1
|
Cascant-Vilaplana MM, Viteritti E, Sadras V, Medina S, Sánchez-Iglesias MP, Oger C, Galano JM, Durand T, Gabaldón JA, Taylor J, Ferreres F, Sergi M, Gil-Izquierdo A. Wheat Oxylipins in Response to Aphids, CO 2 and Nitrogen Regimes. Molecules 2023; 28:molecules28104133. [PMID: 37241874 DOI: 10.3390/molecules28104133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Wheat is critical for food security, and is challenged by biotic stresses, chiefly aphids and the viruses they transmit. The objective of this study was to determine whether aphids feeding on wheat could trigger a defensive plant reaction to oxidative stress that involved plant oxylipins. Plants were grown in chambers with a factorial combination of two nitrogen rates (100% N vs. 20% N in Hoagland solution), and two concentrations of CO2 (400 vs. 700 ppm). The seedlings were challenged with Rhopalosiphum padi or Sitobion avenae for 8 h. Wheat leaves produced phytoprostanes (PhytoPs) of the F1 series, and three types of phytofurans (PhytoFs): ent-16(RS)-13-epi-ST-Δ14-9-PhytoF, ent-16(RS)-9-epi-ST-Δ14-10-PhytoF and ent-9(RS)-12-epi-ST-Δ10-13-PhytoF. The oxylipin levels varied with aphids, but not with other experimental sources of variation. Both Rhopalosiphum padi and Sitobion avenae reduced the concentrations of ent-16(RS)-13-epi-ST-Δ14-9-PhytoF and ent-16(RS)-9-epi-ST-Δ14-10-PhytoF in relation to controls, but had little or no effect on PhytoPs. Our results are consistent with aphids affecting the levels of PUFAs (oxylipin precursors), which decreased the levels of PhytoFs in wheat leaves. Therefore, PhytoFs could be postulated as an early indicator of aphid hosting for this plant species. This is the first report on the quantification of non-enzymatic PhytoFs and PhytoPs in wheat leaves in response to aphids.
Collapse
Affiliation(s)
- Mari Merce Cascant-Vilaplana
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, University Campus of Espinardo, Edif. 25, 30100 Murcia, Spain
- Neonatal Research Group, Health Research Institute La Fe, 46026 Valencia, Spain
| | - Eduardo Viteritti
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, University Campus of Espinardo, Edif. 25, 30100 Murcia, Spain
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Renato Balzarini 1, 64100 Teramo, Italy
| | - Víctor Sadras
- South Australian Research and Development Institute, Adelaide, SA 5064, Australia
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Sonia Medina
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, University Campus of Espinardo, Edif. 25, 30100 Murcia, Spain
| | - María Puerto Sánchez-Iglesias
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, University Campus of Espinardo, Edif. 25, 30100 Murcia, Spain
| | - Camille Oger
- Institut des Biomolécules Max Mousseron (IBMM), Pôle Chimie Balard Recherche, UMR 5247, CNRS, University of Montpellier, ENSCM, 34090 Montpellier, France
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron (IBMM), Pôle Chimie Balard Recherche, UMR 5247, CNRS, University of Montpellier, ENSCM, 34090 Montpellier, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), Pôle Chimie Balard Recherche, UMR 5247, CNRS, University of Montpellier, ENSCM, 34090 Montpellier, France
| | - José Antonio Gabaldón
- Molecular Recognition and Encapsulation Research Group (REM), Health Sciences Department, Universidad Católica de Murcia (UCAM), Campus de los Jerónimos 135, 30107 Guadalupe, Spain
| | - Julian Taylor
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Federico Ferreres
- Molecular Recognition and Encapsulation Research Group (REM), Health Sciences Department, Universidad Católica de Murcia (UCAM), Campus de los Jerónimos 135, 30107 Guadalupe, Spain
| | - Manuel Sergi
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Renato Balzarini 1, 64100 Teramo, Italy
| | - Angel Gil-Izquierdo
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, University Campus of Espinardo, Edif. 25, 30100 Murcia, Spain
| |
Collapse
|
2
|
Martínez Sánchez S, Domínguez-Perles R, Montoro-García S, Gabaldón JA, Guy A, Durand T, Oger C, Ferreres F, Gil-Izquierdo A. Bioavailable phytoprostanes and phytofurans from Gracilaria longissima have anti-inflammatory effects in endothelial cells. Food Funct 2021; 11:5166-5178. [PMID: 32432610 DOI: 10.1039/d0fo00976h] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND An array of bioactive compounds with health-promoting effects has been described in several species of macroalgae. Among them, phytoprostanes (PhytoPs) and phytofurans (PhytoFs), both autoxidation products of α-linolenic acid, have been seen to exert immunomodulatory and antiinflammatory activities in vitro. The purpose of this study was to explore the bioaccesibility, bioavailability, and bioactivity of PhytoPs and PhytoFs obtained from the edible red algae Gracilaria longissima, and to gain insight into the anti-inflammatory activity of their bioavailable fraction in human endothelial cells. METHODS The PhytoPs and PhytoFs profile and concentration of G. longissima were determined by UHPLC-QqQ-MS/MS. Algal samples were processed following a standardised digestion method including gastric, intestinal, and gastrointestinal digestion. The bioavailability of the PhytoPs and PhytoFs in the characterized fractions was assessed in a Caco-2 cell monolayer model of the intestinal barrier. The inflammation response of these prostaglandin-like compounds in human endothelial cells, after intestinal absorption, was investigated in vitro. RESULTS Simulated digestions significantly reduced the concentration of PhytoPs and PhytoFs up to 1.17 and 0.42 μg per 100 g, respectively, on average, although permeability through the Caco-2 cell monolayer was high (up to 88.2 and 97.7%, on average, respectively). PhytoP and PhytoF-enriched extracts of raw algae impaired the expression of ICAM-1 and IL-6 inflammation markers. The inflammation markers progressed in contrast to the relative concentrations of bioactive oxylipins, suggesting pro- or anti-inflammatory activity on their part. In this aspect, the cross-reactivity of these compounds with diverse receptors, and their relative concentration could explain the diversity of the effects found in the current study. CONCLUSIONS The results indicate that PhytoPs and PhytoFs display complex pharmacological profiles probably mediated through their different actions and affinities in the endothelium.
Collapse
Affiliation(s)
- S Martínez Sánchez
- Department of Food Technology and Nutrition, Molecular Recognition and Encapsulation (REM) Group, San Antonio Catholic University, Campus Los Jerónimos, s/n. 30107 Murcia, Spain
| | - R Domínguez-Perles
- Research Group on Quality, Safety and Bioactivity of Plant Foods. Department of Food Science and Technology, CEBAS-CSIC, University Campus of Espinardo - Edif. 25, 30100 Espinardo, Spain.
| | - S Montoro-García
- Department of Food Technology and Nutrition, Molecular Recognition and Encapsulation (REM) Group, San Antonio Catholic University, Campus Los Jerónimos, s/n. 30107 Murcia, Spain
| | - J A Gabaldón
- Department of Food Technology and Nutrition, Molecular Recognition and Encapsulation (REM) Group, San Antonio Catholic University, Campus Los Jerónimos, s/n. 30107 Murcia, Spain
| | - A Guy
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 - CNRS, University of Montpellier - ENSCM, Faculty of Pharmacy, Montpellier, France
| | - T Durand
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 - CNRS, University of Montpellier - ENSCM, Faculty of Pharmacy, Montpellier, France
| | - C Oger
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 - CNRS, University of Montpellier - ENSCM, Faculty of Pharmacy, Montpellier, France
| | - F Ferreres
- Department of Food Technology and Nutrition, Molecular Recognition and Encapsulation (REM) Group, San Antonio Catholic University, Campus Los Jerónimos, s/n. 30107 Murcia, Spain
| | - A Gil-Izquierdo
- Research Group on Quality, Safety and Bioactivity of Plant Foods. Department of Food Science and Technology, CEBAS-CSIC, University Campus of Espinardo - Edif. 25, 30100 Espinardo, Spain.
| |
Collapse
|
3
|
Campillo M, Medina S, Fanti F, Gallego-Gómez JI, Simonelli-Muñoz A, Bultel-Poncé V, Durand T, Galano JM, Tomás-Barberán FA, Gil-Izquierdo Á, Domínguez-Perles R. Phytoprostanes and phytofurans modulate COX-2-linked inflammation markers in LPS-stimulated THP-1 monocytes by lipidomics workflow. Free Radic Biol Med 2021; 167:335-347. [PMID: 33722629 DOI: 10.1016/j.freeradbiomed.2021.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/24/2021] [Accepted: 03/01/2021] [Indexed: 12/13/2022]
Abstract
Inflammation is a fundamental pathophysiological process which occurs in the course of several diseases. The present work describes the capacity of phytoprostanes (PhytoPs) and phytofurans (PhytoFs) (plant oxylipins), present in plant-based foods, to modulate inflammatory processes mediated by prostaglandins (PGs, human oxylipins) in lipopolysaccharide (LPS)-stimulated THP-1 monocytic cells, through a panel of 21 PGs and PG's metabolites, analyzed by UHPLC-QqQ-ESI-MS/MS. Also, the assessment of the cytotoxicity of PhytoPs and PhytoFs on THP-1 cells evidenced percentages of cell viability higher than 90% when treated with up to 100 μM. Accordingly, 50 μM of the individual PhytoPs and PhytoFs 9-F1t-PhytoP, 9-epi-9-F1t-PhytoP, ent-16-F1t-PhytoP, ent-16-epi-16-F1t-PhytoP, ent-9-D1t-PhytoP, 16-B1-PhytoP, 9-L1-PhytoP, ent-16(RS)-9-epi-ST-Δ14-10-PhytoF, ent-9(RS)-12-epi-ST-Δ10-13-PhytoF, and ent-16(RS)-13-epi-ST-Δ14-9-PhytoF were evaluated on their capacity to modulate the expression of inflammatory markers. The results obtained demonstrated the presence of 7 metabolites (15-keto-PGF2α, PGF2α, 11β-PGF2α, PGE2, PGD2, PGDM, and PGF1α) in THP-1 monocytic cells, which expression was significantly modulated when exposed to LPS. The evaluation of the capacity of the individual PhytoPs and PhytoFs to revert the modification of the quantitative profile of PGs induced by LPS revealed the anti-inflammatory ability of 9-F1t-PhytoP, ent-9-D1t-PhytoP, 16-B1-PhytoP, 9-L1-PhytoP, and ent-9(RS)-12-epi-ST-Δ10-13-PhytoF, as evidenced by their capacity to prevent the up-regulation of 15-keto-PGF2α, PGF2α, PGE2, PGF1α, PGDM, and PGD2 induced by LPS. These results indicated that specific plant oxylipins can protect against inflammatory events, encouraging further investigations using plant-based foods rich in these oxylipins or enriched extracts, to identify specific bioactivities of the diverse individual molecules, which can be useful for nutrition and health in the frame of well-defined pathophysiological processes.
Collapse
Affiliation(s)
- María Campillo
- Departamento de Enfermería, Universidad Católica de Murcia, UCAM, 3010, Murcia, Spain
| | - Sonia Medina
- Research Group on Quality, Safety and Bioactivity of Plant Foods. Department of Food Science and Technology, CEBAS-CSIC, University Campus of Espinardo - Edif. 25, 30100, Espinardo, Spain.
| | - Federico Fanti
- Research Group on Quality, Safety and Bioactivity of Plant Foods. Department of Food Science and Technology, CEBAS-CSIC, University Campus of Espinardo - Edif. 25, 30100, Espinardo, Spain; University of Teramo, Faculty of Bioscience and Technology for Food, Agriculture and Environment, 64100, TE, Italy
| | - Juana I Gallego-Gómez
- Departamento de Enfermería, Universidad Católica de Murcia, UCAM, 3010, Murcia, Spain
| | | | - Valérie Bultel-Poncé
- Institut des Biomolécules Max Mousseron (IBMM), UMR, 5247, CNRS, University of Montpellier, ENSCM, Faculty of Pharmacy, Montpellier, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), UMR, 5247, CNRS, University of Montpellier, ENSCM, Faculty of Pharmacy, Montpellier, France
| | - Jean Marie Galano
- Institut des Biomolécules Max Mousseron (IBMM), UMR, 5247, CNRS, University of Montpellier, ENSCM, Faculty of Pharmacy, Montpellier, France
| | - Francisco A Tomás-Barberán
- Research Group on Quality, Safety and Bioactivity of Plant Foods. Department of Food Science and Technology, CEBAS-CSIC, University Campus of Espinardo - Edif. 25, 30100, Espinardo, Spain; Department of Biotechnology, College of Science, Taif University, Saudi Arabia
| | - Ángel Gil-Izquierdo
- Research Group on Quality, Safety and Bioactivity of Plant Foods. Department of Food Science and Technology, CEBAS-CSIC, University Campus of Espinardo - Edif. 25, 30100, Espinardo, Spain.
| | - Raúl Domínguez-Perles
- Research Group on Quality, Safety and Bioactivity of Plant Foods. Department of Food Science and Technology, CEBAS-CSIC, University Campus of Espinardo - Edif. 25, 30100, Espinardo, Spain
| |
Collapse
|
4
|
Moving forward with isoprostanes, neuroprostanes and phytoprostanes: where are we now? Essays Biochem 2021; 64:463-484. [PMID: 32602531 DOI: 10.1042/ebc20190096] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023]
Abstract
Polyunsaturated fatty acids (PUFAs) are essential components in eukaryotic cell membrane. They take part in the regulation of cell signalling pathways and act as precursors in inflammatory metabolism. Beside these, PUFAs auto-oxidize through free radical initiated mechanism and release key products that have various physiological functions. These products surfaced in the early nineties and were classified as prostaglandin isomers or isoprostanes, neuroprostanes and phytoprostanes. Although these molecules are considered robust biomarkers of oxidative damage in diseases, they also contain biological activities in humans. Conceptual progress in the last 3 years has added more understanding about the importance of these molecules in different fields. In this chapter, a brief overview of the past 30 years and the recent scope of these molecules, including their biological activities, biosynthetic pathways and analytical approaches are discussed.
Collapse
|
5
|
Medina S, Gil-Izquierdo Á, Abu-Reidah IM, Durand T, Bultel-Poncé V, Galano JM, Domínguez-Perles R. Evaluation of Phoenix dactylifera Edible Parts and Byproducts as Sources of Phytoprostanes and Phytofurans. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:8942-8950. [PMID: 32693588 DOI: 10.1021/acs.jafc.0c03364] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Even though traditionally date-fruit has been featured by a marginal use, mainly restricted to its dietary intake, in recent years, it has raised the range of applications for this agro-food production. These new uses have entailed an enlarged production of date fruits and, simultaneously, of date palm byproducts. Encouraged by the traditional medicinal uses of dates, according to their phytochemical composition, the present work was focused on the evaluation of a new family of secondary metabolites, the plant oxylipins phytoprostanes (PhytoPs) and phytofurans (PhytoFs), in six separate matrixes of the date palm edible parts and byproducts, applying an UHPLC-ESI-QqQ-MS/MS-based methodology. The evaluation for the first time of date palm edible parts and byproducts as a dietary source of PhytoPs and PhytoFs provides evidence on the value of six different parts (pulp, skin, pits, leaves, clusters, and pollen) regarding their content in these plant oxylipins evidenced by the presence of the PhytoPs, 9-F1t-PhytoP (201.3-7223.1 ng/100 g dw) and 9-epi-9-F1t-PhytoP (209.7-7297.4 ng/100 g dw), and the PhytoFs ent-16(RS)-9-epi-ST-Δ14-10-PhytoF (4.6-191.0 ng/100g dw), and ent-16(RS)-13-epi-ST-Δ14-9-PhytoF as the most abundant compounds. Regarding the diverse matrixes assessed, pollen, clusters, and leaves for PhytoPs and skins and pollen for PhytoFs were identified as the most interesting sources of these compounds. In this concern, the information obtained upon the detailed characterization performed in the present work will allow unravelling the biological interest of PhytoPs and PhytoFs and the extent to which these compounds could exert valuable biological activities upon in vitro (mechanistic) and in vivo studies, allocating the effort-focus on the chemical species of PhytoPs and PhytoFs responsible for such traits.
Collapse
Affiliation(s)
- Sonia Medina
- Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, University Campus of Espinardo, Edif. 25, E-30100 Murcia, Spain
| | - Ángel Gil-Izquierdo
- Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, University Campus of Espinardo, Edif. 25, E-30100 Murcia, Spain
| | - Ibrahim M Abu-Reidah
- Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, University Campus of Espinardo, Edif. 25, E-30100 Murcia, Spain
- Department of Industrial Chemistry, Arab American University, P.O. Box 240, 13 Zababdeh-Jenin, Palestine
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University Montpellier I and II, ENSCM, Faculty of Pharmacy, 34093 Montpellier Cedex 5, France
| | - Valérie Bultel-Poncé
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University Montpellier I and II, ENSCM, Faculty of Pharmacy, 34093 Montpellier Cedex 5, France
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University Montpellier I and II, ENSCM, Faculty of Pharmacy, 34093 Montpellier Cedex 5, France
| | - Raúl Domínguez-Perles
- Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, University Campus of Espinardo, Edif. 25, E-30100 Murcia, Spain
| |
Collapse
|
6
|
Collado-González J, Cano-Lamadrid M, Pérez-López D, Carbonell-Barrachina ÁA, Centeno A, Medina S, Griñán I, Guy A, Galano JM, Durand T, Domínguez-Perles R, Torrecillas A, Ferreres F, Gil-Izquierdo Á. Effects of Deficit Irrigation, Rootstock, and Roasting on the Contents of Fatty Acids, Phytoprostanes, and Phytofurans in Pistachio Kernels. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:8915-8924. [PMID: 32683865 DOI: 10.1021/acs.jafc.0c02901] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Pistachio (Pistacia vera L.) is a drought-tolerant species grown under the semiarid conditions of the Mediterranean basin. For this reason, it is essential to make an exhaustive quantification of yield and quality benefits of the kernels because the regulated deficit irrigation will allow significant water savings with a minimum impact on yield while improving kernel quality. The goal of this scientific work was to study the influence of the rootstock, water deficit during pit hardening, and kernel roasting on pistachio (P. vera, cv. Kerman) fruit yield, fruit size, and kernel content of fatty acids phytoprostanes (PhytoPs) and phytofurans (PhytoFs) for the first time. Water stress during pit hardening did not affect the pistachio yield. The kernel cultivar showed a lower oleic acid and a higher linoleic acid contents than other cultivars. Kernels from plants grafted on the studied rootstocks showed very interesting characteristics. P. integerrima led to the highest percentage of monounsaturated fatty acids. Regarding the plant oxylipins, P. terebinthus led to the highest contents of PhytoPs and PhytoFs (1260 ng/100 g and 16.2 ng/100 g, respectively). In addition, nuts from trees cultivated under intermediate water deficit during pit hardening showed increased contents of the 9-series F1-phytoprostanes and ent-16(RS)-9-epi-ST-Δ14-10-phytofuran. However, roasting of pistachios led to PhytoP degradation. Therefore, plant cultivar, deficit irrigation, rootstock, and roasting must be considered to enhance biosynthesis of these secondary metabolites. New tools using agricultural strategies to produce hydroSOS pistachios have been opened thanks to the biological properties of these prostaglandin-like compounds linking agriculture, nutrition, and food science technology for further research initiatives.
Collapse
Affiliation(s)
- Jacinta Collado-González
- Department of Agro-Food Technology, Research Group ″Food Quality and Safety, CSA", Miguel Hernández University of Elche (UMH). Escuela Politécnica Superior de Orihuela (EPSO), Carretera de Beniel, km 3,2, Orihuela, Alicante 03312, Spain
| | - Marina Cano-Lamadrid
- Department of Agro-Food Technology, Research Group ″Food Quality and Safety, CSA", Miguel Hernández University of Elche (UMH). Escuela Politécnica Superior de Orihuela (EPSO), Carretera de Beniel, km 3,2, Orihuela, Alicante 03312, Spain
| | - David Pérez-López
- Department of Agricultural Production, School of Agricultural Engineering, Technical University of Madrid, Ciudad Universitaria s/n, Madrid 28040, Spain
| | - Ángel A Carbonell-Barrachina
- Department of Agro-Food Technology, Research Group ″Food Quality and Safety, CSA", Miguel Hernández University of Elche (UMH). Escuela Politécnica Superior de Orihuela (EPSO), Carretera de Beniel, km 3,2, Orihuela, Alicante 03312, Spain
| | - Ana Centeno
- Department of Agricultural Production, School of Agricultural Engineering, Technical University of Madrid, Ciudad Universitaria s/n, Madrid 28040, Spain
| | - Sonia Medina
- Research Group on Quality, Safety and Bioactivity of Plant Foods. Food Science and Technology Dept., CEBAS-CSIC, Campus de Espinardo 25, Espinardo 30100, Spain
| | - Isabel Griñán
- Department of Plant Production and Microbiology. Plant Production and Technology Research Group, Miguel Hernández University of Elche, Carretera. de Beniel, km 3,2, Orihuela, Alicante E-03312, Spain
| | - Alexandre Guy
- Institut des Biomolécules Max Mousseron, IBMM, UMR 5247, University of Montpellier, CNRS, ENSCM, Montpellier 34093, France
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron, IBMM, UMR 5247, University of Montpellier, CNRS, ENSCM, Montpellier 34093, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron, IBMM, UMR 5247, University of Montpellier, CNRS, ENSCM, Montpellier 34093, France
| | - Raúl Domínguez-Perles
- Research Group on Quality, Safety and Bioactivity of Plant Foods. Food Science and Technology Dept., CEBAS-CSIC, Campus de Espinardo 25, Espinardo 30100, Spain
| | - Arturo Torrecillas
- Departamento de Producción Vegetal y Microbiología, Escuela Politécnica Superior de Orihuela, Universidad Miguel Hernández de Elche, Carretera de Beniel, Km 3.2, Orihuela 03312, Spain
| | - Federico Ferreres
- Department of Food Technology and Nutrition, Molecular Recognition and Encapsulation (REM) Group, Universidad Católica de Murcia (UCAM), Campus Los Jerónimos, s/n, Murcia 30107, Spain
| | - Ángel Gil-Izquierdo
- Research Group on Quality, Safety and Bioactivity of Plant Foods. Food Science and Technology Dept., CEBAS-CSIC, Campus de Espinardo 25, Espinardo 30100, Spain
| |
Collapse
|
7
|
Medina S, Domínguez-Perles R, Auñón D, Moine E, Durand T, Crauste C, Ferreres F, Gil-Izquierdo Á. Targeted Lipidomics Profiling Reveals the Generation of Hydroxytyrosol-Fatty Acids in Hydroxytyrosol-Fortified Oily Matrices: New Analytical Methodology and Cytotoxicity Evaluation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:7789-7799. [PMID: 32603105 DOI: 10.1021/acs.jafc.0c01938] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Lipophenols have been stressed as an emerging class of functional compounds. However, little is known about their diversity. Thus, this study is aimed at developing a new method for the extraction, cleanup, and ultrahigh-performance liquid chromatography-electrospray ionization-triple quadrupole mass spectrometry (UHPLC-ESI-QqQ-MS/MS)-based analysis of the lipophenols derived from hydroxytyrosol (HT): α-linolenic (HT-ALA), linoleic acid (HT-LA), and oleic acid (HT-OA). The method validated provides reliable analytical data and practical applications. It was applied to an array of oily (extra virgin olive oil, refined olive oil, flaxseed oil, grapeseed oil, and margarine) and aqueous (pineapple juice) matrices, nonfortified and fortified with HT. Also, the present work reported the formation of fatty acid esters of HT (HT-FAs) that seem to be closely dependent on the fatty acid profile of the food matrix, encouraging the further exploration of the theoretical basis for the generation of HT-FAs, as well as their contribution to the healthy attributions of plant-based foods.
Collapse
Affiliation(s)
- Sonia Medina
- Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, University Campus of Espinardo, Edif. 25, 30100 Murcia, Spain
| | - Raúl Domínguez-Perles
- Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, University Campus of Espinardo, Edif. 25, 30100 Murcia, Spain
| | - David Auñón
- Department of Food Technology and Nutrition, Molecular Recognition and Encapsulation (REM) Group, Universidad Católica de Murcia, UCAM, Campus Los Jerónimos, s/n., 30107 Murcia, Spain
| | - Espérance Moine
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University of Montpellier, ENSCM, Faculty of Pharmacy, 34093 Montpellier, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University of Montpellier, ENSCM, Faculty of Pharmacy, 34093 Montpellier, France
| | - Céline Crauste
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University of Montpellier, ENSCM, Faculty of Pharmacy, 34093 Montpellier, France
| | - Federico Ferreres
- Department of Food Technology and Nutrition, Molecular Recognition and Encapsulation (REM) Group, Universidad Católica de Murcia, UCAM, Campus Los Jerónimos, s/n., 30107 Murcia, Spain
| | - Ángel Gil-Izquierdo
- Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, University Campus of Espinardo, Edif. 25, 30100 Murcia, Spain
| |
Collapse
|
8
|
Lipan L, Collado-González J, Domínguez-Perles R, Corell M, Bultel-Poncé V, Galano JM, Durand T, Medina S, Gil-Izquierdo Á, Carbonell-Barrachina Á. Phytoprostanes and Phytofurans-Oxidative Stress and Bioactive Compounds-in Almonds are Affected by Deficit Irrigation in Almond Trees. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:7214-7225. [PMID: 32520540 DOI: 10.1021/acs.jafc.0c02268] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Almonds have gained consumers' attention due to their health benefits (they are rich in bioactive compounds) and sensory properties. Nevertheless, information about phytoprostanes (PhytoPs) and phytofurans (PhytoFs) (new plant markers of oxidative stress and compounds with biological properties for human health) in almonds under deficit irrigation is scarce or does not exist. These compounds are plant oxylipins synthesized by the oxidation of α-linolenic acid (ALA). Besides, they are biomarkers of plant oxidative degradation and biologically active molecules involved in several plant defense mechanisms. hydroSOStainable or hydroSOS mean plant foods made from from plants under controlled water stress. Almonds are a good source of polyunsaturated fatty (PUFAs) acids, including a high content of ALA. This paper aimed to describe the influence of diverse irrigation treatments on in vitro anti-oxidant activity (AAc) and total phenolic content (TPC), as well as on the level of ALA, PhytoP, and PhytoF in "Vairo" almonds. The AAc and TPC were not affected by the irrigation strategy, while the in vivo oxidative stress makers, PhytoPs and PhytoFs, exhibited significant differences in response to water shortage. The total PhytoP and PhytoF contents ranged from 4551 to 8151 ng/100 g dry weight (dw) and from 33 to 56 ng/100 g dw, respectively. The PhytoP and PhytoF profiles identified in almonds showed significant differences among treatments. Individual PhytoPs and PhytoFs were present above the limit of detection only in almonds obtained from trees maintained under deficit irrigation (DI) conditions (regulated deficit irrigation, RDI, and sustained deficit irrigation, SDI) but not in control almonds obtained from fully irrigated trees. Therefore, these results confirm PhytoPs and PhytoFs as valuable biomarkers to detect whether an almond-based product is hydroSOStainable. As a final conclusion, it can be stated that almond quality and functionality can be improved and water irrigation consumption can be reduced if controlled DI strategies are applied in almond orchards.
Collapse
Affiliation(s)
- Leontina Lipan
- Department of Agro-Food Technology, Research Group "Food Quality and Safety", Universidad Miguel Hernández de Elche (UMH), Escuela Politécnica Superior de Orihuela (EPSO), Carretera de Beniel, Km 3.2, 03312 Orihuela, Alicante, Spain
| | - Jacinta Collado-González
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Departamento de Ciencia y Tecnología de Alimentos (CEBAS-CSIC), Campus de Espinardo-25, 30100 Murcia, Spain
| | - Raúl Domínguez-Perles
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Departamento de Ciencia y Tecnología de Alimentos (CEBAS-CSIC), Campus de Espinardo-25, 30100 Murcia, Spain
| | - Mireia Corell
- Departamento Ciencias Agroforestales, Escuela Técnica Superior de Ingeniería Agronómica, Universty of Sevilla, Carretera de Utrera, Km 1, 41013, Sevilla, Spain
- Associated Unity to CSIC: Uso Sostenible del Suelo y el Agua en la Agricultura (Universidad de Sevilla-Instituto de Recursos Naturales y Agrobiología de Sevilla), Carretera de Utrera Km 1, 41013 Sevilla, Spain
| | - Valérie Bultel-Poncé
- Faculty of Pharmacy, Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University of Montpellier, ENSCM, Montpellier, 34093, France
| | - Jean-Marie Galano
- Faculty of Pharmacy, Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University of Montpellier, ENSCM, Montpellier, 34093, France
| | - Thierry Durand
- Faculty of Pharmacy, Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University of Montpellier, ENSCM, Montpellier, 34093, France
| | - Sonia Medina
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Departamento de Ciencia y Tecnología de Alimentos (CEBAS-CSIC), Campus de Espinardo-25, 30100 Murcia, Spain
| | - Ángel Gil-Izquierdo
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Departamento de Ciencia y Tecnología de Alimentos (CEBAS-CSIC), Campus de Espinardo-25, 30100 Murcia, Spain
| | - Ángel Carbonell-Barrachina
- Department of Agro-Food Technology, Research Group "Food Quality and Safety", Universidad Miguel Hernández de Elche (UMH), Escuela Politécnica Superior de Orihuela (EPSO), Carretera de Beniel, Km 3.2, 03312 Orihuela, Alicante, Spain
| |
Collapse
|