1
|
Shram SI, Shcherbakova TA, Abramova TV, Smirnovskaya MS, Balandina AI, Kulikov AV, Švedas VK, Silnikov VN, Myasoedov NF, Nilov DK. A New Approach for Studying Poly(ADP-Ribose) Polymerase Inhibitors Using Permeabilized Adherent Cells. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1619-1630. [PMID: 39418520 DOI: 10.1134/s0006297924090086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/03/2024] [Accepted: 06/10/2024] [Indexed: 10/19/2024]
Abstract
Poly(ADP-ribose) polymerase (PARP) inhibitors have been proposed as pharmacological agents in the treatment of various diseases. Recently, factors and mechanisms responsible for regulating PARP catalytic activity have been identified, some of which can significantly influence the effectiveness of inhibitors of this enzyme. In this regard, it is important to develop new models and methods that would reflect the cellular context in which PARP functions. We proposed to use digitonin-permeabilized adherent cells to study poly(ADP-ribosyl)ation reaction (PARylation) in order to maintain the nuclear localization of PARP and to control the concentrations of its substrate (NAD+) and tested compounds in the cell. A specific feature of the approach is that before permeabilization, cellular PARP is converted to the DNA-bound state under conditions preventing premature initiation of the PARylation reaction. Experiments were carried out in rat H9c2 cardiomyoblasts. The activity of PARP in permeabilized cells was analyzed by measuring the immunofluorescence of the reaction product poly(ADP-ribose). The method was verified in the studies of PARP inhibition by the classic inhibitor 3-aminobenzamide and a number of new 7-methylguanine derivatives. One of them, 7,8-dimethylguanine, was found to be a stronger inhibitor compared to 7-methylguanine, due to a formation of additional hydrophobic contact with the protein. The proposed approach opens up new prospects for studying the mechanisms of PARP activity regulation in cells and can be used in high-throughput screening of PARP inhibitors.
Collapse
Affiliation(s)
- Stanislav I Shram
- National Research Centre "Kurchatov Institute", Moscow, 123182, Russia.
| | - Tatyana A Shcherbakova
- Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Tatyana V Abramova
- Institute of Chemical Biology and Fundamental Medicine, Russian Academy of Sciences, Siberian Branch, Novosibirsk, 630090, Russia
| | | | - Anastasia I Balandina
- National Research Centre "Kurchatov Institute", Moscow, 123182, Russia
- Faculty of Biotechnology and Industrial Ecology, Mendeleev University of Chemical Technology of Russia, Moscow, 125047, Russia
| | - Andrey V Kulikov
- Medical Institute, Peoples' Friendship University of Russia, Moscow, 117198, Russia
| | - Vytas K Švedas
- Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Vladimir N Silnikov
- Institute of Chemical Biology and Fundamental Medicine, Russian Academy of Sciences, Siberian Branch, Novosibirsk, 630090, Russia
| | | | - Dmitry K Nilov
- Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| |
Collapse
|
2
|
Comparison of the individual and combined actions of charged amino acids and glycine on the lysis of Escherichia coli cells by human and chicken lysozyme. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.12.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
3
|
Loop 422–437 in NanA from Streptococcus pneumoniae plays the role of an active site lid and is associated with allosteric regulation. Comput Biol Med 2022; 144:105290. [DOI: 10.1016/j.compbiomed.2022.105290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/20/2022] [Accepted: 02/01/2022] [Indexed: 11/03/2022]
|
4
|
Pushkarev SV, Vinnik VA, Shapovalova IV, Švedas VK, Nilov DK. Modeling the Structure of Human tRNA-Guanine Transglycosylase in Complex with 7-Methylguanine and Revealing the Factors that Determine the Enzyme Interaction with Inhibitors. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:443-449. [PMID: 35790378 DOI: 10.1134/s0006297922050054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 06/15/2023]
Abstract
tRNA-guanine transglycosylase, an enzyme catalyzing replacement of guanine with queuine in human tRNA and participating in the translation mechanism, is involved in the development of cancer. However, information on the small-molecule inhibitors that can suppress activity of this enzyme is very limited. Molecular dynamics simulations were used to determine the amino acid residues that provide efficient binding of inhibitors in the active site of tRNA-guanine transglycosylase. It was demonstrated using 7-methylguanine molecule as a probe that the ability of the inhibitor to adopt a charged state in the environment of hydrogen bond acceptors Asp105 and Asp159 plays a key role in complex formation. Formation of the hydrogen bonds and hydrophobic contacts with Gln202, Gly229, Phe109, and Met259 residues are also important. It has been predicted that introduction of the substituents would have a different effect on the ability to inhibit tRNA-guanine transglycosylase, as well as the DNA repair protein poly(ADP-ribose) polymerase 1, which can contribute to the development of more efficient and selective compounds.
Collapse
Affiliation(s)
- Sergey V Pushkarev
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Valeriia A Vinnik
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Irina V Shapovalova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Vytas K Švedas
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Dmitry K Nilov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| |
Collapse
|
5
|
Bifunctional Inhibitors of Influenza Virus Neuraminidase: Molecular Design of a Sulfonamide Linker. Int J Mol Sci 2021; 22:ijms222313112. [PMID: 34884917 PMCID: PMC8657994 DOI: 10.3390/ijms222313112] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 11/17/2022] Open
Abstract
The growing resistance of the influenza virus to widely used competitive neuraminidase inhibitors occupying the active site of the enzyme requires the development of bifunctional compounds that can simultaneously interact with other regulatory sites on the protein surface. When developing such an inhibitor and combining structural fragments that could be located in the sialic acid cavity of the active site and the adjacent 430-cavity, it is necessary to select a suitable linker not only for connecting the fragments, but also to ensure effective interactions with the unique arginine triad Arg118-Arg292-Arg371 of neuraminidase. Using molecular modeling, we have demonstrated the usefulness of the sulfonamide group in the linker design and the potential advantage of this functional group over other isosteric analogues.
Collapse
|
6
|
Llanos MA, Gantner ME, Rodriguez S, Alberca LN, Bellera CL, Talevi A, Gavernet L. Strengths and Weaknesses of Docking Simulations in the SARS-CoV-2 Era: the Main Protease (Mpro) Case Study. J Chem Inf Model 2021; 61:3758-3770. [PMID: 34313128 DOI: 10.1021/acs.jcim.1c00404] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The scientific community is working against the clock to arrive at therapeutic interventions to treat patients with COVID-19. Among the strategies for drug discovery, virtual screening approaches have the capacity to search potential hits within millions of chemical structures in days, with the appropriate computing infrastructure. In this article, we first analyzed the published research targeting the inhibition of the main protease (Mpro), one of the most studied targets of SARS-CoV-2, by docking-based methods. An alarming finding was the lack of an adequate validation of the docking protocols (i.e., pose prediction and virtual screening accuracy) before applying them in virtual screening campaigns. The performance of the docking protocols was tested at some level in 57.7% of the 168 investigations analyzed. However, we found only three examples of a complete retrospective analysis of the scoring functions to quantify the virtual screening accuracy of the methods. Moreover, only two publications reported some experimental evaluation of the proposed hits until preparing this manuscript. All of these findings led us to carry out a retrospective performance validation of three different docking protocols, through the analysis of their pose prediction and screening accuracy. Surprisingly, we found that even though all tested docking protocols have a good pose prediction, their screening accuracy is quite limited as they fail to correctly rank a test set of compounds. These results highlight the importance of conducting an adequate validation of the docking protocols before carrying out virtual screening campaigns, and to experimentally confirm the predictions made by the models before drawing bold conclusions. Finally, successful structure-based drug discovery investigations published during the redaction of this manuscript allow us to propose the inclusion of target flexibility and consensus scoring as alternatives to improve the accuracy of the methods.
Collapse
Affiliation(s)
- Manuel A Llanos
- Laboratory of Bioactive Research and Development (LIDeB), Department of Biological Sciences, Faculty of Exact Sciences, National University of La Plata (UNLP), 47&115, La Plata (B1900ADU), Buenos Aires, Argentina
| | - Melisa E Gantner
- Laboratory of Bioactive Research and Development (LIDeB), Department of Biological Sciences, Faculty of Exact Sciences, National University of La Plata (UNLP), 47&115, La Plata (B1900ADU), Buenos Aires, Argentina
| | - Santiago Rodriguez
- Laboratory of Bioactive Research and Development (LIDeB), Department of Biological Sciences, Faculty of Exact Sciences, National University of La Plata (UNLP), 47&115, La Plata (B1900ADU), Buenos Aires, Argentina
| | - Lucas N Alberca
- Laboratory of Bioactive Research and Development (LIDeB), Department of Biological Sciences, Faculty of Exact Sciences, National University of La Plata (UNLP), 47&115, La Plata (B1900ADU), Buenos Aires, Argentina
| | - Carolina L Bellera
- Laboratory of Bioactive Research and Development (LIDeB), Department of Biological Sciences, Faculty of Exact Sciences, National University of La Plata (UNLP), 47&115, La Plata (B1900ADU), Buenos Aires, Argentina
| | - Alan Talevi
- Laboratory of Bioactive Research and Development (LIDeB), Department of Biological Sciences, Faculty of Exact Sciences, National University of La Plata (UNLP), 47&115, La Plata (B1900ADU), Buenos Aires, Argentina
| | - Luciana Gavernet
- Laboratory of Bioactive Research and Development (LIDeB), Department of Biological Sciences, Faculty of Exact Sciences, National University of La Plata (UNLP), 47&115, La Plata (B1900ADU), Buenos Aires, Argentina
| |
Collapse
|
7
|
Shafiq N, Arshad U, Yaqoob N, Khan J, Khan A, Saleem K, Rashid M, Rafiq N, Ahmad R, Javaid I, Noreen S, Bilal M. Structure-based experimental and theoretical analysis of Ricinus communis for their HepG2 human carcinoma cell line inhibitors. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.03.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
8
|
Bioinformatic Analysis of the Nicotinamide Binding Site in Poly(ADP-Ribose) Polymerase Family Proteins. Cancers (Basel) 2021; 13:cancers13061201. [PMID: 33801950 PMCID: PMC8002165 DOI: 10.3390/cancers13061201] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/02/2021] [Accepted: 03/05/2021] [Indexed: 12/27/2022] Open
Abstract
Simple Summary The PARP family consists of 17 proteins, and some of them are responsible for cancer cells’ viability. Much attention is therefore given to the search for chemical compounds with the ability to suppress distinct PARP family members (for example, PARP-5a and 5b). Here, we present the results of a family-wide bioinformatic analysis of an important functional region in the PARP structure and describe factors that can guide the design of highly selective compounds. Abstract The PARP family consists of 17 members with diverse functions, including those related to cancer cells’ viability. Several PARP inhibitors are of great interest as innovative anticancer drugs, but they have low selectivity towards distinct PARP family members and exert serious adverse effects. We describe a family-wide study of the nicotinamide (NA) binding site, an important functional region in the PARP structure, using comparative bioinformatic analysis and molecular modeling. Mutations in the NA site and D-loop mobility around the NA site were identified as factors that can guide the design of selective PARP inhibitors. Our findings are of particular importance for the development of novel tankyrase (PARPs 5a and 5b) inhibitors for cancer therapy.
Collapse
|
9
|
Bellera CL, Llanos M, Gantner ME, Rodriguez S, Gavernet L, Comini M, Talevi A. Can drug repurposing strategies be the solution to the COVID-19 crisis? Expert Opin Drug Discov 2020; 16:605-612. [PMID: 33345645 DOI: 10.1080/17460441.2021.1863943] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: The COVID-19 pandemic resulted in disastrous human and economic costs, mainly due to the initial lack of specific treatments. Complementary to immunotherapies, drug repurposing is possibly the best option to arrive at COVID-19 treatments in the short term.Areas covered: Repurposing prospects undergoing clinical trials or with some level of evidence emerging from clinical studies are overviewed. The authors discuss some possible intellectual property and commercial barriers to drug repurposing, and strategies to facilitate equitable access to incoming therapeutic solutions, highlighting the importance of collaborative drug discovery models. Based on a critical analysis of the available literature about in silico screens against SARS-CoV-2 main protease, the authors illustrate how frequently overconfident conclusions are being drawn in COVID-19-related literature.Expert opinion: Most of the current clinical trials on potential COVID-19 treatments are, in fact, drug repurposing examples. In October 2020, the FDA approved a repurposed antiviral, remdesivir, as the first treatment for COVID-19. Considering the high expectations invested in approaching therapeutic solutions, the scientific community must be careful not to raise unrealistic expectations. Today more than ever, the conclusions drawn in scientific reports have to be fully supported by the level of evidence, avoiding any sort of unfounded speculation.
Collapse
Affiliation(s)
- Carolina L Bellera
- Laboratory of Bioactive Research and Development (Lideb), Department of Biological Sciences, Faculty of Exact Sciences, Universidad Nacional De La Plata (UNLP), Buenos Aires, Argentina.,Argentinean National Council of Scientific and Technical Research (CONICET), Argentina
| | - Manuel Llanos
- Laboratory of Bioactive Research and Development (Lideb), Department of Biological Sciences, Faculty of Exact Sciences, Universidad Nacional De La Plata (UNLP), Buenos Aires, Argentina.,Argentinean National Council of Scientific and Technical Research (CONICET), Argentina
| | - Melisa E Gantner
- Laboratory of Bioactive Research and Development (Lideb), Department of Biological Sciences, Faculty of Exact Sciences, Universidad Nacional De La Plata (UNLP), Buenos Aires, Argentina
| | - Santiago Rodriguez
- Laboratory of Bioactive Research and Development (Lideb), Department of Biological Sciences, Faculty of Exact Sciences, Universidad Nacional De La Plata (UNLP), Buenos Aires, Argentina.,Argentinean National Council of Scientific and Technical Research (CONICET), Argentina
| | - Luciana Gavernet
- Laboratory of Bioactive Research and Development (Lideb), Department of Biological Sciences, Faculty of Exact Sciences, Universidad Nacional De La Plata (UNLP), Buenos Aires, Argentina.,Argentinean National Council of Scientific and Technical Research (CONICET), Argentina
| | - Marcelo Comini
- Group Redox Biology of Trypanosomes, Institut Pasteur De Montevideo, Montevideo, Uruguay
| | - Alan Talevi
- Laboratory of Bioactive Research and Development (Lideb), Department of Biological Sciences, Faculty of Exact Sciences, Universidad Nacional De La Plata (UNLP), Buenos Aires, Argentina.,Argentinean National Council of Scientific and Technical Research (CONICET), Argentina
| |
Collapse
|