1
|
Chen Y, Jin Y, Wang L, Wang W, Zhou H, Chen W. Design, synthesis, and mechanism study of novel tetrahydroisoquinoline derivatives as antifungal agents. Mol Divers 2024:10.1007/s11030-024-11012-6. [PMID: 39392545 DOI: 10.1007/s11030-024-11012-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/02/2024] [Indexed: 10/12/2024]
Abstract
In screening for natural-derived fungicides, a series of 32 novel tetrahydroisoquinoline derivatives were designed and synthesized based on tetrahydroisoquinoline alkaloids. Their structures were verified by 1H NMR, 13C NMR, HRMS, and single X-ray crystal diffraction analysis. Most of the target products exhibited medium to excellent antifungal activity against 6 phytopathogenic fungi in vitro at a concentration of 50 mg/L. Interestingly, compounds A13 and A25 with EC50 values of 2.375 and 2.251 mg/L against A. alternate were similar to boscalid (EC50 = 1.195 mg/L). The in vivo experiments revealed that A13 presented 51.61 and 70.97% protection activities against A. alternate at the dosage of 50 and 100 mg/L, respectively, which were equal to that of boscalid (64.52 and 77.42%). SDH enzyme assays and molecular docking studies indicated that compound A13 may act on SDH. In addition, the SEM analysis showed that compound A13 could strongly damage the mycelium morphology. These results revealed that A13 may be a promising lead compound for the development of natural-derived fungicides.
Collapse
Grants
- 24NSFSC2305, 2021YJ0481, Natural Science Foundation of Sichuan
- 24NSFSC2305, 2021YJ0481, Natural Science Foundation of Sichuan
- 24NSFSC2305, 2021YJ0481, Natural Science Foundation of Sichuan
- 24NSFSC2305, 2021YJ0481, Natural Science Foundation of Sichuan
- 24NSFSC2305, 2021YJ0481, Natural Science Foundation of Sichuan
- 24NSFSC2305, 2021YJ0481, Natural Science Foundation of Sichuan
- 2682023ZTPY077 Fundamental Research Funds for the Central Universities
- 2682023ZTPY077 Fundamental Research Funds for the Central Universities
- 2682023ZTPY077 Fundamental Research Funds for the Central Universities
- 2682023ZTPY077 Fundamental Research Funds for the Central Universities
- 2682023ZTPY077 Fundamental Research Funds for the Central Universities
- 2682023ZTPY077 Fundamental Research Funds for the Central Universities
Collapse
Affiliation(s)
- Yang Chen
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - YanXi Jin
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - LuYao Wang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - WanXiang Wang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - HaiPing Zhou
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Wei Chen
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China.
| |
Collapse
|
2
|
Zhang W, Guo P, Zhang Y, Zhou Q, Sun Y, Xu H. Application of Difluoromethyl Isosteres in the Design of Pesticide Active Molecules. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21344-21363. [PMID: 39305256 DOI: 10.1021/acs.jafc.4c04239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Difluoromethyl (CF2H) groups have been found in many listed pesticides due to their unique physical and chemical properties and outstanding biological activity. In pesticide molecules, compared with the drastic changes brought by trifluoromethyl, difluoromethyl usually moderately regulates the metabolic stability, lipophilicity, bioavailability, and binding affinity of compounds. Therefore, difluoromethylation has become an effective means to modify the biological activity of pesticide molecules. This paper reviews the representative literatures and patents containing difluoromethyl groups in the past 10 years, and introduces the research progress. The aim is to provide an effective reference value for the study of difluoromethyl in pesticides.
Collapse
Affiliation(s)
- Wanjie Zhang
- Engineering Research Center of Pesticide of Heilongjiang Province, Heilongjiang University, Harbin 150080, China
| | - Pengxiang Guo
- Engineering Research Center of Pesticide of Heilongjiang Province, Heilongjiang University, Harbin 150080, China
| | - Yannian Zhang
- Engineering Research Center of Pesticide of Heilongjiang Province, Heilongjiang University, Harbin 150080, China
| | - Qin Zhou
- Engineering Research Center of Pesticide of Heilongjiang Province, Heilongjiang University, Harbin 150080, China
| | - Yan Sun
- Engineering Research Center of Pesticide of Heilongjiang Province, Heilongjiang University, Harbin 150080, China
| | - Hongliang Xu
- Engineering Research Center of Pesticide of Heilongjiang Province, Heilongjiang University, Harbin 150080, China
| |
Collapse
|
3
|
Chaudhary HR, Patel DM. Recent trends for chemoselectivity modulation in one-pot organic transformations. RSC Adv 2024; 14:31072-31116. [PMID: 39351407 PMCID: PMC11440482 DOI: 10.1039/d4ra05495d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/22/2024] [Indexed: 10/04/2024] Open
Abstract
In organic reactions, chemoselectivity refers to the selective reactivity of one functional group in the presence of another. This can be more successful if the reagent and reaction parameters are appropriately chosen. One-pot reactions have been shown to be an effective structural variety technique for the development of novel heterocyclic or carbocyclic compounds. This review article focuses on recent efforts by researchers from around the world to synthesise novel organic molecules utilising these methodologies (2013-2024), as well as their mechanism insights. The substrate, catalyst, solvent, and temperature conditions all have a significant impact on chemoselectivity in the organic reactions described here. The manipulation of chemoselectivity in organic processes creates new potential for the production of novel heterocycles and carbocycles.
Collapse
Affiliation(s)
- Hiren R Chaudhary
- Department of Chemistry, Sankalchand Patel University Visnagar 384315 Gujarat India
| | - Divyang M Patel
- Department of Chemistry, Sankalchand Patel University Visnagar 384315 Gujarat India
| |
Collapse
|
4
|
Chai JQ, Wang XB, Yue K, Hou ST, Jin F, Liu Y, Tai L, Chen M, Yang CL. Design, Synthesis, Antifungal Activity, and Action Mechanism of Pyrazole-4-carboxamide Derivatives Containing Oxime Ether Active Fragment As Succinate Dehydrogenase Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11308-11320. [PMID: 38720452 DOI: 10.1021/acs.jafc.3c07880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
The dearomatization at the hydrophobic tail of the boscalid was carried out to construct a series of novel pyrazole-4-carboxamide derivatives containing an oxime ether fragment. By using fungicide-likeness analyses and virtual screening, 24 target compounds with theoretical strong inhibitory effects against fungal succinate dehydrogenase (SDH) were designed and synthesized. Antifungal bioassays showed that the target compound E1 could selectively inhibit the in vitro growth of R. solani, with the EC50 value of 1.1 μg/mL that was superior to that of the agricultural fungicide boscalid (2.2 μg/mL). The observations by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) demonstrated that E1 could reduce mycelial density and significantly increase the mitochondrial number in mycelia cytoplasm, which was similar to the phenomenon treated with boscalid. Enzyme activity assay showed that the E1 had the significant inhibitory effect against the SDH from R. solani, with the IC50 value of 3.3 μM that was superior to that of boscalid (7.9 μM). The mode of action of the target compound E1 with SDH was further analyzed by molecular docking and molecular dynamics simulation studies. Among them, the number of hydrogen bonds was significantly more in the SDH-E1 complex than that in the SDH-boscalid complex. This research on the dearomatization strategy of the benzene ring for constructing pyrazole-4-carboxamides containing an oxime ether fragment provides a unique thought to design new antifungal drugs targeting SDH.
Collapse
Affiliation(s)
- Jian-Qi Chai
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Key Laboratory of Pesticide Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiao-Bin Wang
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Key Laboratory of Pesticide Science, Nanjing Agricultural University, Nanjing 210095, China
- College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Kai Yue
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuai-Tao Hou
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Key Laboratory of Pesticide Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Fei Jin
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Key Laboratory of Pesticide Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Yv Liu
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Key Laboratory of Pesticide Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Lang Tai
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Min Chen
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Key Laboratory of Pesticide Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Chun-Long Yang
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Key Laboratory of Pesticide Science, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
5
|
Zhao Y, Wang X, Han X, Ren A, Huang X, Fang S, Chen H, Zhang L. Inhibitory Activity Against Rhizoctonia Solani and Chemical Composition of Extract from Moutan Cortex. Chem Biodivers 2024; 21:e202400337. [PMID: 38470409 DOI: 10.1002/cbdv.202400337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/12/2024] [Accepted: 03/12/2024] [Indexed: 03/13/2024]
Abstract
Rice sheath blight (RSB), caused by Rhizoctonia solani, is a significant disease of rice. The negative effects of chemical fungicides have created an urgent need for low-toxicity botanical fungicides. Our previous research revealed that the ethanol crude extract of Moutan Cortex (MC) exhibited superior antifungal activity against R. solani at 1000 μg/mL, resulting in a 100 % inhibition rate. The antifungal properties were mainly found in the petroleum ether extract. However, the active ingredients of the extract are still unclear. In this study, gas chromatography-mass spectrometry (GC-MS) was utilised for the analysis of its chemical components. The mycelium growth rate method was utilized to detect the antifungal activity. The findings indicated that paeonol constituted the primary active component, with a content of more than 96 %. Meanwhile, paeonol was the most significant antifungal active ingredient, the antifungal activity of paeonol (EC50=44.83 μg/mL) was much higher than that of β-sitosterol and ethyl propionate against R. solani. Observation under an optical microscope revealed that paeonol resulted in abnormal mycelial morphology. This study provided theoretical support for identifying monomer antifungal compounds and developing biological fungicides for R. solani.
Collapse
Affiliation(s)
- Yongtian Zhao
- School of Life Science and Agriculture, Qiannan Normal University for Nationalities, Duyun, Guizhou, 558000, China
| | - Xinge Wang
- School of Life Science and Agriculture, Qiannan Normal University for Nationalities, Duyun, Guizhou, 558000, China
| | - Xin Han
- School of Life Science and Agriculture, Qiannan Normal University for Nationalities, Duyun, Guizhou, 558000, China
| | - Aixia Ren
- School of Life Science and Agriculture, Qiannan Normal University for Nationalities, Duyun, Guizhou, 558000, China
| | - Xiaona Huang
- School of Life Science and Agriculture, Qiannan Normal University for Nationalities, Duyun, Guizhou, 558000, China
| | - Shuangyan Fang
- School of Life Science and Agriculture, Qiannan Normal University for Nationalities, Duyun, Guizhou, 558000, China
| | - Hongting Chen
- School of Life Science and Agriculture, Qiannan Normal University for Nationalities, Duyun, Guizhou, 558000, China
| | - Lian Zhang
- School of Life Science and Agriculture, Qiannan Normal University for Nationalities, Duyun, Guizhou, 558000, China
| |
Collapse
|
6
|
Zhou Q, Xia Z, Zhang Y, Sun Z, Zeng W, Zhang N, Yuan C, Gong C, Zhou Y, Xue W. Design of a delivery vehicle chitosan-based self-assembling: controlled release, high hydrophobicity, and safe treatment of plant fungal diseases. J Nanobiotechnology 2024; 22:121. [PMID: 38504264 PMCID: PMC10949580 DOI: 10.1186/s12951-024-02386-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/07/2024] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND Traditional pesticides are poorly water-soluble and suffer from low bioavailability. N-succinyl chitosan (NSCS) is a water-soluble chitosan derivative, has been recently used to encapsulate hydrophobic drugs to improve their bioavailability. However, it remains challenging to synthesize pesticides of a wide variety of water-soluble drugs and to scale up the production in a continuous manner. RESULTS A synthetic method for preparing water-soluble nanopesticides with a polymer carrier was applied. The bioactive molecule BTL-11 was loaded into hollow NSCS to promote drug delivery, improve solubility and anti-fungal activity. The synthesized nanopesticides had well controlled sizes of 606 nm and the encapsulation rate was 80%. The release kinetics, drug toxicity and drug activity were further evaluated. The inhibitory activity of nanopesticides against Rhizoctonia solani (R. solani) was tested in vivo and in vitro. In vivo against R. solani trials revealed that BTL-11 has excellent control efficiency for cultivated rice leaf and sheath was 79.6 and 76.5%, respectively. By contrast, for BTL-11@NSCS NPs, the anti-fungal ability was strongly released and afforded significant control efficiencies of 85.9 and 81.1%. Those effects were significantly better than that of the agricultural fungicide azoxystrobin (51.5 and 66.5%). The proposed mechanism was validated by successfully predicting the synthesis outcomes. CONCLUSIONS This study demonstrates that NSCS is a promising biocompatible carrier, which can enhance the efficacy of pesticides, synergistically improve plant disease resistance, protect crop growth, and can be used for the delivery of more insoluble pesticides.
Collapse
Affiliation(s)
- Qing Zhou
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Zhi Xia
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
- College of Chemistry and Chemical Engineering, Guizhou University of Engineering Science, Bijie, 551700, China
| | - Yu Zhang
- College of Chemistry and Chemical Engineering, Guizhou University of Engineering Science, Bijie, 551700, China
| | - Zhiling Sun
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Wei Zeng
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Nian Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Chunmei Yuan
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Chenyu Gong
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Yuanxiang Zhou
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Wei Xue
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
7
|
Sun S, Tang N, Han K, Wang Q, Xu Q. Effects of 2-Phenylethanol on Controlling the Development of Fusarium graminearum in Wheat. Microorganisms 2023; 11:2954. [PMID: 38138097 PMCID: PMC10745961 DOI: 10.3390/microorganisms11122954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/03/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Applying plant-derived fungicides is a safe and sustainable way to control wheat scab. In this study, volatile organic compounds (VOCs) of wheat cultivars with and without the resistance gene Fhb1 were analyzed by GC-MS, and 2-phenylethanol was screened out. The biocontrol function of 2-phenylethanol on Fusarium graminearum was evaluated in vitro and in vivo. Metabolomics analysis indicated that 2-phenylethanol altered the amino acid pathways of F. graminearum, affecting its normal life activities. Under SEM and TEM observation, the mycelial morphology changed, and the integrity of the cell membrane was destroyed. Furthermore, 2-phenylethanol could inhibit the production of mycotoxins (DON, 3-ADON, 15-ADON) by F. graminearum and reduce grain contamination. This research provides new ideas for green prevention and control of wheat FHB in the field.
Collapse
Affiliation(s)
- Shufang Sun
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Taian 271018, China; (S.S.); (N.T.)
| | - Nawen Tang
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Taian 271018, China; (S.S.); (N.T.)
| | - Kun Han
- Departmen of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Taian 271018, China;
| | - Qunqing Wang
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Taian 271018, China; (S.S.); (N.T.)
- Departmen of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Taian 271018, China;
| | - Qian Xu
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Taian 271018, China; (S.S.); (N.T.)
| |
Collapse
|
8
|
Zhang A, Yang J, Tao K, Hou T, Jin H. Novel aromatic carboxamide potentially targeting fungal succinate dehydrogenase: Design, synthesis, biological activities and molecular dynamics simulation studies. PEST MANAGEMENT SCIENCE 2023; 79:3700-3711. [PMID: 37184297 DOI: 10.1002/ps.7551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 05/16/2023]
Abstract
BACKGROUND Succinate dehydrogenase inhibitors (SDHIs) emerging in fungicide markets are widely used in crop protection. Currently, the structural modification focusing on a structurally diverse 'core' moiety (aryl) of SDHIs is being gradually identified as one of the innovative strategies for developing novel, highly effective and low resistant fungicides. RESULTS By optimization of lead compound SCU2028, 30 novel aromatic carboxamides Ia-o and IIa-o without a pyrazol group were designed, synthesized and characterized by 1 H NMR, 13 C NMR and high resolution mass spectrum (HRMS). In vitro antifungal activities showed that most of the compounds Ia-o and IIa-o exhibited good antifungal activities against Rhizoctonia solani. Among them, compounds Ic and IIc (EC50 = 0.02 mg/L), with the 2-chloro-3-pyridyl moiety, and compounds Io (EC50 = 0.03 mg/L) and IIo (EC50 = 0.02 mg/L), with the 4-methyl-2-trifluoromethylthiazolyl moiety, all exhibited the equivalent antifungal activities against R. solani with compound SCU2028 (EC50 = 0.03 mg/L) and bixafen (EC50 = 0.04 mg/L). Additionally, in pot tests, compound IIc (EC50 = 3.63 mg/L) also had higher antifungal activity against R. solani than compound SCU2028 (EC50 = 7.63 mg/L). Furthermore, in vitro inhibitory activity against fungal SDH showed the inhibitory ability of compound IIc was equivalent with that of compound SCU2028, and molecular dynamics simulation of the SDH-compound IIc complex suggested that compound IIc could strongly bind to and interact with the binding site of SDH. CONCLUSION Novel aromatic carboxamides without a pyrazol group have potential as a class of SDHIs, and the strategy of replacing the pyrazol group with another aryl in the 'core' moiety might offer an alternative option in discovery of SDHI fungicides. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Aigui Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, People's Republic of China
| | - Jian Yang
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, People's Republic of China
| | - Ke Tao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, People's Republic of China
| | - Taiping Hou
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, People's Republic of China
| | - Hong Jin
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
9
|
Yun T, Jing T, Zang X, Zhou D, Li K, Zhao Y, Wang W, Xie J. Antimicrobial mechanisms and secondary metabolite profiles of Streptomyces hygroscopicus subsp. hygroscopicus 5-4 against banana fusarium wilt disease using metabolomics. Front Microbiol 2023; 14:1159534. [PMID: 37362932 PMCID: PMC10289025 DOI: 10.3389/fmicb.2023.1159534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/08/2023] [Indexed: 06/28/2023] Open
Abstract
Fusarium wilt of bananas (FWB) is seriously affecting the sustainable development of the banana industry and is caused by the devastating soil-borne fungus Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4). Biological control is a promising strategy for controlling Fusarium wilt in bananas. We previously identified Streptomyces hygroscopicus subsp. hygroscopicus 5-4 with strong antifungal activity against the FWB. The most possible antimicrobial mechanism of strain 5-4 was explored using the metabolomics approach, light microscopy imaging, and transmission electron microscopy (TEM). The membrane integrity and ultrastructure of Foc TR4 was damaged after extract treatment, which was supported by the degradation of mycelium, soluble protein content, extracellular reducing sugar content, NADH oxidase activity, malondialdehyde content, mitochondrial membrane potential, and mitochondrial respiratory chain complex enzyme activity. The extracts of strain 5-4 cultivated at different times were characterized by a liquid chromatography-mass spectrometer (LC-MS). 647 known metabolites were detected in the extracts of strains 5-4. Hygromycin B, gluten exorphin B4, torvoside G, (z)-8-tetradecenal, piperitoside, sarmentosin, pubescenol, and other compounds were the main differential metabolites on fermentation culture for 7 days. Compared with strain 5-4 extracts, hygromycin B inhibited the mycelial growth of Foc TR4, and the EC50 concentration was 7.4 μg/mL. These results showed that strain 5-4 could destroy the cell membrane of Foc TR4 to inhibit the mycelial growth, and hygromycin B may be the key antimicrobial active metabolite. Streptomyces hygroscopicus subsp. hygroscopicus 5-4 might be a promising candidate strain to control the FWB and provide a scientific basis for the practical application of hygromycin B as a biological control agent.
Collapse
Affiliation(s)
- Tianyan Yun
- National Key Laboratory for Tropical Crop Breeding, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, China
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, China
| | - Tao Jing
- National Key Laboratory for Tropical Crop Breeding, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, China
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, China
| | - Xiaoping Zang
- National Key Laboratory for Tropical Crop Breeding, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, China
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, China
| | - Dengbo Zhou
- National Key Laboratory for Tropical Crop Breeding, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, China
| | - Kai Li
- National Key Laboratory for Tropical Crop Breeding, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, China
| | - Yankun Zhao
- National Key Laboratory for Tropical Crop Breeding, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, China
| | - Wei Wang
- National Key Laboratory for Tropical Crop Breeding, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, China
| | - Jianghui Xie
- National Key Laboratory for Tropical Crop Breeding, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, China
| |
Collapse
|
10
|
Chen B, Song D, Shi H, Chen K, Wu Z, Chai H. Design, Synthesis, In Vitro Antifungal Activity and Mechanism Study of the Novel 4-Substituted Mandelic Acid Derivatives. Int J Mol Sci 2023; 24:ijms24108898. [PMID: 37240243 DOI: 10.3390/ijms24108898] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Plant diseases caused by phytopathogenic fungi are a serious threat in the process of crop production and cause large economic losses to global agriculture. To obtain high-antifungal-activity compounds with novel action mechanisms, a series of 4-substituted mandelic acid derivatives containing a 1,3,4-oxadiazole moiety were designed and synthesized. In vitro bioassay results revealed that some compounds exhibited excellent activity against the tested fungi. Among them, the EC50 values of E13 against Gibberella saubinetii (G. saubinetii), E6 against Verticillium dahlia (V. dahlia), and E18 against Sclerotinia sclerotiorum (S. sclerotiorum) were 20.4, 12.7, and 8.0 mg/L, respectively, which were highly superior to that of the commercialized fungicide mandipropamid. The morphological studies of G. saubinetii with a fluorescence microscope (FM) and scanning electron microscope (SEM) indicated that E13 broke the surface of the hyphae and destroyed cell membrane integrity with increased concentration, thereby inhibiting fungal reproduction. Further cytoplasmic content leakage determination results showed a dramatic increase of the nucleic acid and protein concentrations in mycelia with E13 treatment, which also indicated that the title compound E13 could destroy cell membrane integrity and affect the growth of fungi. These results provide important information for further study of the mechanism of action of mandelic acid derivatives and their structural derivatization.
Collapse
Affiliation(s)
- Biao Chen
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Dandan Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Huabin Shi
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Kuai Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Zhibing Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Huifang Chai
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| |
Collapse
|
11
|
Hou S, Shi H, Zhang H, Wu Z, Hu D. Synthesis, Antifungal Evaluation, 3D-QSAR, and Preliminarily Mechanism Study of Novel Chiral Mandelic Acid Derivatives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7631-7641. [PMID: 37179490 DOI: 10.1021/acs.jafc.2c09006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
To investigate the effect of spatial configuration on the biological activity of the compounds, a series of chiral mandelic acid derivatives with a moiety of 1,3,4-oxadiazole thioether have been designed and synthesized. Bioassay results demonstrated that most title compounds with the S-configuration exhibited better in vitro antifungal activity against three plant fungi, such as H3' (EC50 = 19.3 μg/mL) against Gibberella saubinetii, which was approximately 16 times higher than that of H3 (EC50 = 317.0 μg/mL). CoMFA and CoMSIA models were established for 3D-QSAR analysis and provided an important support for further optimization of this series of compounds. Comparing the preliminary mechanism studies between enantiomers (H3 and H3') found that the S-configuration compound (H3') exhibited a stronger ability to destroy the surface structure of G. saubinetii mycelia, causing the leakage of intracellular substances to accelerate and the growth of the hyphae to be inhibited. The results provided a novel view for the further optimization of this series of active compounds and deep mechanism study of chiral pesticides.
Collapse
Affiliation(s)
- Shuaitao Hou
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Huabin Shi
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Hong Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Zhibing Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Deyu Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| |
Collapse
|
12
|
Zhang C, Yang J, Zhao C, Li L, Wu Z. Potential Fungicide Candidates: A Dual Action Mode Study of Novel Pyrazole-4-carboxamides against Gibberella zeae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1862-1872. [PMID: 36669159 DOI: 10.1021/acs.jafc.2c06962] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Pyrazole carboxamides are a class of traditional succinate dehydrogenase inhibitors (SDHIs) that have developed into a variety of commercialized fungicides. In the present work, a series of novel 1,5-disubstituted-1H-pyrazole-4-carboxamide derivatives were designed and synthesized based on the active backbone of 5-trifluoromethyl-1H-4-pyrazole carboxamide. Bioassay results indicated that some target compounds exhibited excellent in vitro antifungal activities against six phytopathogenic fungi. Notably, the EC50 values of Y47 against Gibberella zeae, Nigrospora oryzae, Thanatephorus cucumeris, and Verticillium dahliae were 5.2, 9.2, 12.8, and 17.6 mg/L, respectively. The in vivo protective and curative activities of Y47 at 100 mg/L against G. zeae on maize were 50.7 and 44.2%, respectively. Three-dimensional quantitative structure-activity relationship (3D-QSAR) analysis revealed that the large steric hindrance and electronegative groups on the 5-position of the pyrazole ring were important for the activity. The IC50 value of Y47 against succinate dehydrogenase (SDH) was 7.7 mg/L, superior to fluopyram (24.7 mg/L), which was consistent with the docking results. Morphological studies with fluorescence microscopy (FM) and scanning electron microscopy (SEM) found that Y47 could affect the membrane integrity of mycelium by inducing endogenous reactive oxygen species (ROS) production and causing peroxidation of cellular lipids, which was further verified by the malondialdehyde (MDA) content. Antifungal mechanism analysis demonstrated that the target compound Y47 not only had significant SDH inhibition activity but could also affect the membrane integrity of mycelium, exhibiting obvious dual action modes. This research provides a novel approach to the development of traditional SDHIs and their derivatives.
Collapse
Affiliation(s)
- Chengzhi Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Jingxin Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Cailong Zhao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Longju Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Zhibing Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| |
Collapse
|
13
|
Zhao Y, Zhang A, Wang X, Tao K, Jin H, Hou T. Novel Pyrazole Carboxamide Containing a Diarylamine Scaffold Potentially Targeting Fungal Succinate Dehydrogenase: Antifungal Activity and Mechanism of Action. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13464-13472. [PMID: 36250688 DOI: 10.1021/acs.jafc.2c00748] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Succinate dehydrogenase (SDH) is known as an ideal target for the development of novel fungicides. Over the years, a series of novel pyrazole carboxamides containing a diarylamine scaffold have been reported as potent SDH inhibitors (SDHIs) in our laboratory. Among them, compound SCU3038 (EC50 = 0.016 mg/L) against in vitro Rhizoctonia solani was better than fluxapyroxad (EC50 = 0.033 mg/L). However, its mechanism of action is still unclear. In this paper, in pot tests, bioactivity evaluation indicated that in vivo antifungal activity of compound SCU3038 (EC50 = 0.95 mg/L) against R. solani was better than that of fluxapyroxad (EC50 = 2.29 mg/L) and thifluzamide (EC50 = 1.88 mg/L). In field trials, control efficacy of compound SCU3038 (74.10%) at 200 g ai/ha against rice sheath blight was better than that of thifluzamide (71.40%). Furthermore, target evaluation showed that compound SCU3038 could inhibit the fungal SDH from R. solani and fix in the binding site of SDH by molecular docking, thereby it could dissolve and reduce mitochondria of R. solani as observed by electron microscopy. In addition, transcriptome results showed that compound SCU3038 affected the TCA cycle pathway in mitochondria, and this was manifested in the downregulation of eight genes and upregulation of one gene. The most important phenomenon was the repressed expression of SDH2 confirmed by qRT-PCR. It was observed that compound SCU3038 was a potent SDHI, and these results afforded further research on pyrazole carboxamides.
Collapse
Affiliation(s)
- Yongtian Zhao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China
- College of Life Science and Agriculture, Qiannan Normal University for Nationalities, Duyun, Guizhou 558000, China
| | - Aigui Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China
| | - Xinge Wang
- College of Life Science and Agriculture, Qiannan Normal University for Nationalities, Duyun, Guizhou 558000, China
| | - Ke Tao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China
| | - Hong Jin
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China
| | - Taiping Hou
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China
| |
Collapse
|
14
|
Zhang X, Yang Z, Xu H, Liu Y, Yang X, Sun T, Lu X, Shi F, Yang Q, Chen W, Duan H, Ling Y. Synthesis, Antifungal Activity, and 3D-QASR of Novel 1,2,3,4-Tetrahydroquinoline Derivatives Containing a Pyrimidine Ether Scaffold as Chitin Synthase Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9262-9275. [PMID: 35862625 DOI: 10.1021/acs.jafc.2c01348] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The introduction of active groups of natural products into the framework of pesticide molecules is an effective approach for discovering active lead compounds, and thus has been widely used in the development of new agrochemicals. In this work, a novel series of 1,2,3,4-tetrahydroquinoline derivatives containing a pyrimidine ether scaffold were designed and synthesized by the active substructure splicing method. The new compounds showed good antifungal activities against several fungi. Especially, compound 4fh displayed excellent in vitro activity against Valsa mali and Sclerotinia sclerotiorum with EC50 values of 0.71 and 2.47 μg/mL, respectively. 4fh had slightly stronger inhibitory activity (68.08% at 50 μM) against chitin synthase (CHS) than that of polyoxin D (63.84% at 50 μM) and exhibited obvious curative and protective effects on S. sclerotiorum in vivo. Thus, 4fh can be considered as a new candidate fungicide as a chitin synthase inhibitor. An accurate and reliable three-dimensional quantitative structure-activity relationship (3D-QSAR) model presented a useful direction for the further excogitation of more highly active fungicides. Molecular docking revealed that the conventional hydrogen bond mainly affected the binding affinity of 4fh with chitin synthase. The present results will provide a guidance to discover potential CHS-based fungicides for plant disease control in agriculture.
Collapse
Affiliation(s)
- Xiaoming Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Zhaokai Yang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Huan Xu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Yuansheng Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xinling Yang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Tengda Sun
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Xingxing Lu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Fasheng Shi
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Qing Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wei Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hongxia Duan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Yun Ling
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| |
Collapse
|
15
|
Ebenezer O, Shapi M, Tuszynski JA. A Review of the Recent Development in the Synthesis and Biological Evaluations of Pyrazole Derivatives. Biomedicines 2022; 10:biomedicines10051124. [PMID: 35625859 PMCID: PMC9139179 DOI: 10.3390/biomedicines10051124] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 12/12/2022] Open
Abstract
Pyrazoles are five-membered heterocyclic compounds that contain nitrogen. They are an important class of compounds for drug development; thus, they have attracted much attention. In the meantime, pyrazole derivatives have been synthesized as target structures and have demonstrated numerous biological activities such as antituberculosis, antimicrobial, antifungal, and anti-inflammatory. This review summarizes the results of published research on pyrazole derivatives synthesis and biological activities. The published research works on pyrazole derivatives synthesis and biological activities between January 2018 and December 2021 were retrieved from the Scopus database and reviewed accordingly.
Collapse
Affiliation(s)
- Oluwakemi Ebenezer
- Department of Chemistry, Faculty of Natural Science, Mangosuthu University of Technology, Durban 4026, South Africa; (O.E.); (M.S.)
- Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Michael Shapi
- Department of Chemistry, Faculty of Natural Science, Mangosuthu University of Technology, Durban 4026, South Africa; (O.E.); (M.S.)
| | - Jack A. Tuszynski
- Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada
- Department of Mechanical and Aerospace Engineering, (DIMEAS), Politecnico di Torino, 10129 Turin, Italy
- Correspondence:
| |
Collapse
|
16
|
Yang J, Xie D, Zhang C, Zhao C, Wu Z, Xue W. Synthesis, antifungal activity and in vitro mechanism of novel 1-substituted-5-trifluoromethyl-1H-pyrazole-4-carboxamide derivatives. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
17
|
Luo B, Ning Y. Comprehensive Overview of Carboxamide Derivatives as Succinate Dehydrogenase Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:957-975. [PMID: 35041423 DOI: 10.1021/acs.jafc.1c06654] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Up to now, a total of 24 succinate dehydrogenase inhibitors (SDHIs) fungicides have been commercialized, and SDHIs fungicides were also one of the most active fungicides developed in recent years. Carboxamide derivatives represented an important class of SDHIs with broad spectrum of antifungal activities. In this review, the development of carboxamide derivatives as SDHIs with great significances were summarized. In addition, the structure-activity relationships (SARs) of antifungal activities of carboxamide derivatives as SDHIs was also summarized based on the analysis of the structures of the commercial SDHIs and lead compounds. Moreover, the cause of resistance of SDHIs and some solutions were also introduced. Finally, the development trend of SDHIs fungicides was prospected. We hope this review will give a guide for the development of novel SDHIs fungicides in the future.
Collapse
Affiliation(s)
- Bo Luo
- College of Life Sciences, Xinyang Normal University, Tea Plant Biology Key Laboratory of Henan Province, Xinyang 464000, China
| | - Yuli Ning
- College of Life Sciences, Xinyang Normal University, Tea Plant Biology Key Laboratory of Henan Province, Xinyang 464000, China
| |
Collapse
|
18
|
Gao W, Zhang Y, Ye R, Qi X, Chen L, Liu X, Tang L, Chen L, Chen H, Fan Z. Discovery of Novel Triazolothiadiazines as Fungicidal Leads Targeting Pyruvate Kinase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1047-1057. [PMID: 35077164 DOI: 10.1021/acs.jafc.1c07022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Pyruvate kinase (PK) was discovered as a potent new target for novel fungicide development. A series of novel triazolothiadiazine derivatives were rationally designed and synthesized by a ring expansion strategy and computer-aided pesticide design using the 3D structure of Rhizoctonia solani PK (RsPK) obtained by homology modeling as a receptor and our previously discovered lead YZK-C22 as a ligand. The in vitro bioassay results indicated that compounds 4g, 6h, 6m, 6n, 6o, and 6p exhibited good activity against R. solani with the EC50 values falling between 10.99 and 72.76 μM. Especially, 6m showed similar potency to YZK-C22 (10.99 vs 11.97 μM of the EC50 value, respectively). The in vivo bioassay results suggested that 6m against R. solani at a concentration of 200 μg/mL displayed a numerically higher inhibition than YZK-C22 (70 vs 60%, respectively). A field experiment validated that 6m at an application rate of 120 g ai/ha showed comparable efficacy against R. solani to thifluzamide at an application rate of 80 g ai/ha (77.80 vs 84.5%, respectively). Enzymatic inhibition suggested that the potency of 6m was about twofold lower than that of YZK-C22 (67.30 vs 32.64 μM of IC50, respectively). Fluorescence quenching studies validated that RsPK was quenched by both 6m and YZK-C22, implying that they both might act at the same target site of PK. A possible binding conformation of 6m in the RsPK active site was depicted by molecular docking. Our studies suggest that 6m could be a fungicidal lead targeting PK.
Collapse
Affiliation(s)
- Wei Gao
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yue Zhang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Rong Ye
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Xin Qi
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Lei Chen
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Xiaoyu Liu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Liangfu Tang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Lai Chen
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Hongyu Chen
- The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Zhijin Fan
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
19
|
He J, Dou M, Xie J, Hou S, Liu Q, Hu Z, Zhang B, Zheng S, Yin F, Zhang M, Xie C, Lu D, Ding X, Zhu C, Sun R. Discovery of zeylenone from Uvaria grandiflora as a potential botanical fungicide. PEST MANAGEMENT SCIENCE 2021; 77:5407-5417. [PMID: 34314099 DOI: 10.1002/ps.6580] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/18/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Botanical pesticides play an important role in organic agricultural practices and are widely used in integrated pest management (IPM). Uvaria grandiflora was mainly reported as traditional medicines and possessed antibacterial, antioxidant, and antiprotozoal activities. Therefore, important biological activities of U. grandiflora may suggest that they have the potential to be used as botanical pesticides. RESULTS The extract of U. grandiflora exhibited broad-spectrum inhibitory activity toward phytopathogenic fungi and oomycetes, particularly against Colletotrichum musae and Phytophthora capsici, and its secondary metabolite zeylenone also displayed strong antifungal and anti-oomycete activities against phytopathogens. Particularly, half maximal effective concentration (EC50 ) values of zeylenone against Phytophthora capsici and C. musae were 6.98 and 3.37 μg mL-1 , showing better inhibitory effects than those of commercial fungicides (azoxystrobin and osthole). Additionally, the pot experiments showed that the extract of U. grandiflora could effectively control Pseudoperonospora cubensis, Phytophthora infestans, Phytophthora capsici and Podosphaera xanthii. In the field experiment, 5% microemulsion of U. grandiflora extract exhibited 79.72% efficacy against cucumber powdery mildew at 87.5 g ha-1 on the 14th day after two sprayings, which was better than that of 21.5% trifloxystrobin and 21.5% fluopyram SC at 200.9 g ha-1 . Surprisingly, 5% microemulsion of U. grandiflora extract could promote cucumber growth significantly. Furthermore, the action mechanism analysis indicated that zeylenone may damage the cytoderm and affect energy metabolism of Phytophthora capsici. CONCLUSION It is the first time that the extract of U. grandiflora and zeylenone have been discovered leading to broad application prospects in the development as botanical fungicides. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jianguo He
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, China
| | - Menglan Dou
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, China
| | - Jia Xie
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, China
| | - Shuai Hou
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, China
| | - Qifeng Liu
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, China
| | - Zhan Hu
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, China
| | - Beijing Zhang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, China
| | - Shuai Zheng
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, China
| | - Fengman Yin
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, China
| | - Meng Zhang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, China
| | - Changping Xie
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, China
| | - Dadong Lu
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, China
| | - Xiaofan Ding
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, China
| | - Chaohua Zhu
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, China
| | - Ranfeng Sun
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, China
| |
Collapse
|
20
|
Ortiz PD, Castillo-Rodriguez J, Tapia J, Zarate X, Vallejos GA, Roa V, Molins E, Bustos C, Schott E. A novel series of pyrazole derivatives toward biological applications: experimental and conceptual DFT characterization. Mol Divers 2021; 26:2443-2457. [PMID: 34724138 DOI: 10.1007/s11030-021-10342-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/11/2021] [Indexed: 11/26/2022]
Abstract
A new series of 13 pyrazole-derivative compounds with potential antifungal activity were synthetized with good yields. The series have the (E)-2-((1-(R)-3,5-dimethyl-1H-pyrazol-4-yl)diazenyl)phenol general structure and were characterized by means of X-ray diffraction, UV-Vis, FTIR, 1H-NMR, 13C-NMR, and two-dimensional NMR experiments. This experimental characterization was complemented by DFT simulations. A deep insight regarding molecular reactivity was accomplished employing a conceptual DFT approach. In this sense, dual descriptors were calculated at HF and DFT level of theory and GGV spin-density Fukui functions. The main reactive region within the molecules was mapped through isosurface and condensed representations. Finally, chemical descriptors that have previously shown to be close related to biological activity were compared within the series. Thus, higher values of chemical potential ω and electrophilicity χ obtained for compounds 10, 9, 8, 6 and 7, in this order, suggest that these molecules are the better candidates as biological agents.
Collapse
Affiliation(s)
- Pedro D Ortiz
- Instituto de Ciencias Químicas Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Llano Subercaseaux, 2801, Santiago, Chile
| | - Judith Castillo-Rodriguez
- Departamento de Química Inorgánica, Facultad de Química y Farmacia, Centro de Energía UC, Centro de Investigación en Nanotecnología y Materiales Avanzados CIEN-UC, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna, 4860, Santiago, Chile
| | - Jorge Tapia
- Departamento de Ciencias Quı́micas y Biológicas, Universidad Bernardo O'Higgins, Facultad de Salud, General Gana, 1702, Santiago, Chile
| | - Ximena Zarate
- Instituto de Ciencias Químicas Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Llano Subercaseaux, 2801, Santiago, Chile.
| | - Gabriel A Vallejos
- Instituto de Ciencias Químicas, Universidad Austral de Chile, Las Encinas 220, Campus Isla Teja, Valdivia, Chile
| | - Vanesa Roa
- Departamento de Química Inorgánica, Facultad de Química y Farmacia, Centro de Energía UC, Centro de Investigación en Nanotecnología y Materiales Avanzados CIEN-UC, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna, 4860, Santiago, Chile
| | - Elies Molins
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193, Bellaterra, Spain
| | - Carlos Bustos
- Instituto de Ciencias Químicas, Universidad Austral de Chile, Las Encinas 220, Campus Isla Teja, Valdivia, Chile
| | - Eduardo Schott
- Departamento de Química Inorgánica, Facultad de Química y Farmacia, Centro de Energía UC, Centro de Investigación en Nanotecnología y Materiales Avanzados CIEN-UC, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna, 4860, Santiago, Chile.
| |
Collapse
|
21
|
Wang W, Liu Y, Xue Z, Li J, Wang Z, Liu X. Activity of the Novel Fungicide SYP-34773 against Plant Pathogens and Its Mode of Action on Phytophthora infestans. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:11794-11803. [PMID: 34605240 DOI: 10.1021/acs.jafc.1c02679] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
SYP-34773 is a pyrimidinamine derivative and a novel fungicide modified from diflumetorim. This study determined the antimicrobial spectrum of SYP-34773, which showed it could strongly inhibit the growth of some important plant pathogens including fungi and oomycetes. In particular, Phytophthora infestans is an oomycete sensitive to SYP-34773, and the mycelium growth stage was found to be the most sensitive stage, with an EC50 value of 0.2030 μg/mL. At a concentration of 200 μg/mL, SYP-34773 displayed an excellent control efficacy of 69.55% and 81.48% against potato and tomato blight disease caused by P. infestans under field conditions, respectively. Mode of action investigations showed that this fungicide could cause severe ultrastructure damage to the mycelia of P. infestans, inhibit its respiration, and increase the cell membrane permeability of this pathogen. The results of this study could provide useful information for the fungicide registration and application of SYP-34773 as a novel fungicide.
Collapse
Affiliation(s)
- Weizhen Wang
- China Agricultural University, Beijing 100193, People's Republic of China
| | - Ying Liu
- China Agricultural University, Beijing 100193, People's Republic of China
| | - Zhaolin Xue
- China Agricultural University, Beijing 100193, People's Republic of China
| | - Jingru Li
- China Agricultural University, Beijing 100193, People's Republic of China
| | - Zhiwen Wang
- China Agricultural University, Beijing 100193, People's Republic of China
| | - Xili Liu
- China Agricultural University, Beijing 100193, People's Republic of China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, People's Republic of China
| |
Collapse
|
22
|
Mao S, Wu C, Gao Y, Hao J, He X, Tao P, Li J, Shang S, Song Z, Song J. Pine Rosin as a Valuable Natural Resource in the Synthesis of Fungicide Candidates for Controlling Fusarium oxysporum on Cucumber. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:6475-6484. [PMID: 34075747 DOI: 10.1021/acs.jafc.1c01887] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
To improve the effect of pine rosin in plant fungicides, four series of dehydroabietyl-1,3,4-thiadiazole derivatives from the natural product rosin were synthesized. Based on the evaluation of the in vitro antifungal activity against Sclerotinia sclerotiorum, Botrytis cinerea, Fusarium oxysporum, and Magnaporthe oryzae, rosin-based 1,3,4-thiadiazole compounds containing thiophene heterocycles were screened. Notably, compound 3e [dehydroabietyl-(1,3,4-thiadiazol-2-yl)-5-nitrothiophene-2-carboxamide] exhibited excellent antifungal property against F. oxysporum with an EC50 of 0.618 mg/L, which was lower than that of the positive control carbendazim (0.649 mg/L). The in vivo antifungal activity results showed that 3e exerted a protective effect on cucumber plants. Physiological and biochemical studies showed that the primary mechanism of action of compound 3e on F. oxysporum was it changed the mycelial morphology, increased the cell membrane permeability, and inhibited the synthesis of ergosterol in the mycelia. Furthermore, the quantitative structure-activity relationship studies revealed that the frontier orbital energy in the molecule had a key role in the antifungal activity through the conjugation and electrostatic interaction between compound 3e and the receptors of the target. Thus, the present study highlighted the application of rosin-based fungicidal candidates and exploited efficient plant pesticides for sustainable crop production.
Collapse
Affiliation(s)
- Shiying Mao
- Shaanxi Key Laboratory of Economic Plant Resources Development and Utilization, College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Chengyu Wu
- Shaanxi Key Laboratory of Economic Plant Resources Development and Utilization, College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Yanqing Gao
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Jin Hao
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Xiaohua He
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Pan Tao
- Shaanxi Key Laboratory of Economic Plant Resources Development and Utilization, College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Jian Li
- Shaanxi Key Laboratory of Economic Plant Resources Development and Utilization, College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Shibin Shang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, Jiangsu 210042, People's Republic of China
| | - Zhanqian Song
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, Jiangsu 210042, People's Republic of China
| | - Jie Song
- Department of Chemistry and Biochemistry, University of Michigan-Flint, Flint, Michigan 48502, United States
| |
Collapse
|
23
|
Design, synthesis and fungicidal activity of pyrazole-thiazole carboxamide derivatives. Mol Divers 2021; 26:205-214. [PMID: 33792811 DOI: 10.1007/s11030-020-10177-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/11/2020] [Indexed: 10/21/2022]
Abstract
Twenty-one novel pyrazole-thiazole carboxamide derivatives were rationally designed and synthesized. Bioassay results indicated that 6d (EC50 = 5.11 μg/mL) and 6j (EC50 = 8.14 μg/mL) exhibited better in vitro activities than fluxapyroxad (EC50 = 11.93 μg/mL) and thifluzamide (EC50 = 22.12 μg/mL) against Rhizoctonia cerealis. Particularly, compound 6j showed promising in vivo protective activity against Rhizoctonia solani and Puccinia sorghi Schw. with 80% and 90% inhibition at 10 μg/mL, respectively. Our studies found that pyrazole-thiazole is a promising fungicide lead deserving for further derivation.
Collapse
|