-7793. [PMID: 38967438 DOI: 10.1039/d4fo01992j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
The stability of bioactive peptides under various food processing conditions is the basis for their use in industrial manufacturing. This study aimed to identify natural ACE inhibitors with excellent stability and investigate their physicochemical properties and putative molecular mechanisms. Five novel ACE inhibitory peptides (QDPLFPL, FPGVSPF, SPAQLLPF, LVPYRP, and WYWPQ) were isolated and identified using RP-HPLC and Nano LC-MS/MS with foxtail millet protein hydrolysates as the raw material. These peptides are non-toxic and exhibit strong ACE inhibitory activity in vitro (IC50 values between 0.13 mg mL-1 and 0.56 mg mL-1). In addition to QDPLFPL, FPGVSPF, SPAQLLPF, LVPYRP, and WYWPQ have excellent human intestinal absorption. Compared to FPGVSPF and SPAQLLPF, the stable helical structure of LVPYRP and WYWPQ allows them to maintain high stability under conditions that mimic gastrointestinal digestion and various food processing (temperatures, pH, sucrose, NaCl, citric acid, sodium benzoate, Cu2+, Zn2+, K+, Mg2+, Ca2+). The results of molecular docking and molecular dynamics simulation suggest that LVPYRP has greater stability and binding capacity to ACE than WYWPQ. LVPYRP might attach to the active pockets (S1, S2, and S1') of ACE via hydrogen bonds and hydrophobic interactions, then compete with Zn2+ in ACE to demonstrate its ACE inhibitory activity. The binding of LVPYRP to ACE enhances the rearrangement of ACE's active structural domains, with electrostatic and polar solvation energy contributing the most energy to the binding. Our findings suggested that LVPYRP derived from foxtail millet protein hydrolysates has the potential to be incorporated into functional foods to provide antihypertensive benefits.
Collapse
Affiliation(s)
- Yiqing Zhu
- College of Food Science and Nutritional Engineering, China Agricultural University, National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China.
| | - Changyu Chen
- College of Food Science and Nutritional Engineering, China Agricultural University, National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China.
| | - Zijian Dai
- College of Food Science and Nutritional Engineering, China Agricultural University, National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China.
| | - Han Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China.
| | - Yiyun Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China.
| | - Qingyu Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China.
| | - Yong Xue
- College of Food Science and Nutritional Engineering, China Agricultural University, National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China.
| | - Qun Shen
- College of Food Science and Nutritional Engineering, China Agricultural University, National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China.
| |
Collapse
|
3
|
Atma Y, Murray BS, Sadeghpour A, Goycoolea FM. Encapsulation of short-chain bioactive peptides (BAPs) for gastrointestinal delivery: a review. Food Funct 2024; 15:3959-3979. [PMID: 38568171 DOI: 10.1039/d3fo04195f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
The majority of known peptides with high bioactivity (BAPs) such as antihypertensive, antidiabetic, antioxidant, hypocholesterolemic, anti-inflammatory and antimicrobial actions, are short-chain sequences of less than ten amino acids. These short-chain BAPs of varying natural and synthetic origin must be bioaccessible to be capable of being adsorbed systemically upon oral administration to show their full range of bioactivity. However, in general, in vitro and in vivo studies have shown that gastrointestinal digestion reduces BAPs bioactivity unless they are protected from degradation by encapsulation. This review gives a critical analysis of short-chain BAP encapsulation and performance with regard to the oral delivery route. In particular, it focuses on short-chain BAPs with antihypertensive and antidiabetic activity and encapsulation methods via nanoparticles and microparticles. Also addressed are the different wall materials used to form these particles and their associated payloads and release kinetics, along with the current challenges and a perspective of the future applications of these systems.
Collapse
Affiliation(s)
- Yoni Atma
- School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, United Kingdom.
- Department of Food Science and Technology, Universitas Trilogi, Jakarta, 12760, Indonesia
| | - Brent S Murray
- School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, United Kingdom.
| | - Amin Sadeghpour
- School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, United Kingdom.
| | - Francisco M Goycoolea
- School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, United Kingdom.
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Campus de Espinardo, 30100, Murcia, Spain
| |
Collapse
|
4
|
Xiang L, Zheng Z, Guo X, Bai R, Zhao R, Chen H, Qiu Z, Qiao X. Two novel angiotensin I-converting enzyme inhibitory peptides from garlic protein: In silico screening, stability, antihypertensive effects in vivo and underlying mechanisms. Food Chem 2024; 435:137537. [PMID: 37797452 DOI: 10.1016/j.foodchem.2023.137537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 09/09/2023] [Accepted: 09/18/2023] [Indexed: 10/07/2023]
Abstract
This study aimed to screen novel angiotensin I-converting enzyme (ACE) inhibitory peptides from garlic proteins and to explore their underlying antihypertensive mechanisms in vivo. After simulated hydrolysis and in silico screening, two novel peptides (MGR and HDCF) were obtained with the highest ACE inhibitory activity (IC50 of 4.50 μM and 26.38 μM) and acted as competitive inhibitors. They interacted with key residues in the ACE receptor mainly through hydrogen bonding and exhibited excellent stability against high temperature, extreme pH, and gastrointestinal digestion. In spontaneously hypertensive rats, MGR and HDCF effectively lowered blood pressure after single or continuous treatments. This was mainly achieved by balancing the renin-angiotensin system, improving renal and cardiac impairment, and regulating endothelial dysfunction. These findings suggested that garlic proteins were potentially suitable materials to prepare ACE inhibitory peptides and provided two promising candidates for ACE inhibition as functional food ingredients.
Collapse
Affiliation(s)
- Lu Xiang
- Key Laboratory of Food Nutrition and Health in Universities of Shandong, College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong 271018, PR China
| | - Zhenjia Zheng
- Key Laboratory of Food Nutrition and Health in Universities of Shandong, College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong 271018, PR China
| | - Xiaojing Guo
- Key Laboratory of Food Nutrition and Health in Universities of Shandong, College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong 271018, PR China
| | - Ruoxi Bai
- Key Laboratory of Food Nutrition and Health in Universities of Shandong, College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong 271018, PR China
| | - Renjie Zhao
- Key Laboratory of Food Nutrition and Health in Universities of Shandong, College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong 271018, PR China
| | - Haihua Chen
- College of Food Science and Engineering, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, Shandong 266109, PR China
| | - Zhichang Qiu
- Department of Food Science, University of Massachusetts, 102 Holdsworth Way, Amherst, MA 01003, United States.
| | - Xuguang Qiao
- Key Laboratory of Food Nutrition and Health in Universities of Shandong, College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong 271018, PR China.
| |
Collapse
|
5
|
Prete V, Abate AC, Di Pietro P, De Lucia M, Vecchione C, Carrizzo A. Beneficial Effects of Spirulina Supplementation in the Management of Cardiovascular Diseases. Nutrients 2024; 16:642. [PMID: 38474769 DOI: 10.3390/nu16050642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
In recent decades, as a result of rising mortality rates due to cardiovascular diseases (CVDs), there has been a growing urgency to find alternative approaches to conventional pharmaceutical treatment to prevent the onset of chronic diseases. Arthrospira platensis, commonly known as Spirulina, is a blue-green cyanobacterium, classified as a "superfood", used worldwide as a nutraceutical food supplement due to its remarkable nutritional value, lack of toxicity, and therapeutic effects. Several scientific studies have evaluated the cardioprotective role of Spirulina. This article presents a comprehensive review of the therapeutic benefits of Spirulina in improving cardio- and cerebrovascular health. It focuses on the latest experimental and clinical findings to evaluate its antihypertensive, antidiabetic, and antihyperlipidemic properties. The objective is to highlight its potential in preventing and managing risk factors associated with cardiovascular disease (CVD).
Collapse
Affiliation(s)
- Valeria Prete
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081 Baronissi, Italy
| | - Angela Carmelita Abate
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081 Baronissi, Italy
| | - Paola Di Pietro
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081 Baronissi, Italy
| | | | - Carmine Vecchione
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081 Baronissi, Italy
- Vascular Physiopathology Unit, IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Albino Carrizzo
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081 Baronissi, Italy
- Vascular Physiopathology Unit, IRCCS Neuromed, 86077 Pozzilli, Italy
| |
Collapse
|
6
|
Ahmad MI, Li Y, Pan J, Liu F, Dai H, Fu Y, Huang T, Farooq S, Zhang H. Collagen and gelatin: Structure, properties, and applications in food industry. Int J Biol Macromol 2024; 254:128037. [PMID: 37963506 DOI: 10.1016/j.ijbiomac.2023.128037] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/01/2023] [Accepted: 11/09/2023] [Indexed: 11/16/2023]
Abstract
Food-producing animals have the highest concentration of collagen in their extracellular matrix. Collagen and gelatin are widely used in food industry due to their specific structural, physicochemical, and biochemical properties, which enable them to improve health and nutritional value as well as to increase the stability, consistency, and elasticity of food products. This paper reviews the structural and functional properties including inherent self-assembly, gel forming, water-retaining, emulsifying, foaming, and thickening properties of collagen and gelatin. Then the colloid structures formed by collagen such as emulsions, films or coatings, and fibers are summarized. Finally, the potential applications of collagen and gelatin in muscle foods, dairy products, confectionary and dessert, and beverage products are also reviewed. The objective of this review is to provide the current market value, progress as well as applications of collagen and its derivatives in food industry.
Collapse
Affiliation(s)
- Muhammad Ijaz Ahmad
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Yonghui Li
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA
| | - Jinfeng Pan
- National Engineering Research Centre for Seafood, Collaborative Innovation Centre of Provincial and Ministerial Co-construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Centre for Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Fei Liu
- State Key Laboratory of Food Science and Technology, Science Center for Future Foods, Jiangnan University, School of Food Science and Technology, International Joint Laboratory on Food Safety, Wuxi 214122, China
| | - Hongjie Dai
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yu Fu
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Tao Huang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315800, China
| | - Shahzad Farooq
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Hui Zhang
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
7
|
Cao S, Wang X, Xing L, Zhang W. Effects of Long-Term Administration of Bovine Bone Gelatin Peptides on Myocardial Hypertrophy in Spontaneously Hypertensive Rats. Nutrients 2023; 15:5021. [PMID: 38140281 PMCID: PMC10745459 DOI: 10.3390/nu15245021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/30/2023] [Accepted: 12/03/2023] [Indexed: 12/24/2023] Open
Abstract
The research purpose was to investigate the effects and the underlying molecular mechanisms of bovine bone gelatin peptides (BGP) on myocardial hypertrophy in spontaneously hypertensive rats (SHR). BGP relieved myocardial hypertrophy and fibrosis in SHR rats in a dose-dependent manner by reducing the left ventricular mass index, myocardial cell diameter, myocardial fibrosis area, and levels of myocardial hypertrophy markers (atrial natriuretic and brain natriuretic peptide). Label-free quantitative proteomics analysis showed that long-term administration of BGP changed the left ventricle proteomes of SHR. The 37 differentially expressed proteins in the high-dose BGP group participated in multiple signaling pathways associated with cardiac hypertrophy and fibrosis indicating that BGP could play a cardioprotective effect on SHR rats by targeting multiple signaling pathways. Further validation experiments showed that a high dose of BGP inhibited the expression of phosphoinositide 3-kinase (Pi3k), phosphorylated protein kinase B (p-Akt), and transforming growth factor-beta 1 (TGF-β1) in the myocardial tissue of SHR rats. Together, BGP could be an effective candidate for functional nutritional supplements to inhibit myocardial hypertrophy and fibrosis by negatively regulating the TGF-β1 and Pi3k/Akt signaling pathways.
Collapse
Affiliation(s)
- Songmin Cao
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021, China; (S.C.); (X.W.)
| | - Xinyu Wang
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021, China; (S.C.); (X.W.)
| | - Lujuan Xing
- Key Lab of Meat Processing and Quality Control, MOE, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China;
| | - Wangang Zhang
- Key Lab of Meat Processing and Quality Control, MOE, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China;
| |
Collapse
|
8
|
Liu H, Xu S, Xu Z, Cheng S, Du M. Absorption characteristics and the effect on vascular endothelial cell permeability of an anticoagulant peptide. Food Res Int 2023; 173:113405. [PMID: 37803744 DOI: 10.1016/j.foodres.2023.113405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/19/2023] [Accepted: 08/26/2023] [Indexed: 10/08/2023]
Abstract
In the former report, the casein peptide TKLTEEEKNR (PfCN) exhibits strong thrombin inhibitory activity in vitro. Its absorption capabilities, however, are unclear. Therefore, we studied its absorption characteristics both in vivo and in vitro. PfCN was carried by cells from the apical chamber to the basolateral chamber via active translocation in Caco-2 cells. Meanwhile, it can also be transported by HUVECs. We found that PfCN can be taken up by HUVECs using confocal laser imaging. PfCN has been proven to have good absorption properties in in vivo experiments. After five minutes of oral treatment, PfCN was identified in the blood, peaking at 82.75 ± 36.52 ng/mL in 30 min. And PfCN vanished from the blood circulation after 120 min. According to in vivo experiments, excessive concentrations of PfCN will alter the permeability of HUVECs. As a result, there is a foundation for PfCN application in the food sector. Meanwhile, we also hope this article can give an idea to the researchers who studying the absorption of functional peptides.
Collapse
Affiliation(s)
- Hanxiong Liu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Shiqi Xu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Zhe Xu
- College of Life Sciences, Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Dalian 116029, China
| | - Shuzhen Cheng
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Ming Du
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
9
|
Shao M, Wu H, Wang B, Zhang X, Gao X, Jiang M, Su R, Shen X. Identification and Characterization of Novel ACE Inhibitory and Antioxidant Peptides from Sardina pilchardus Hydrolysate. Foods 2023; 12:foods12112216. [PMID: 37297461 DOI: 10.3390/foods12112216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/13/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Sardina pilchardus is a valuable source of bioactive peptides with potential applications in functional foods. In this study, we investigated the angiotensin-converting enzyme (ACE) inhibitory activity of Sardina pilchardus protein hydrolysate (SPH) produced using dispase and alkaline protease. Our results showed that the low molecular mass fractions (<3 kDa) obtained through ultrafiltration exhibited more effective ACE inhibition, as indicated by screening with ACE inhibitory activity. We further identified the low molecular mass fractions (<3 kDa) using an LC-MS/MS rapid screening strategy. A total of 37 peptides with potential ACE inhibitory activity were identified based on high biological activity scores, non-toxicity, good solubility, and novelty. Molecular docking was used to screen for peptides with ACE inhibitory activity, resulting in the identification of 11 peptides with higher -CDOCKER ENERGY and -CDOCKER INTERACTION ENERGY scores than lisinopril. The sequences FIGR, FILR, FQRL, FRAL, KFL, and KLF were obtained by synthesizing and validating these 11 peptides in vitro, all of which had ACE inhibitory activity, as well as zinc-chelating capacity. All six peptides were found to bind to the three active pockets (S1, S2, and S1') of ACE during molecular docking, indicating that their inhibition patterns were competitive. Further analysis of the structural characteristics of these peptides indicated that all six peptides contain phenylalanine, which suggests that they may possess antioxidant activities. After experimental verification, it was found that all six of these peptides have antioxidant activities, and we also found that the SPH and ultrafiltration fractions of SPH had antioxidant activities. These findings suggest that Sardina pilchardus may be a potential source of natural antioxidants and ACE inhibitors for the development of functional foods, and using LC-MS/MS in combination with an online database and molecular docking represents a promising, effective, and accurate approach for the discovery of novel ACE inhibitory peptides.
Collapse
Affiliation(s)
- Mingyang Shao
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
- Key Laboratory of Food Nutrition, Functional Food of Hainan Province, Haikou 570228, China
- Hainan Engineering Research Center, Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Haixing Wu
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
- Key Laboratory of Food Nutrition, Functional Food of Hainan Province, Haikou 570228, China
- Hainan Engineering Research Center, Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Bohui Wang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
- Key Laboratory of Food Nutrition, Functional Food of Hainan Province, Haikou 570228, China
- Hainan Engineering Research Center, Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Xuan Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
- Key Laboratory of Food Nutrition, Functional Food of Hainan Province, Haikou 570228, China
- Hainan Engineering Research Center, Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Xia Gao
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
- Key Laboratory of Food Nutrition, Functional Food of Hainan Province, Haikou 570228, China
- Hainan Engineering Research Center, Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Mengqi Jiang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
- Key Laboratory of Food Nutrition, Functional Food of Hainan Province, Haikou 570228, China
- Hainan Engineering Research Center, Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Ruiheng Su
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
- Key Laboratory of Food Nutrition, Functional Food of Hainan Province, Haikou 570228, China
- Hainan Engineering Research Center, Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Xuanri Shen
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
- Key Laboratory of Food Nutrition, Functional Food of Hainan Province, Haikou 570228, China
- Hainan Engineering Research Center, Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou 570228, China
| |
Collapse
|
10
|
Bougatef H, de la Vega-Fernández C, Sila A, Bougatef A, Martínez-Alvarez O. Identification of ACE I-Inhibitory Peptides Released by the Hydrolysis of Tub Gurnard ( Chelidonichthys lucerna) Skin Proteins and the Impact of Their In Silico Gastrointestinal Digestion. Mar Drugs 2023; 21:131. [PMID: 36827172 PMCID: PMC9967738 DOI: 10.3390/md21020131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Tub gurnard is a highly abundant fishery species caught as a discard in the Mediterranean Sea. This work proposes its valorisation through the release of potential antihypertensive peptides and glycosaminoglycans (GAGs) through the controlled hydrolysis of tub gurnard skin proteins. Four proteases (Esperase, Alcalase, Trypsin and Pronase E) were used to obtain potent angiotensin converting enzyme I (ACE)-inhibitory hydrolysates. Peptides and GAGs were separated and evaluated for their antihypertensive potential by fluorometry. The peptide-rich fractions derived from the Esperase and Alcalase hydrolysates showed very low IC50 values (47 and 68 μg/mL, respectively). Only the GAGs from the Trypsin and Esperase hydrolysates were relevant ACE inhibitors (63 and 52% at 1 mg/mL, respectively). The peptide composition of the most potent ACE-inhibitory fractions derived from the Esperase and Alcalase hydrolysates (IC50 values of 33 and 29 μg/mL, respectively) was analysed by RP-LC-ESI-MS/MS. The analysis suggests that the ACE-inhibitory activity is related to the peptide hydrophobicity, as well as to the presence of specific residues at any of the last four C-terminal positions. The in silico gastrointestinal digestion of these fractions yielded small peptides with antihypertensive potential.
Collapse
Affiliation(s)
- Hajer Bougatef
- Laboratory for the Improvement of Plants and Valorization of Agroresources, National School of Engineering of Sfax (ENIS), University of Sfax, Sfax 3038, Tunisia
| | | | - Assaad Sila
- Laboratory for the Improvement of Plants and Valorization of Agroresources, National School of Engineering of Sfax (ENIS), University of Sfax, Sfax 3038, Tunisia
- Department of Life Sciences, Faculty of Sciences of Gafsa, University of Gafsa, Gafsa 2100, Tunisia
| | - Ali Bougatef
- Laboratory for the Improvement of Plants and Valorization of Agroresources, National School of Engineering of Sfax (ENIS), University of Sfax, Sfax 3038, Tunisia
| | - Oscar Martínez-Alvarez
- Institute of Food Science, Technology and Nutrition (ICTAN, CSIC), 6 José Antonio Novais St, 28040 Madrid, Spain
| |
Collapse
|
11
|
Bravo FI, Calvo E, López-Villalba RA, Torres-Fuentes C, Muguerza B, García-Ruiz A, Morales D. Valorization of Chicken Slaughterhouse Byproducts to Obtain Antihypertensive Peptides. Nutrients 2023; 15:457. [PMID: 36678328 PMCID: PMC9864718 DOI: 10.3390/nu15020457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Hypertension (HTN) is the leading cause of premature deaths worldwide and the main preventable risk factor for cardiovascular diseases. Therefore, there is a current need for new therapeutics to manage this condition. In this regard, protein hydrolysates containing antihypertensive bioactive peptides are of increasing interest. Thus, agri-food industry byproducts have emerged as a valuable source to obtain these hydrolysates as they are rich in proteins and inexpensive. Among these, byproducts from animal origin stand out as they are abundantly generated worldwide. Hence, this review is focused on evaluating the potential role of chicken slaughterhouse byproducts as a source of peptides for managing HTN. Several of these byproducts such as blood, bones, skins, and especially, chicken feet have been used to obtain protein hydrolysates with angiotensin-converting enzyme (ACE)-inhibitory activity and blood pressure-lowering effects. An increase in levels of endogenous antioxidant compounds, a reduction in ACE activity, and an improvement of HTN-associated endothelial dysfunction were the mechanisms underlying their effects. However, most of these studies were carried out in animal models, and further clinical studies are needed in order to confirm these antihypertensive properties. This would increase the value of these byproducts, contributing to the circular economy model of slaughterhouses.
Collapse
Affiliation(s)
| | | | | | | | | | - Almudena García-Ruiz
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | | |
Collapse
|
12
|
Zhu Z, Guo H, Xu Y, Pius Bassey A, Ali A, Huang M, Huang J. ACE Inhibitory Peptides Derived from Muscovy Duck ( Cairina moschata) Plasma. Foods 2022; 12:50. [PMID: 36613266 PMCID: PMC9818667 DOI: 10.3390/foods12010050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/17/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022] Open
Abstract
In this study, angiotensin-converting enzyme inhibitory peptides (ACE-IPs) derived from Muscovy duck (Cairina moschata) plasma hydrolysate (MDPH) were investigated. According to the general research protocol for bioactive peptides, the crude ACE-IPs of Muscovy duck plasma were separated and purified by ultrafiltration, gel chromatography and reversed-phase high-performance liquid chromatography (RP-HPLC). Then the components with the highest ACE inhibition potential were selected for identification. Finally, the inhibition mechanism was explored by molecular docking and in silico simulated digestion. A total of 121 peptides was detected, and five were screened for synthesis verification and molecular docking. The peptide VALSSLRP revealed high ACE inhibitory activity (91.67 ± 0.73%) because this peptide bound tightly to the S1' pocket and formed 3 hydrogen bonds. Meaningfully, this work provides some new information about the generation of ACE-IPs derived from duck blood plasma.
Collapse
Affiliation(s)
- Zongshuai Zhu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Haoyu Guo
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yan Xu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Anthony Pius Bassey
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ahtisham Ali
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ming Huang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jichao Huang
- College of Engineering, Nanjing Agricultural University, Nanjing 210031, China
| |
Collapse
|
13
|
Response surface optimization of selenium-enriched Moringa oleifera seed peptides with antioxidant, ACEI and XOI activities. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01690-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Gao X, Bu F, Yi D, Liu H, Hou Z, Zhang C, Wang C, Lin JM, Dang Y, Zhao Y. Molecular docking and antihypertensive effects of a novel angiotensin-I converting enzyme inhibitory peptide from yak bone. Front Nutr 2022; 9:993744. [PMID: 36313093 PMCID: PMC9605770 DOI: 10.3389/fnut.2022.993744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
A novel angiotensin-converting enzyme (ACE) inhibitory peptide ser-ala-ser-val-ile-pro-val-ser-ala-val-arg-ala (SASVIPVSAVRA) was purified and identified from yak bone by Electrospray Ionization-Time of Flight-Mass Spectrometry (ESI-TOF-MS). Results in vitro showed that the peptide exhibited strong ACE inhibition activities with an IC50 of 54.22 μM. Molecular docking results showed the binding between the peptide SASVIPVSAVRA and ACE mainly driven by van der Waals forces, hydrogen bonds and metal receptor. Interestingly, the ACE inhibition activities of the peptide increased about 19% after digestion, but none of its metabolites showed stronger activity than it. The in vivo experiment showed that the antihypertensive effect of peptide SASVIPVSAVRA at dose of 30 mg/kg is nearly equal to Captopril at dose of 10 mg/kg to spontaneously hypertensive rats (SHRs). The antihypertensive effect mechanism of SASVIPVSAVRA should be further studied through plasma metabolomics and bioanalysis. Structure analysis of amino acids and peptides produced during digestion may help better understand the antihypertensive effect of peptides.
Collapse
Affiliation(s)
- Xinchang Gao
- Department of Chemistry, Tsinghua University, Beijing, China
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, China
| | - Fan Bu
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Dalong Yi
- Anhui Guotai Biotechnology Co., Ltd., Xuancheng, China
| | - Huaigao Liu
- Anhui Guotai Biotechnology Co., Ltd., Xuancheng, China
| | - Zhiying Hou
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, China
| | - Chaoying Zhang
- Department of Chemistry, Tsinghua University, Beijing, China
| | - Chang Wang
- Department of Chemistry, Tsinghua University, Beijing, China
| | - Jin-Ming Lin
- Department of Chemistry, Tsinghua University, Beijing, China
| | - Yali Dang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Yufen Zhao
- Department of Chemistry, Tsinghua University, Beijing, China
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, China
| |
Collapse
|
15
|
Cao S, Wang Z, Xing L, Zhou L, Zhang W. Bovine Bone Gelatin-Derived Peptides: Food Processing Characteristics and Evaluation of Antihypertensive and Antihyperlipidemic Activities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9877-9887. [PMID: 35917452 DOI: 10.1021/acs.jafc.2c02982] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This study aimed to evaluate the food processing properties of bovine bone gelatin-derived peptides (BGPs) and their effects and mechanisms on hypertension and hypertension complications in spontaneously hypertensive rats (SHRs). BGPs had good acid, high temperature, and NaCl resistance abilities in vitro. Additionally, Maillard reaction of BGPs with low-dose reducing sugar (≤15%) exhibited a free radical scavenging effect. BGPs significantly reduced the blood pressure, triglyceride levels, and the low-density lipoprotein cholesterol/high-density lipoprotein cholesterol ratio in SHRs through downregulated angiotensin converting enzyme (ACE), angiotensin II (Ang II), and Ang II type 1 receptor (AT1R) levels and the upregulated Ang II type 2 receptor (AT2R) level. In brief, BGP could alleviate hypertension and dyslipidemia in SHRs by inhibiting ACE/Ang II/AT1R and activating the Ang II/AT2R signaling pathway. Our study suggests that BGP has good food processing properties and could be a potential nutraceutical for antihypertensive and antihyperlipidemic issues.
Collapse
Affiliation(s)
- Songmin Cao
- Key Lab of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Products Processing, MOA; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing 210095, P. R. China
- School of Food and Wine, Ningxia University, Yinchuan 750021, P. R. China
| | - Zixu Wang
- Key Lab of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Products Processing, MOA; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Lujuan Xing
- Key Lab of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Products Processing, MOA; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Lei Zhou
- Key Lab of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Products Processing, MOA; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Wangang Zhang
- Key Lab of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Products Processing, MOA; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing 210095, P. R. China
| |
Collapse
|
16
|
Abstract
Bioactive peptides with high potency against numerous human disorders have been regarded as a promising therapy in disease control. These peptides could be released from various dietary protein sources through hydrolysis processing using physical conditions, chemical agents, microbial fermentation, or enzymatic digestions. Considering the diversity of the original proteins and the complexity of the multiple structural peptides that existed in the hydrolysis mixture, the screening of bioactive peptides will be a challenge task. Well-organized and well-designed methods are necessarily required to enhance the efficiency of studying the potential peptides. This article, hence, provides an overview of bioactive peptides with an emphasis on the current strategy used for screening and characterization methods. Moreover, the understanding of the biological activities of peptides, mechanism inhibitions, and the interaction of the complex of peptide–enzyme is commonly evaluated using specific in vitro assays and molecular docking analysis.
Collapse
|
17
|
Samatra MY, Noor NQIM, Razali UHM, Bakar J, Shaarani SM. Bovidae-based gelatin: Extractions method, physicochemical and functional properties, applications, and future trends. Compr Rev Food Sci Food Saf 2022; 21:3153-3176. [PMID: 35638329 DOI: 10.1111/1541-4337.12967] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 03/28/2022] [Accepted: 04/04/2022] [Indexed: 11/29/2022]
Abstract
Gelatin is one of the most important multifunctional biopolymers and is widely used as an essential ingredient in food, pharmaceutical, and cosmetics. Porcine gelatin is regarded as the leading source of gelatin globally then followed by bovine gelatin. Porcine sources are favored over other sources since they are less expensive. However, porcine gelatin is religiously prohibited to be consumed by Muslims and the Jewish community. It is predicted that the global demand for gelatin will increase significantly in the future. Therefore, a sustainable source of gelatin with efficient production and free of disease transmission must be developed. The highest quality of Bovidae-based gelatin (BG) was acquired through alkaline pretreatment, which displayed excellent physicochemical and rheological properties. The utilization of mammalian- and plant-based enzyme significantly increased the gelatin yield. The emulsifying and foaming properties of BG also showed good stability when incorporated into food and pharmaceutical products. Manipulation of extraction conditions has enabled the development of custom-made gelatin with desired properties. This review highlighted the various modifications of extraction and processing methods to improve the physicochemical and functional properties of Bovidae-based gelatin. An in-depth analysis of the crucial stage of collagen breakdown is also discussed, which involved acid, alkaline, and enzyme pretreatment, respectively. In addition, the unique characteristics and primary qualities of BG including protein content, amphoteric property, gel strength, emulsifying and viscosity properties, and foaming ability were presented. Finally, the applications and prospects of BG as the preferred gelatin source globally were outlined.
Collapse
Affiliation(s)
- Muhammad Yazid Samatra
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, Sabah, Malaysia
| | | | - Umi Hartina Mohamad Razali
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, Sabah, Malaysia
| | - Jamilah Bakar
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - Sharifudin Md Shaarani
- Food Biotechnology Programme, Faculty of Science and Technology, Universiti Sains Islam Malaysia, Nilai, Negeri Sembilan, Malaysia
| |
Collapse
|
18
|
Tang C, Zhou K, Zhu Y, Zhang W, Xie Y, Wang Z, Zhou H, Yang T, Zhang Q, Xu B. Collagen and its derivatives: From structure and properties to their applications in food industry. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107748] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
19
|
The Anti-Inflammatory Effect of Bovine Bone-Gelatin-Derived Peptides in LPS-Induced RAW264.7 Macrophages Cells and Dextran Sulfate Sodium-Induced C57BL/6 Mice. Nutrients 2022; 14:nu14071479. [PMID: 35406093 PMCID: PMC9003490 DOI: 10.3390/nu14071479] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/27/2022] [Accepted: 03/29/2022] [Indexed: 01/14/2023] Open
Abstract
The bioactive peptides hydrolyzed from bone collagen have been found to possess health-promoting effects by regulating chronic diseases such as arthritis and hypertension. In the current study, the anti-inflammatory effect of bovine bone gelatin peptides (GP) was evaluated in 264.7 macrophages cells and followed by animal trials to investigate their interference on inflammatory cytokines and gut microbiota compositions in dextran sodium sulfate (DSS)-induced C57BL/6 mice. The GP was demonstrated to alleviate the extra secretion of interleukin-6 (IL-6), nitric oxide (NO) and tumor necrosis factor-α(TNF-α) in lipopolysaccharide (LPS)-induced RAW264.7 cells. In DSS-induced colitis mice, the gavage of GP was demonstrated to ameliorate the IBD symptoms of weight loss, hematochezia and inflammatory infiltration in intestinal tissues. In serum, the proinflammatory cytokines (TNF-α,IL-6, MCP-1, IL-1β) were suppressed along with the decreasing effect on toll-like receptor 4 and cyclooxygenase-2 by GP treatment. In the analysis of gut microbiota, the GP was checked to modulate the abundance of Akkermansia, Parasutterella, Peptococcus, Bifidobacterium and Saccharibacteria. The above results imply that GP could attenuate DSS-induced colitis by suppressing the inflammatory cytokines and regulating the gut microbiota.
Collapse
|
20
|
Wenhui T, Shumin H, Yongliang Z, Liping S, Hua Y. Identification of in vitro angiotensin-converting enzyme and dipeptidyl peptidase IV inhibitory peptides from draft beer by virtual screening and molecular docking. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:1085-1094. [PMID: 34309842 DOI: 10.1002/jsfa.11445] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/06/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Hypertension and diabetes are two kinds of senile diseases which often occur simultaneously. The commonly used drugs in clinic may produce certain side effects. Food-derived polypeptide is a kind of polypeptide with great development potential, which has many functions of regulating human physiological function. Beer is rich in nutrition but there are few researches on bioactive peptides in beer. RESULTS In this study, a rapid virtual screening method was established to obtain bioactive peptides from Tsingtao draft beer. The peptide sequence was analyzed by ultra-performance liquid chromatography-quadrupole-Orbitrap-tandem mass spectrometry (UPLC-Q-Orbitrap-MS2 ), and 50 peptides were identified. Eight peptides with potential biological activities were screened by using Peptide Ranker software and previous literature references. On the basis of absorption prediction, toxicity prediction, and molecular docking analysis, LNFDPNR and LPQQQAQFK were finally confirmed. The molecular docking results showed that two peptides could bind angiotensin-converting enzyme (ACE) and dipeptidyl peptidase IV (DPP-IV) tightly by hydrogen bonding and hydrophobic interaction. The in vitro activity evaluation results showed that two peptides had obvious ACE and DPP-IV inhibitory activity. CONCLUSION This study established a method for rapidly screening bioactive peptides from Tsingtao draft beer, screened two ACE and DPP-IV inhibitory peptides in beer and analyzed their active action mechanism. This article may have great theoretical significance and practical value to further explore the health function of beer. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Tian Wenhui
- State Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao Brewery Co. Ltd. Qingdao, Qingdao, China
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming, China
| | - Hu Shumin
- State Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao Brewery Co. Ltd. Qingdao, Qingdao, China
| | - Zhuang Yongliang
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming, China
| | - Sun Liping
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming, China
| | - Yin Hua
- State Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao Brewery Co. Ltd. Qingdao, Qingdao, China
| |
Collapse
|
21
|
Mirzapour-Kouhdasht A, Lee CW, Yun H, Eun JB. Structure-function relationship of fermented skate skin gelatin-derived bioactive peptides: a peptidomics approach. Food Sci Biotechnol 2021; 30:1685-1693. [PMID: 34925943 DOI: 10.1007/s10068-021-00998-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 10/12/2021] [Accepted: 10/18/2021] [Indexed: 11/30/2022] Open
Abstract
In this study, we investigated the multi-functionality of bioactive peptides derived from fermented skate (Raja kenojei) skin gelatin hydrolysates. The extracted gelatin was hydrolyzed using a combination of food grade subtilisin and actinidin. The hydrolysates were then fractionated via ultrafiltration, and the fractions with the highest dipeptidyl peptidase-IV (DPP-IV) inhibitory, angiotensin-converting enzyme (ACE) inhibitory, and antibacterial proprieties were further purified via ion exchange, solid phase extraction, and reverse phase high performance liquid chromatography. Analysis of the obtained extract revealed a direct relationship between hydrolysis time, degree of hydrolysis, and biological activities. The peptides GRPGNRGE (P1) and AKDYEVDAT (P2), with a molecular weight of 841.42 and 1010.46 Da, respectively, were identified through tandem mass spectrometry. P1 had a lower ACE and DPP-IV inhibitory activity, with a half maximal inhibitory concentration [IC50] of 0.74 and 0.69 mg.mL-1, respectively, than P2 (0.52 and 0.58 mg.mL-1, respectively). Antibacterial analysis showed similar results, with a minimum inhibitory concentration of 0.52 and 0.46 mg.mL-1 against Staphylococcus aureus (highest activity) and 1.75 and 1.44 mg.mL-1 against Klebsiella pneumonia (lowest activity) for P1 and P2, respectively. Overall, this study revealed two fish gelatin-derived multifunctional peptides, exhibiting ACE inhibitory, DPP-IV inhibitory, and antibacterial activities, as natural nutraceuticals. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-021-00998-6.
Collapse
Affiliation(s)
- Armin Mirzapour-Kouhdasht
- Department of Food Science and Biotechnology, Graduate School of Chonnam National University, 77 Yongbong-ro Buk-gu, Gwangju, 61186 South Korea.,School of Agriculture and Food Science, University College Dublin, Belfield 4 Dublin, Ireland
| | - Chul Won Lee
- Department of Chemistry, Chonnam National University, Gwangju, 61186 South Korea
| | - Hyosuk Yun
- Department of Chemistry, Chonnam National University, Gwangju, 61186 South Korea
| | - Jong-Bang Eun
- Department of Food Science and Biotechnology, Graduate School of Chonnam National University, 77 Yongbong-ro Buk-gu, Gwangju, 61186 South Korea
| |
Collapse
|
22
|
Lammi C, Boschin G, Bollati C, Arnoldi A, Galaverna G, Dellafiora L. A heuristic, computer-driven and top-down approach to identify novel bioactive peptides: A proof-of-principle on angiotensin I converting enzyme inhibitory peptides. Food Res Int 2021; 150:110753. [PMID: 34865771 DOI: 10.1016/j.foodres.2021.110753] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/08/2021] [Accepted: 10/09/2021] [Indexed: 11/26/2022]
Abstract
Bioactive peptides are short peptides (3-20 amino acid residues in length) endowed of specific biological activities. The identification and characterization of bioactive peptides of food origin are crucial to better understand the physiological consequences of food, as well as to design novel foods, ingredients, supplements, and diets to counteract mild metabolic disorders. For this reason, the identification of bioactive peptides is also relevant from a pharmaceutical standpoint. Nevertheless, the systematic identification of bioactive sequences of food origin is still challenging and relies mainly on the so defined "bottom-up" approaches, which rarely results in the total identification of most active sequences. Conversely, "top-down" approaches aim at identifying bioactive sequences with certain features and may be more suitable for the precise identification of very potent bioactive peptides. In this context, this work presents a top-down, computer-assisted and hypothesis-driven identification of potent angiotensin I converting enzyme inhibitory tripeptides, as a proof of principle. A virtual library of 6840 tripeptides was screened in silico to identify potential highly potent inhibitory peptides. Then, computational results were confirmed experimentally and a very potent novel sequence, LMP was identified. LMP showed an IC50 of 15.8 and 6.8 µM in cell-free and cell-based assays, respectively. In addition, a bioinformatics approach was used to search potential food sources of LMP. Yolk proteins were identified as a possible relevant source to analyze in further experiments. Overall, the method presented may represent a powerful and versatile framework for a systematic, high-throughput and top-down identification of bioactive peptides.
Collapse
Affiliation(s)
- Carmen Lammi
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy
| | - Giovanna Boschin
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy
| | - Carlotta Bollati
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy
| | - Anna Arnoldi
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy
| | - Gianni Galaverna
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Luca Dellafiora
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy.
| |
Collapse
|
23
|
Lagoutte-Renosi J, Allemand F, Ramseyer C, Yesylevskyy S, Davani S. Molecular modeling in cardiovascular pharmacology: Current state of the art and perspectives. Drug Discov Today 2021; 27:985-1007. [PMID: 34863931 DOI: 10.1016/j.drudis.2021.11.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 11/02/2021] [Accepted: 11/25/2021] [Indexed: 01/10/2023]
Abstract
Molecular modeling in pharmacology is a promising emerging tool for exploring drug interactions with cellular components. Recent advances in molecular simulations, big data analysis, and artificial intelligence (AI) have opened new opportunities for rationalizing drug interactions with their pharmacological targets. Despite the obvious utility and increasing impact of computational approaches, their development is not progressing at the same speed in different fields of pharmacology. Here, we review current in silico techniques used in cardiovascular diseases (CVDs), cardiological drug discovery, and assessment of cardiotoxicity. In silico techniques are paving the way to a new era in cardiovascular medicine, but their use somewhat lags behind that in other fields.
Collapse
Affiliation(s)
- Jennifer Lagoutte-Renosi
- EA 3920 Université Bourgogne Franche-Comté, 25000 Besançon, France; Laboratoire de Pharmacologie Clinique et Toxicologie-CHU de Besançon, 25000 Besançon, France
| | - Florentin Allemand
- EA 3920 Université Bourgogne Franche-Comté, 25000 Besançon, France; Laboratoire Chrono Environnement UMR CNRS 6249, Université de Bourgogne Franche-Comté, 16 route de Gray, 25000 Besançon, France
| | - Christophe Ramseyer
- Laboratoire Chrono Environnement UMR CNRS 6249, Université de Bourgogne Franche-Comté, 16 route de Gray, 25000 Besançon, France
| | - Semen Yesylevskyy
- Laboratoire Chrono Environnement UMR CNRS 6249, Université de Bourgogne Franche-Comté, 16 route de Gray, 25000 Besançon, France; Department of Physics of Biological Systems, Institute of Physics of The National Academy of Sciences of Ukraine, Nauky Sve. 46, Kyiv, Ukraine; Receptor.ai inc, 16192 Coastal Highway, Lewes, DE, USA
| | - Siamak Davani
- EA 3920 Université Bourgogne Franche-Comté, 25000 Besançon, France; Laboratoire de Pharmacologie Clinique et Toxicologie-CHU de Besançon, 25000 Besançon, France.
| |
Collapse
|
24
|
Boyacı D, Kavur PB, Gulec S, Yemenicioğlu A. Physicochemical and Active Properties of Gelatine-Based Composite Gels Loaded with Lysozyme and Green Tea Polyphenols. Food Technol Biotechnol 2021; 59:337-348. [PMID: 34759765 PMCID: PMC8542185 DOI: 10.17113/ftb.59.03.21.7029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 07/14/2021] [Indexed: 12/26/2022] Open
Abstract
Research background The use of gel-based systems as a novel method for the delivery of natural antimicrobial, antioxidant and bioactive compounds is a developing innovative solution for the food industry. This research aims to develop multifunctional active edible gels based on gelatine and its composites with improved mechanical properties. Experimental approach Antilisterial and bioactive composite gels showing different physical and active properties from classical gelatine gel were developed by loading lysozyme and green tea extract into gelatine/starch and gelatine/wax composite gels. Mechanical properties, swelling profiles, colour, release profiles, and antimicrobial and bioactive properties of the gels were characterised. Results and conclusions Gelatine/wax gels showed 1.3- to 2.1-fold higher firmness and cutting strength than gelatine and gelatine/starch composite gels that had similar firmness and cutting strengths. Work to shear of both composite gels was 1.4- to 1.9-fold higher than that of gelatine gel. The gelatine/starch gel showed the highest water absorption capacity. Green tea extract reduced soluble lysozyme in all gels, but composite gels contained higher amount of soluble lysozyme than gelatine gel. All the gels with lysozyme inhibited Listeria innocua growth in the broth media, while green tea extract showed antilisterial activity only in gelatine/wax gels. Gels with green tea extract showed antioxidant, antidiabetic (α-glucosidase and α-amylase inhibition), antihypertensive (angiotensin-converting enzyme inhibition) and antiproliferative activities (on Caco-2 human colon carcinoma cells). However, gelatine and gelatine/wax gels showed the highest antioxidant and antidiabetic activity. The gelatine/wax gels prevented phenolic browning, while green tea extract in other gels showed moderate or extensive browning. Novelty and scientific contribution This work clearly showed the possibility of improving mechanical properties and modifying water absorption and controlled release profiles of gelatine gels using gelatine/starch and gelatine/wax composites. The novel composite gels reduced browning of incorporated polyphenols and showed antilisterial and bioactive properties.
Collapse
Affiliation(s)
- Derya Boyacı
- Department of Food Engineering, Izmir Institute of Technology, 35430 Gulbahce Koyu, Urla, Izmir, Turkey.,School of Engineering, University of Lincoln, LN6 7TS Brayford Pool, Lincoln, United Kingdom
| | - Pelin Barış Kavur
- Department of Food Engineering, Izmir Institute of Technology, 35430 Gulbahce Koyu, Urla, Izmir, Turkey
| | - Sukru Gulec
- Molecular Nutrition and Human Physiology Laboratory, Faculty of Engineering, Izmir Institute of Technology, 35430 Gulbahce Koyu, Urla, Izmir, Turkey
| | - Ahmet Yemenicioğlu
- Department of Food Engineering, Izmir Institute of Technology, 35430 Gulbahce Koyu, Urla, Izmir, Turkey
| |
Collapse
|
25
|
Xiang L, Qiu Z, Zhao R, Zheng Z, Qiao X. Advancement and prospects of production, transport, functional activity and structure-activity relationship of food-derived angiotensin converting enzyme (ACE) inhibitory peptides. Crit Rev Food Sci Nutr 2021; 63:1437-1463. [PMID: 34521280 DOI: 10.1080/10408398.2021.1964433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Food-derived antihypertensive peptides have attracted increasing attention in functional foods for health promotion, due to their high biological activity, low toxicity and easy metabolism in the human body. Angiotensin converting enzyme (ACE) is a key enzyme that causes the increase in blood pressure in mammals. However, few reviews have summarized the current understanding of ACE inhibitory peptides and their knowledge gaps. This paper focuses on the food origins and production methods of ACE inhibitory peptides. Compared with conventional methods, the advanced technologies and emerging bioinformatics approaches have recently been applied for efficient and targeted release of ACE inhibitory peptides from food proteins. Furthermore, the transport and underlying mechanisms of ACE inhibitory peptides are emphatically described. Molecular modeling and the Michaelis-Menten equation can provide information on how ACE inhibitors function. Finally, we discuss the structure-activity relationships and other bio-functional properties of ACE inhibitory peptides. Molecular weight, hydrophobic amino acid residues, charge, amino acid composition and sequence (especially at the C-terminal and N-terminal) have a significant influence on ACE inhibitory activity. Some studies are required to increase productivity, improve bioavailability of peptides, evaluate their bio-accessibility and efficiency on reducing blood pressure to provide a reference for the development and application of health products and auxiliary treatment drugs.
Collapse
Affiliation(s)
- Lu Xiang
- College of Food Science and Engineering, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Shandong Agricultural University, Tai'an, Shandong, China
| | - Zhichang Qiu
- College of Food Science and Engineering, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Shandong Agricultural University, Tai'an, Shandong, China
| | - Renjie Zhao
- College of Food Science and Engineering, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Shandong Agricultural University, Tai'an, Shandong, China
| | - Zhenjia Zheng
- College of Food Science and Engineering, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Shandong Agricultural University, Tai'an, Shandong, China
| | - Xuguang Qiao
- College of Food Science and Engineering, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Shandong Agricultural University, Tai'an, Shandong, China
| |
Collapse
|
26
|
Bio/multi-functional peptides derived from fish gelatin hydrolysates: Technological and functional properties. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102152] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
27
|
Xing L, Li G, Toldrá F, Zhang W. The physiological activity of bioactive peptides obtained from meat and meat by-products. ADVANCES IN FOOD AND NUTRITION RESEARCH 2021; 97:147-185. [PMID: 34311899 DOI: 10.1016/bs.afnr.2021.02.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Meat and meat products constitute an important source of nutrients and play vital roles for growth, maintenance and repair of the body. In addition to the high quality of proteins, meat is also regarded as a major resource to produce bioactive peptides. Meat processing industry also produces by-products such as bones, blood and viscera, which could be further used for the production of bioactive compounds. In the physiological analysis, meat bioactive peptides have been reported to exert antioxidant, anti-hypertensive, anti-inflammatory, anti-microbial and antitumoral activities, which endow nutritional and functional value of meat. With the objective to exert the functional effect, the bioavailability should also be considered due to the degradation by digestion enzymes and the absorption process in intestinal mucosa. In this chapter, the general source, the enzymatic hydrolysis, the physiological effects as well as the bioavailability of bioactive peptides in meat are discussed.
Collapse
Affiliation(s)
- Lujuan Xing
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, PR China
| | - Guanhao Li
- College of Agriculture, Yanbian University, Yanji, PR China
| | - Fidel Toldrá
- Instituto de Agroquímica y Tecnología de Alimentos (CSIC), Paterna, Valencia, Spain
| | - Wangang Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, PR China.
| |
Collapse
|
28
|
Cao C, Xiao Z, Ge C, Wu Y. Animal by-products collagen and derived peptide, as important components of innovative sustainable food systems-a comprehensive review. Crit Rev Food Sci Nutr 2021; 62:8703-8727. [PMID: 34080446 DOI: 10.1080/10408398.2021.1931807] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In 2020, the world's food crisis and health industry ushered into a real outbreak. On one side, there were natural disasters such as the novel coronavirus (2019-nCoV), desert locusts, floods, and droughts exacerbating the world food crisis, while on the other side, the social development and changes in lifestyles prompted the health industry to gradually shift from a traditional medical model to a new pattern of prevention, treatment, and nourishment. Therefore, this article reviews animal by-products collagen and derived peptide, as important components of innovative sustainable food systems. The review also considered the preparation, identification, and characterization of animal by-product collagen and collagen peptides as well as their impacts on the food system (including food processing, packaging, preservation, and functional foods). Finally, the application and research progress of animal by-product collagen and peptide in the food system along with the future development trend were discussed. This knowledge would be of great significance for a comprehensive understanding of animal by-product collagen and collagen peptides and would encourage the use of collagen in food processing, preservation, and functional foods.
Collapse
Affiliation(s)
- Changwei Cao
- Livestock Product Processing Engineering and Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, China.,College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Zhichao Xiao
- Livestock Product Processing Engineering and Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, China.,College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Changrong Ge
- Livestock Product Processing Engineering and Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yinglong Wu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| |
Collapse
|
29
|
Guo Y, Li X, Jia W, Huang F, Liu Y, Zhang C. Characterization of an intracellular aspartic protease (PsAPA) from Penicillium sp. XT7 and its application in collagen extraction. Food Chem 2021; 345:128834. [PMID: 33348133 DOI: 10.1016/j.foodchem.2020.128834] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 11/09/2020] [Accepted: 12/03/2020] [Indexed: 01/19/2023]
Abstract
An intracellular aspartic protease, PsAPA, was identified from Penicillium sp. XT7. This protease was belonged to penicillopepsin and was expressed in Pichia pastoris GS115. The recombinant PsAPA had a specific activity of 4289.7 ± 261.7 U/mg. The pH and temperature maxima of the enzyme were 3.0 and 30 °C, respectively. The PsAPA was stable in the pH range from 3.0 to 6.0 and was completely inactivated after incubation at 50 °C for 15 min. Presence of Mn2+ and Cu2+ increased the proteolytic activity and β-mercaptoethanol and SDS showed inhibitory effects, whereas 0.05 M pepstatin A strongly inhibited it. PsAPA could effectively hydrolyze animal proteins, including myoglobin, and hemoglobin but not collagens. PsAPA increased the yield of collagen extraction compared to the acid extraction method. The above properties show that the novel low-temperature acidic protease, PsAPA, is comparable to commercial proteases (porcine pepsin) and has great potential for collagen extraction.
Collapse
Affiliation(s)
- Yujie Guo
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xia Li
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wei Jia
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Feng Huang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yunhe Liu
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chunhui Zhang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
30
|
Harris M, Potgieter J, Ishfaq K, Shahzad M. Developments for Collagen Hydrolysate in Biological, Biochemical, and Biomedical Domains: A Comprehensive Review. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2806. [PMID: 34070353 PMCID: PMC8197487 DOI: 10.3390/ma14112806] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/19/2021] [Accepted: 05/19/2021] [Indexed: 01/11/2023]
Abstract
The collagen hydrolysate, a proteinic biopeptide, is used for various key functionalities in humans and animals. Numerous reviews explained either individually or a few of following aspects: types, processes, properties, and applications. In the recent developments, various biological, biochemical, and biomedical functionalities are achieved in five aspects: process, type, species, disease, receptors. The receptors are rarely addressed in the past which are an essential stimulus to activate various biomedical and biological activities in the metabolic system of humans and animals. Furthermore, a systematic segregation of the recent developments regarding the five main aspects is not yet reported. This review presents various biological, biochemical, and biomedical functionalities achieved for each of the beforementioned five aspects using a systematic approach. The review proposes a novel three-level hierarchy that aims to associate a specific functionality to a particular aspect and its subcategory. The hierarchy also highlights various key research novelties in a categorical manner that will contribute to future research.
Collapse
Affiliation(s)
- Muhammad Harris
- Massey Agrifood (MAF) Digital Labs, Massey University, Palmerston North 4410, New Zealand;
- Industrial and Manufacturing Engineering Department, Rachna College of Engineering and Technology, Gujranwala 52250, Pakistan;
| | - Johan Potgieter
- Massey Agrifood (MAF) Digital Labs, Massey University, Palmerston North 4410, New Zealand;
| | - Kashif Ishfaq
- Industrial and Manufacturing Engineering Department, University of Engineering and Technology, Lahore 54890, Pakistan;
| | - Muhammad Shahzad
- Industrial and Manufacturing Engineering Department, Rachna College of Engineering and Technology, Gujranwala 52250, Pakistan;
| |
Collapse
|
31
|
Mirzapour-Kouhdasht A, Moosavi-Nasab M, Lee CW, Yun H, Eun JB. Structure-function engineering of novel fish gelatin-derived multifunctional peptides using high-resolution peptidomics and bioinformatics. Sci Rep 2021; 11:7401. [PMID: 33795773 PMCID: PMC8016831 DOI: 10.1038/s41598-021-86808-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 03/02/2021] [Indexed: 11/11/2022] Open
Abstract
The multifunctional properties of fish gelatin hydrolysates have not been completely elucidated. Here, the biological characterization of these peptides was performed to engineer multifunctional peptides. Bioactive peptides were produced from mackerel byproducts via successive enzymatic hydrolysis reactions using subtilisin A and actinidin as microbial and herbal proteases. The antibacterial activity against both gram-negative and -positive food-borne pathogens, including Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Klebsiella pneumoniae, as well as the inhibitory potential of angiotensin-converting enzyme (ACE) and dipeptidyl peptidase IV (DPP-IV), was accessed in vitro. The synthesized peptides demonstrated multifunctional properties, which were further confirmed by in silico protocols. The ACE and DPP-IV inhibitory (IC50) values of P1, P2, and P3 were 0.92 and 0.87, 0.51 and 0.93, 0.78 and 1.16 mg mL−1, respectively. Moreover, the binding energy was sufficient for all three peptides to inhibit both ACE and DPP-IV enzymes with excellent three-dimensional conformation (RMSD = 0.000) for all six docking mechanisms.
Collapse
Affiliation(s)
- Armin Mirzapour-Kouhdasht
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran. .,Seafood Processing Research Group, School of Agriculture, Shiraz University, Shiraz, Iran. .,Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, South Korea.
| | - Marzieh Moosavi-Nasab
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran. .,Seafood Processing Research Group, School of Agriculture, Shiraz University, Shiraz, Iran.
| | - Chul Won Lee
- Department of Chemistry, Chonnam National University, Gwangju, 61186, South Korea
| | - Hyosuk Yun
- Department of Chemistry, Chonnam National University, Gwangju, 61186, South Korea
| | - Jong-Bang Eun
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, South Korea.
| |
Collapse
|
32
|
Ma T, Fu Q, Mei Q, Tu Z, Zhang L. Extraction optimization and screening of angiotensin-converting enzyme inhibitory peptides from Channa striatus through bioaffinity ultrafiltration coupled with LC-Orbitrap-MS/MS and molecular docking. Food Chem 2021; 354:129589. [PMID: 33773481 DOI: 10.1016/j.foodchem.2021.129589] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/24/2021] [Accepted: 03/07/2021] [Indexed: 11/25/2022]
Abstract
Channa striatus is high-protein food with many health functions. This study aimed to prepare, screen and identify the angiotensin-converting enzyme inhibition peptides (ACEIPs) from C. striatus hydrolysates by response surface methodology and bioaffinity ultrafiltration coupled with LC-Orbitrap-MS/MS and molecular docking. The optimal conditions for preparing ACEIPs were hydrolysis temperature 55 °C, hydrolysis time 3 h, pH 9, solid-liquid ratio 1:20 g/mL, and enzyme addition 5%, the ACE inhibition and molecular weight distribution of obtained hydrolysate was 54.35% and 8770-160 Da, respectively. Seven novel ACEIPs were screened through the established high-throughput screening approach, among which, EYFR and LPGPGP showed the strongest ACE inhibition with the IC50 value of 179.2 and 186.3 μM, respectively (P > 0.05). Molecular docking revealed that three and ten hydrogen bonds were formed between ACE and LPGPGP and EYFR, respectively, S1 and S2 were the major active pockets, but the major driving forces varied.
Collapse
Affiliation(s)
- Tianxin Ma
- National R&D Center for Freshwater Fish Processing, Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Qiaoqin Fu
- National R&D Center for Freshwater Fish Processing, Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Qianggen Mei
- National R&D Center for Freshwater Fish Processing, Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Zongcai Tu
- National R&D Center for Freshwater Fish Processing, Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China; State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China.
| | - Lu Zhang
- National R&D Center for Freshwater Fish Processing, Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China.
| |
Collapse
|
33
|
Bu F, Yi D, Zhang H, Li Q, Pan D, Dang Y. Isolation and identification of antioxidant and DPP-IV inhibitory peptide PYPYEPYEPYPY from yak bone hydrolysate. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2021. [DOI: 10.3136/fstr.27.441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Fan Bu
- College of Food and Pharmaceutical Sciences, Ningbo University
| | | | | | - Qin Li
- Institute of Materia Medica, Hangzhou Medical College
| | - Daodong Pan
- College of Food and Pharmaceutical Sciences, Ningbo University
| | - Yali Dang
- College of Food and Pharmaceutical Sciences, Ningbo University
| |
Collapse
|
34
|
Wang J, Ye X, Su Z, Zou P, Pang J, Chen JC. ACE-inhibitory peptides from Laminaria japonica and their potential anti-hypertensive mechanism. CYTA - JOURNAL OF FOOD 2021. [DOI: 10.1080/19476337.2021.1900923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Jie Wang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xianjiang Ye
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhichen Su
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ping Zou
- School of Food Science and Technology, Changzhou University, Changzhou, China
| | - Jie Pang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ji-Cheng Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- China-Ireland International Cooperation Center for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
35
|
Chemical and biological characteristics of hydrolysate of crucian carp swim bladder: Focus on preventing ulcerative colitis. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104256] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
36
|
Yu Z, Wang L, Wu S, Zhao W, Ding L, Liu J. In vivo
anti‐hypertensive effect of peptides from egg white and its molecular mechanism with ACE. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14756] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Zhipeng Yu
- College of Food Science and Engineering Bohai University Jinzhou121013China
| | - Li Wang
- College of Food Science and Engineering Bohai University Jinzhou121013China
| | - Sijia Wu
- College of Food Science and Engineering Bohai University Jinzhou121013China
| | - Wenzhu Zhao
- College of Food Science and Engineering Bohai University Jinzhou121013China
| | - Long Ding
- College of Food Science and Engineering Northwest A&F University Yangling712100China
| | - Jingbo Liu
- Lab of Nutrition and Functional Food Jilin University Changchun130062China
| |
Collapse
|