1
|
Doloman A, Besteman MS, Sanders MG, Sousa DZ. Methanogenic partner influences cell aggregation and signalling of Syntrophobacterium fumaroxidans. Appl Microbiol Biotechnol 2024; 108:127. [PMID: 38229305 DOI: 10.1007/s00253-023-12955-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/15/2023] [Accepted: 12/01/2023] [Indexed: 01/18/2024]
Abstract
For several decades, the formation of microbial self-aggregates, known as granules, has been extensively documented in the context of anaerobic digestion. However, current understanding of the underlying microbial-associated mechanisms responsible for this phenomenon remains limited. This study examined morphological and biochemical changes associated with cell aggregation in model co-cultures of the syntrophic propionate oxidizing bacterium Syntrophobacterium fumaroxidans and hydrogenotrophic methanogens, Methanospirillum hungatei or Methanobacterium formicicum. Formerly, we observed that when syntrophs grow for long periods with methanogens, cultures tend to form aggregates visible to the eye. In this study, we maintained syntrophic co-cultures of S. fumaroxidans with either M. hungatei or M. formicicum for a year in a fed-batch growth mode to stimulate aggregation. Millimeter-scale aggregates were observed in both co-cultures within the first 5 months of cultivation. In addition, we detected quorum sensing molecules, specifically N-acyl homoserine lactones, in co-culture supernatants preceding the formation of macro-aggregates (with diameter of more than 20 μm). Comparative transcriptomics revealed higher expression of genes related to signal transduction, polysaccharide secretion and metal transporters in the late-aggregation state co-cultures, compared to the initial ones. This is the first study to report in detail both biochemical and physiological changes associated with the aggregate formation in syntrophic methanogenic co-cultures. KEYPOINTS: • Syntrophic co-cultures formed mm-scale aggregates within 5 months of fed-batch cultivation. • N-acyl homoserine lactones were detected during the formation of aggregates. • Aggregated co-cultures exhibited upregulated expression of adhesins- and polysaccharide-associated genes.
Collapse
Affiliation(s)
- Anna Doloman
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708, WE, Wageningen, The Netherlands.
| | - Maaike S Besteman
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708, WE, Wageningen, The Netherlands
| | - Mark G Sanders
- Laboratory of Food Chemistry, Wageningen University, Bornse Weilanden 9, 6708, WG, Wageningen, The Netherlands
| | - Diana Z Sousa
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708, WE, Wageningen, The Netherlands
- Centre for Living Technologies, Eindhoven-Wageningen-Utrecht Alliance, Princetonlaan 6, 3584, CB, Utrecht, The Netherlands
| |
Collapse
|
2
|
Tomas J, Lafite P, Schuler M, Tatibouët A. Enzyme-Triggered Chromogenic and Fluorogenic Probes for Myrosinase Activity Detection. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23224-23232. [PMID: 39385497 DOI: 10.1021/acs.jafc.4c03326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Myrosinase, a thioglucosidase, is a key enzyme in the mechanism of defense of plants that hydrolyzes glucosinolates (GSLs) into isothiocyanates. These isothiocyanates are the main bioactive molecules exerting protective effect in Brassicales plants. These plants that contain this specific enzyme-substrate couple belong to our daily human diet and have demonstrated health benefits, such as chemopreventive effects. Thus, the detection of myrosinase activity is a key aspect of the production of isothiocyanates from glucosinolates. Two novel chromogenic and fluorogenic GSLs, GSL p-nitrophenoxy (GSL-pNP) and GSL-4-methylumbelliferone (GSL-4MU), were designed and synthesized to be used as simple and reliable molecular tools to spectrophotometrically detect myrosinase activity in simple and complex mixtures. Notably, the chromogenic GSL enabled the UV-vis detection and quantification of isolated myrosinase activity, while fluorogenic GSL could be used for in vitro activity monitoring of more complex plant materials, such as seeds.
Collapse
Affiliation(s)
- Josip Tomas
- Université d'Orléans et CNRS, ICOA, UMR 7311, BP 6759, Orléans F-45067, France
| | - Pierre Lafite
- Université d'Orléans et CNRS, ICOA, UMR 7311, BP 6759, Orléans F-45067, France
| | - Marie Schuler
- Université d'Orléans et CNRS, ICOA, UMR 7311, BP 6759, Orléans F-45067, France
| | - Arnaud Tatibouët
- Université d'Orléans et CNRS, ICOA, UMR 7311, BP 6759, Orléans F-45067, France
| |
Collapse
|
3
|
Bell L. Letter to the Editor regarding "Decreased cadmium content in Solanum melongena induced by grafting was related to glucosinolates synthesis" by Xue et al. (2024). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 932:173063. [PMID: 38723953 DOI: 10.1016/j.scitotenv.2024.173063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/16/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Affiliation(s)
- Luke Bell
- School of Agriculture, Policy & Development, University of Reading, Reading RG6 6AH. United Kingdom
| |
Collapse
|
4
|
Segneanu AE, Vlase G, Chirigiu L, Herea DD, Pricop MA, Saracin PA, Tanasie ȘE. Romanian Wild-Growing Armoracia rusticana L.-Untargeted Low-Molecular Metabolomic Approach to a Potential Antitumoral Phyto-Carrier System Based on Kaolinite. Antioxidants (Basel) 2023; 12:1268. [PMID: 37371998 PMCID: PMC10295413 DOI: 10.3390/antiox12061268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 05/24/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Horseradish is a globally well-known and appreciated medicinal and aromatic plant. The health benefits of this plant have been appreciated in traditional European medicine since ancient times. Various studies have investigated the remarkable phytotherapeutic properties of horseradish and its aromatic profile. However, relatively few studies have been conducted on Romanian horseradish, and they mainly refer to the ethnomedicinal or dietary uses of the plant. This study reports the first complete low-molecular-weight metabolite profile of Romanian wild-grown horseradish. A total of ninety metabolites were identified in mass spectra (MS)-positive mode from nine secondary metabolite categories (glucosilates, fatty acids, isothiocyanates, amino acids, phenolic acids, flavonoids, terpenoids, coumarins, and miscellaneous). In addition, the biological activity of each class of phytoconstituents was discussed. Furthermore, the development of a simple target phyto-carrier system that collectively exploits the bioactive properties of horseradish and kaolinite is reported. An extensive characterization (FT-IR, XRD, DLS, SEM, EDS, and zeta potential) was performed to investigate the morpho-structural properties of this new phyto-carrier system. The antioxidant activity was evaluated using a combination of three in vitro, non-competitive methods (total phenolic assay, 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging assay, and phosphomolybdate (total antioxidant capacity)). The antioxidant assessment indicated the stronger antioxidant properties of the new phyto-carrier system compared with its components (horseradish and kaolinite). The collective results are relevant to the theoretical development of novel antioxidant agent fields with potential applications on antitumoral therapeutic platforms.
Collapse
Affiliation(s)
- Adina-Elena Segneanu
- Institute for Advanced Environmental Research, West University of Timisoara (ICAM-WUT), Oituz nr. 4, 300086 Timisoara, Romania;
| | - Gabriela Vlase
- Institute for Advanced Environmental Research, West University of Timisoara (ICAM-WUT), Oituz nr. 4, 300086 Timisoara, Romania;
- Research Center for Thermal Analysis in in Environmental Problems, West University of Timisoara, Pestalozzi St. 16, 300115 Timisoara, Romania
| | - Liviu Chirigiu
- Faculty of Pharmacy, University of Medicine and Pharmacy Craiova, 2, Petru Rareș, 200349 Craiova, Romania; (L.C.); (P.-A.S.); (Ș.E.T.)
| | - Daniel Dumitru Herea
- National Institute of Research and Development for Technical Physics, 47 Mangeron Blvd, 700050 Iasi, Romania;
| | - Maria-Alexandra Pricop
- OncoGen Centre, Clinical County Hospital “Pius Branzeu”, Blvd. Liviu Rebreanu 156, 300723 Timisoara, Romania;
| | - Patricia-Aida Saracin
- Faculty of Pharmacy, University of Medicine and Pharmacy Craiova, 2, Petru Rareș, 200349 Craiova, Romania; (L.C.); (P.-A.S.); (Ș.E.T.)
| | - Ștefania Eliza Tanasie
- Faculty of Pharmacy, University of Medicine and Pharmacy Craiova, 2, Petru Rareș, 200349 Craiova, Romania; (L.C.); (P.-A.S.); (Ș.E.T.)
| |
Collapse
|
5
|
Tian Y, Zhou Y, Kriisa M, Anderson M, Laaksonen O, Kütt ML, Föste M, Korzeniowska M, Yang B. Effects of fermentation and enzymatic treatment on phenolic compounds and soluble proteins in oil press cakes of canola (Brassica napus). Food Chem 2023; 409:135339. [PMID: 36599288 DOI: 10.1016/j.foodchem.2022.135339] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/21/2022] [Accepted: 12/26/2022] [Indexed: 12/28/2022]
Abstract
To develop novel processes for valorizing agro-industry side-streams, canola (Brassica napus) oil press cakes (CPC) were treated with lactic acid bacteria, carbohydrase, and protease. Altogether 29 protein-rich liquid fractions were obtained, of which the composition was analyzed using chromatographic and mass spectrometric methods. A clear association was revealed between the treatments and phenolic profile. Applying certain lactic acid bacteria enhanced the release of sinapic acid, sinapine, glycosylated kaempferols, and other phenolic compounds from CPC. Co-treatment using protease and Lactiplantibacillus plantarum was effective in degrading these compounds. The fraction obtained after 16 h of hydrolysis (with Protamex® of 2% dosage) and 48 h of fermentation (using L. plantarum) contained the lowest phenolic content (0.2 g/100 g DM) and a medium level of soluble proteins (78 g/100 g) among all samples studied. The fractions rich in soluble proteins and low in phenolics are potential food ingredients with improved bioavailability and sensory properties.
Collapse
Affiliation(s)
- Ye Tian
- Food Sciences, Department of Life Technologies, Faculty of Technology, University of Turku, 20014 Turku, Finland
| | - Ying Zhou
- Food Sciences, Department of Life Technologies, Faculty of Technology, University of Turku, 20014 Turku, Finland
| | - Marie Kriisa
- Center of Food and Fermentation Technologies (TFTAK), 12618 Tallinn, Estonia
| | - Maret Anderson
- Center of Food and Fermentation Technologies (TFTAK), 12618 Tallinn, Estonia
| | - Oskar Laaksonen
- Food Sciences, Department of Life Technologies, Faculty of Technology, University of Turku, 20014 Turku, Finland
| | - Mary-Liis Kütt
- Center of Food and Fermentation Technologies (TFTAK), 12618 Tallinn, Estonia
| | - Maike Föste
- Fraunhofer Institute for Process Engineering and Packaging IVV, 85354 Freising, Germany
| | - Małgorzata Korzeniowska
- Department of Functional Food Products Development, Faculty of Biotechnology and Food Science, Wroclaw University of Environmental and Life Sciences, 51-630 Wroclaw, Poland
| | - Baoru Yang
- Food Sciences, Department of Life Technologies, Faculty of Technology, University of Turku, 20014 Turku, Finland; Shanxi Center for Testing of Functional Agro-Products, Shanxi Agricultural University, Taiyuan 030031, China.
| |
Collapse
|
6
|
Albalawi MA, Hafez AM, Elhawary SS, Sedky NK, Hassan OF, Bakeer RM, El Hadi SA, El-Desoky AH, Mahgoub S, Mokhtar FA. The medicinal activity of lyophilized aqueous seed extract of Lepidium sativum L. in an androgenic alopecia model. Sci Rep 2023; 13:7676. [PMID: 37169776 PMCID: PMC10175567 DOI: 10.1038/s41598-023-33988-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 04/21/2023] [Indexed: 05/13/2023] Open
Abstract
This study evaluated the topical effect of Lepidium sativum lyophilized seed extract (LSLE) towards Sustanon-induced alopecia in male adult Wistar albino rats in vivo, compared to minoxidil topical reference standard drug (MRD). LC-MS/MS together with molecular networking was used to profile the metabolites of LSLE. LSLE treated group revealed significant changes in alopecia related biomarkers, perturbation of androgenic markers; decline in testosterone level and elevation in 5α-reductase (5-AR); decline in the cholesterol level. On the other hand, LSLE treated group showed improvement in vascular markers; CTGF, FGF and VEGF. Groups treated topically with minoxidil and LSLE showed significant improvement in hair length. LC-MS/MS profile of LSLE tentatively identified 17 constituents: mainly glucosinolates, flavonoid glycosides, alkaloids and phenolic acids. The results point to the potential role of LSLE in the treatment of alopecia through decreasing 5(alpha)-dihydrotestosterone levels. Molecular docking was attempted to evaluate the probable binding mode of identified compounds to androgen receptor (PDB code: 4K7A).
Collapse
Affiliation(s)
| | - Ahmed M Hafez
- Department of Biochemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, Cairo, Egypt
| | - Seham S Elhawary
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Nada K Sedky
- Department of Biochemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, Cairo, Egypt
| | - Omnia F Hassan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, MSA University, 6th of October City, Egypt
| | - Rofanda M Bakeer
- Department of Pathology, Faculty of Medicine, Helwan University, Helwan, Egypt
| | - Soha Abd El Hadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo, Egypt.
| | - Ahmed H El-Desoky
- Department of Pharmacognosy, Pharmaceutical Industries Research Institute, National Research Centre, Dokki, Giza, 112611, Egypt
| | - Sebaey Mahgoub
- Food Analysis Laboratory, Ministry of Health, Zagazig, 44511, Egypt
| | - Fatma A Mokhtar
- Department of Pharmacognosy, Faculty of Pharmacy, El Saleheya El Gadida University, El Saleheya El Gadida, Sia, 44813, Egypt
| |
Collapse
|
7
|
The Impact of Nitrile-Specifier Proteins on Indolic Carbinol and Nitrile Formation in Homogenates of Arabidopsis thaliana. Molecules 2022; 27:molecules27228042. [PMID: 36432142 PMCID: PMC9696369 DOI: 10.3390/molecules27228042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
Glucosinolates, specialized metabolites of the Brassicales including Brassica crops and Arabidopsis thaliana, have attracted considerable interest as chemical defenses and health-promoting compounds. Their biological activities are mostly due to breakdown products formed upon mixing with co-occurring myrosinases and specifier proteins, which can result in multiple products with differing properties, even from a single glucosinolate. Whereas product profiles of aliphatic glucosinolates have frequently been reported, indole glucosinolate breakdown may result in complex mixtures, the analysis of which challenging. The aim of this study was to assess the breakdown of indole glucosinolates in A. thaliana root and rosette homogenates and to test the impact of nitrile-specifier proteins (NSPs) on product profiles. To develop a GC-MS-method for quantification of carbinols and nitriles derived from three prominent indole glucosinolates, we synthesized standards, established derivatization conditions, determined relative response factors and evaluated applicability of the method to plant homogenates. We show that carbinols are more dominant among the detected products in rosette than in root homogenates of wild-type and NSP1- or NSP3-deficient mutants. NSP1 is solely responsible for nitrile formation in rosette homogenates and is the major NSP for indolic nitrile formation in root homogenates, with no contribution from NSP3. These results will contribute to the understanding of the roles of NSPs in plants.
Collapse
|
8
|
Kyriakou S, Michailidou K, Amery T, Stewart K, Winyard PG, Trafalis DT, Franco R, Pappa A, Panayiotidis MI. Polyphenolics, glucosinolates and isothiocyanates profiling of aerial parts of Nasturtium officinale (Watercress). FRONTIERS IN PLANT SCIENCE 2022; 13:998755. [PMID: 36457522 PMCID: PMC9706002 DOI: 10.3389/fpls.2022.998755] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/26/2022] [Indexed: 06/17/2023]
Abstract
Watercress (Nasturtium officinale) is a rich source of secondary metabolites with disease-preventing and/or health-promoting properties. Herein, we have utilized extraction procedures to isolate fractions of polyphenols, glucosinolates and isothiocyanates to determine their identification, and quantification. In doing so, we have utilized reproducible analytical methodologies based on liquid chromatography with tandem mass spectrometry by either positive or negative ion mode. Due to the instability and volatility of isothiocyanates, we followed an ammonia derivatization protocol which converts them into respective ionizable thiourea derivatives. The analytes' content distribution map was created on watercress flowers, leaves and stems. We have demonstrated that watercress contains significantly higher levels of gluconasturtiin, phenethyl isothiocyanate, quercetin-3-O-rutinoside and isorhamnetin, among others, with their content decreasing from flowers (82.11 ± 0.63, 273.89 ± 0.88, 1459.30 ± 12.95 and 289.40 ± 1.37 ng/g of dry extract respectively) to leaves (32.25 ± 0.74, 125.02 ± 0.52, 1197.86 ± 4.24 and 196.47 ± 3.65 ng/g of det extract respectively) to stems (9.20 ± 0.11, 64.7 ± 0.9, 41.02 ± 0.18, 65.67 ± 0.84 ng/g of dry extract respectivbely). Pearson's correlation analysis has shown that the content of isothiocyanates doesn't depend only on the bioconversion of individual glucosinolates but also on other glucosinolates of the same group. Overall, we have provided comprehensive analytical data of the major watercress metabolites thereby providing an opportunity to exploit different parts of watercress for potential therapeutic applications.
Collapse
Affiliation(s)
- Sotiris Kyriakou
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - Kyriaki Michailidou
- Biostatistics Unit, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - Tom Amery
- The Watercress Company, Dorchester, United Kingdom
| | - Kyle Stewart
- Watercress Research Limited, Devon, United Kingdom
| | | | - Dimitrios T. Trafalis
- Laboratory of Pharmacology, Medical School, National & Kapodistrian University of Athens, Athens, Greece
| | - Rodrigo Franco
- Redox Biology Centre, University of Nebraska-Lincoln, Lincoln, NE, United States
- Department of Veterinary Medicine & Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Aglaia Pappa
- Department of Molecular Biology & Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Mihalis I. Panayiotidis
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| |
Collapse
|
9
|
Shang G, Zhao H, Tong L, Yin N, Hu R, Jiang H, Kamal F, Zhao Z, Xu L, Lu K, Li J, Qu C, Du D. Genome-Wide Association Study of Phenylalanine Derived Glucosinolates in Brassica rapa. PLANTS (BASEL, SWITZERLAND) 2022; 11:1274. [PMID: 35567275 PMCID: PMC9104335 DOI: 10.3390/plants11091274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/05/2022] [Accepted: 05/05/2022] [Indexed: 11/16/2022]
Abstract
Glucosinolates (GSLs) are sulfur-containing bioactive compounds usually present in Brassicaceae plants and are usually responsible for a pungent flavor and reduction of the nutritional values of seeds. Therefore, breeding rapeseed varieties with low GSL levels is an important breeding objective. Most GSLs in Brassica rapa are derived from methionine or tryptophan, but two are derived from phenylalanine, one directly (benzylGSL) and one after a round of chain elongation (phenethylGSL). In the present study, two phenylalanine (Phe)-derived GSLs (benzylGSL and phenethylGSL) were identified and quantified in seeds by liquid chromatography and mass spectrometry (LC-MS) analysis. Levels of benzylGSL were low but differed among investigated low and high GSL genotypes. Levels of phenethylGSL (also known as 2-phenylethylGSL) were high but did not differ among GSL genotypes. Subsequently, a genome-wide association study (GWAS) was conducted using 159 B. rapa accessions to demarcate candidate regions underlying 43 and 59 QTNs associated with benzylGSL and phenethylGSL that were distributed on 10 chromosomes and 9 scaffolds, explaining 0.56% to 70.86% of phenotypic variations, respectively. Furthermore, we find that 15 and 18 known or novel candidate genes were identified for the biosynthesis of benzylGSL and phenethylGSL, including known regulators of GSL biosynthesis, such as BrMYB34, BrMYB51, BrMYB28, BrMYB29 and BrMYB122, and novel regulators or structural genes, such as BrMYB44/BrMYB77 and BrMYB60 for benzylGSL and BrCYP79B2 for phenethylGSL. Finally, we investigate the expression profiles of the biosynthetic genes for two Phe-derived GSLs by transcriptomic analysis. Our findings provide new insight into the complex machinery of Phe-derived GSLs in seeds of B. rapa and help to improve the quality of Brassicaceae plant breeding.
Collapse
Affiliation(s)
- Guoxia Shang
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Key Laboratory of Spring Rape Genetic Improvement, Academy of Agricultural and Forestry Sciences, Qinghai University, Xining 810016, China; (G.S.); (Z.Z.); (L.X.)
| | - Huiyan Zhao
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China; (H.Z.); (L.T.); (N.Y.); (R.H.); (H.J.); (F.K.); (K.L.)
| | - Linhui Tong
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China; (H.Z.); (L.T.); (N.Y.); (R.H.); (H.J.); (F.K.); (K.L.)
| | - Nengwen Yin
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China; (H.Z.); (L.T.); (N.Y.); (R.H.); (H.J.); (F.K.); (K.L.)
| | - Ran Hu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China; (H.Z.); (L.T.); (N.Y.); (R.H.); (H.J.); (F.K.); (K.L.)
| | - Haiyan Jiang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China; (H.Z.); (L.T.); (N.Y.); (R.H.); (H.J.); (F.K.); (K.L.)
| | - Farah Kamal
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China; (H.Z.); (L.T.); (N.Y.); (R.H.); (H.J.); (F.K.); (K.L.)
| | - Zhi Zhao
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Key Laboratory of Spring Rape Genetic Improvement, Academy of Agricultural and Forestry Sciences, Qinghai University, Xining 810016, China; (G.S.); (Z.Z.); (L.X.)
| | - Liang Xu
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Key Laboratory of Spring Rape Genetic Improvement, Academy of Agricultural and Forestry Sciences, Qinghai University, Xining 810016, China; (G.S.); (Z.Z.); (L.X.)
| | - Kun Lu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China; (H.Z.); (L.T.); (N.Y.); (R.H.); (H.J.); (F.K.); (K.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Jiana Li
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China; (H.Z.); (L.T.); (N.Y.); (R.H.); (H.J.); (F.K.); (K.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Cunmin Qu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China; (H.Z.); (L.T.); (N.Y.); (R.H.); (H.J.); (F.K.); (K.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Dezhi Du
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Key Laboratory of Spring Rape Genetic Improvement, Academy of Agricultural and Forestry Sciences, Qinghai University, Xining 810016, China; (G.S.); (Z.Z.); (L.X.)
| |
Collapse
|
10
|
Ngan HL, Wang T, Ru Y, Chen Y, Li C, Cai Z. Simultaneous analysis of derivatized allyl isothiocyanate together with its phase II metabolites by ultra-high-performance liquid chromatography/tandem mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2022; 36:e9257. [PMID: 35037320 DOI: 10.1002/rcm.9257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/09/2022] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
RATIONALE Allyl isothiocyanate (AITC) in food products such as wasabi is commonly analyzed by gas chromatography/mass spectrometry (GC/MS), while liquid chromatography/mass spectrometry (LC/MS) is more suitable for the polar metabolites. The development of an effective method for the simultaneous determination of AITC and its phase II metabolites is needed to support drug metabolism and pharmacokinetics (DMPK) studies. METHODS Derivatization of AITC by reaction with N-(tert-butoxycarbonyl)-L-cysteine methyl ester (t BocCysME) was used for ultra-high-performance liquid chromatography/electrospray ionization mass spectrometry (UHPLC/ESI-MS) analysis, allowing the simultaneous determination with its phase II metabolites. At room temperature, reaction conditions have been optimized to maximize the reaction of AITC with t BocCysME quantitively. Reaction selectivity was examined by the presence of AITC metabolites. Quantification of AITC was performed by multiple reaction monitoring (MRM) with an external calibration method and applied on the serum of C57BL/6 J mouse for a DMPK study. RESULTS The limit of quantification (LOQ) was determined to be 0.842 nM from the derivatization method and by UHPLC/MS/MS analysis. The method accuracy in the mouse serum samples was 75 ± 2% with a relative standard deviation (RSD) of 3.0% of method variation. The UHPLC/MS/MS analysis gave RSDs of 0.2% and 1.8% for intra-day and inter-day variations. With the newly developed method, AITC could be detected in mouse serum upon oral administration for the first time. CONCLUSIONS An analytical method involving a rapid derivatization pre-treatment and quantitative UHPLC/ESI-QqQ-MS/MS analysis has been developed for a biological sample assay of AITC, enabling selective and sensitive detection of the AITC derivative and AITC metabolites simultaneously. The method developed could be applied to the DMPK study of AITC as well.
Collapse
Affiliation(s)
- Hiu-Lok Ngan
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, P. R. China
| | - Tao Wang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, P. R. China
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Dongguan, P. R. China
| | - Yi Ru
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, P. R. China
| | - Yanyan Chen
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, P. R. China
| | - Charlie Li
- Department of Environmental Toxicology, University of California, Davis, CA, USA
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, P. R. China
| |
Collapse
|
11
|
Yu X, He H, Zhao X, Liu G, Hu L, Cheng B, Wang Y. Determination of 18 Intact Glucosinolates in Brassicaceae Vegetables by UHPLC-MS/MS: Comparing Tissue Disruption Methods for Sample Preparation. MOLECULES (BASEL, SWITZERLAND) 2021; 27:molecules27010231. [PMID: 35011461 PMCID: PMC8746615 DOI: 10.3390/molecules27010231] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/22/2021] [Accepted: 12/28/2021] [Indexed: 11/22/2022]
Abstract
Glucosinolates (GSLs) are important precursor compounds with anticancer activities in Brassicaceae vegetables and are readily hydrolyzed by myrosinase. Given the diversity of these species, establishing an accurate and universal method to quantify intact GSLs in different plant tissues is necessary. Here, we compared and optimized three tissue disruption methods for sample preparation. After microwave treatment for 90 s, 13 GSLs in homogenized Chinese cabbage samples were recovered at 73–124%. However, a limitation of this method was that different tissues could not be processed under the same microwave conditions. Regarding universality, GSLs in Brassicaceae vegetables could be extracted from freeze-dried sample powder with 70% methanol (v/v) or frozen-fresh sample powder with 80% methanol (v/v). Moreover, heating extraction is necessary for GSLs extracted from frozen-fresh sample powder. Average recoveries of the two optimized methods were 74–119% with relative standard deviations ≤ 15%, with the limits of quantification 5.72–17.40 nmol/g dry weight and 0.80–1.43 nmol/g fresh weight, respectively. Notably, the method for analyzing intact GSLs was more efficient than that for desulfo-GSLs regarding operational complexity, detection speed and quantification accuracy. The developed method was applied to identify the characteristic GSLs in 15 Brassicaceae vegetables, providing a foundation for further research on GSLs.
Collapse
|
12
|
Current Methods for the Extraction and Analysis of Isothiocyanates and Indoles in Cruciferous Vegetables. ANALYTICA 2021. [DOI: 10.3390/analytica2040011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Cruciferous vegetables are characterized by the presence of sulfur-containing secondary plant metabolites known as glucosinolates (GLS). The consumption of cruciferous vegetables such as broccoli, cabbage, rocket salad, and cauliflower has been related to the prevention of non-communicable diseases. Their beneficial effects are attributed to the enzymatic degradation products of GLS, e.g., isothiocyanates and indoles. Owing to these properties, there has been a shift in the last few years towards the research of these compounds and a wide range of methods for their extraction and analytical determination have been developed. The aim of this review is to present the sample preparation and extraction procedures of isothiocyanates and indoles from cruciferous vegetables and the analytical methods for their determination. The majority of the references that have been reviewed are from the last decade. Although efforts towards the application of eco-friendly non-conventional extraction methods have been made, the use of conventional solvent extraction is mainly applied. The major analytical techniques employed for the qualitative and quantitative analysis of isothiocyanates and indoles are high-performance liquid chromatography and gas chromatography coupled with or without mass spectrometry detection. Nevertheless, the analytical determination of isothiocyanates presents several problems due to their instability and the absence of chromophores, making the simultaneous determination of isothiocyanates and indoles a challenging task.
Collapse
|
13
|
Dong M, Tian Z, Ma Y, Yang Z, Ma Z, Wang X, Li Y, Jiang H. Rapid screening and characterization of glucosinolates in 25 Brassicaceae tissues by UHPLC-Q-exactive orbitrap-MS. Food Chem 2021; 365:130493. [PMID: 34247049 DOI: 10.1016/j.foodchem.2021.130493] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 06/02/2021] [Accepted: 06/28/2021] [Indexed: 01/18/2023]
Abstract
Glucosinolates (GSLs) are secondary plant metabolites that occur mainly in the Brassicaceae plants, which are desirable compounds in human foods due to their diverse biological activities. In this study, we developed an integrated data filtering and identification strategy to characterize the GSLs. An in-depth GSLs profiling was performed on 25 commonly Brassicaceae tissues in Jinan, China. By comparison with the reference standards and previous researches, we tentatively identified 47 GSLs including 8 unknown ones. The GSLs profiles of 25 Brassicaceae tissues were established, and 11 markers of GSLs could be used to distinguish the Brassica and Raphanus. This approach enables accurately characterization the GSLs of Brassicaceae tissues, and demonstrates the potential of GSLs profiles for Brassicaceae species discrimination.
Collapse
Affiliation(s)
- Meiyue Dong
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Zhenhua Tian
- Experimental Centre, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yanni Ma
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Zhongyi Yang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Zhen Ma
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xiaoming Wang
- Experimental Centre, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Yunlun Li
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; TCM Clinical Research Base for Hypertension, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China.
| | - Haiqiang Jiang
- Experimental Centre, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| |
Collapse
|
14
|
QSAR-based physicochemical properties of isothiocyanate antimicrobials against gram-negative and gram-positive bacteria. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111222] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
Abellán Á, Domínguez-Perles R, Giménez MJ, Zapata PJ, Valero D, García-Viguera C. The development of a broccoli supplemented beer allows obtaining a valuable dietary source of sulforaphane. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2020.100814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
16
|
Yamazaki S, Kuribayashi T, Mizutani T. Quantification of glucosinolates in nozawana (<i>Brassica rapa</i> L.) and evaluation via single- and multi-laboratory validation studies. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2021. [DOI: 10.3136/fstr.27.897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Shinya Yamazaki
- Food Technology Department, Nagano Prefecture General Industrial Technology Center
| | - Takeshi Kuribayashi
- Food Technology Department, Nagano Prefecture General Industrial Technology Center
| | - Tomohiro Mizutani
- Food Technology Department, Nagano Prefecture General Industrial Technology Center
| |
Collapse
|
17
|
Andini S, Araya-Cloutier C, Waardenburg L, den Besten HM, Vincken JP. The interplay between antimicrobial activity and reactivity of isothiocyanates. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
18
|
Lopez-Rodriguez NA, Gaytán-Martínez M, de la Luz Reyes-Vega M, Loarca-Piña G. Glucosinolates and Isothiocyanates from Moringa oleifera: Chemical and Biological Approaches. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2020; 75:447-457. [PMID: 32909179 DOI: 10.1007/s11130-020-00851-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
Alternative therapies, such as phytotherapy, are considered to improve the health status of people with chronic non-communicable diseases (CNCDs). In this regard, Moringa oleifera is currently being studied for its nutritional value and its total phenolic content. Besides phenolic compounds, the phytochemical composition is also of great interest. This composition is characterized by the presence of glucosinolates and isothiocyanates. Isothiocyanates formed by the biotransformation of Moringa glucosinolates contain an additional sugar in their chemical structure, which provides stability to these bioactive compounds over other isothiocyanates found in other crops. Both glucosinolates and isothiocyanates have been described as beneficial for the prevention and improvement of some chronic diseases. The content of glucosinolates in Moringa tissues can be enhanced by certain harvesting methods which in turn alters their final yield after extraction. This review aims to highlight certain features of glucosinolates and isothiocyanates from M. oleifera, such as their chemical structure, functionality, and main extraction and harvesting methods. Some of their health-promoting effects will also be addressed.
Collapse
Affiliation(s)
- Norma A Lopez-Rodriguez
- Programa de Posgrado en Alimentos del Centro de la República, Research and Graduate Studies in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Centro Universitario, Cerro de las Campanas, S/N, Santiago de Querétaro, 76010, Qro, Mexico
| | - Marcela Gaytán-Martínez
- Programa de Posgrado en Alimentos del Centro de la República, Research and Graduate Studies in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Centro Universitario, Cerro de las Campanas, S/N, Santiago de Querétaro, 76010, Qro, Mexico
| | - María de la Luz Reyes-Vega
- Programa de Posgrado en Alimentos del Centro de la República, Research and Graduate Studies in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Centro Universitario, Cerro de las Campanas, S/N, Santiago de Querétaro, 76010, Qro, Mexico
| | - Guadalupe Loarca-Piña
- Programa de Posgrado en Alimentos del Centro de la República, Research and Graduate Studies in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Centro Universitario, Cerro de las Campanas, S/N, Santiago de Querétaro, 76010, Qro, Mexico.
| |
Collapse
|