1
|
Fang B, Habibi P, Moultos OA, Lü T, Ning F, Vlugt TJH. Solubilities and Self-Diffusion Coefficients of Light n-Alkanes in NaCl Solutions at the Temperature Range (278.15-308.15) K and Pressure Range (1-300) bar and Thermodynamics Properties of Their Corresponding Hydrates at (150-290) K and (1-7000) bar. JOURNAL OF CHEMICAL AND ENGINEERING DATA 2024; 69:3330-3346. [PMID: 39411182 PMCID: PMC11472311 DOI: 10.1021/acs.jced.3c00225] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/20/2023] [Indexed: 10/19/2024]
Abstract
Continuous Fractional Component Monte Carlo (CFCMC) and molecular dynamics (MD) simulations are performed to calculate the solubilities and self-diffusion coefficients of four light n-alkanes (methane, ethane, propane, and n-butane) in aqueous NaCl solutions as well as the thermodynamic properties of their corresponding hydrate crystals. Correction factors k ij to the Lorentz-Berthelot combining rules for alkane groups (CH3) and water are optimized (k ij = 1.04) by fitting excess chemical potentials to experimental data at 1 bar and 298.15 K. Using these values of k ij , we calculate the solubilities of the four alkanes in aqueous NaCl solutions with different molalities (0-6) mol/kg at different temperatures (278.15-308.15) K and pressures (1, 100, 200, 300) bar. The diffusion coefficients of the four alkanes in NaCl solutions (0-6) mol/kg are calculated at different temperatures (278.15-308.15) K and 1 bar and corrected for the finite-size effects. The lattice parameters of the corresponding hydrates with different guest molecules are computed using MD simulations at different temperatures (150-290) K and pressures (5-700) MPa. Isothermal compressibilities at 287.15 K and thermal expansion coefficients at 14.5 MPa for the corresponding hydrates are calculated. We present an extensive collection of thermodynamic data related to gas hydrates that contribute to a fundamental understanding of natural gas hydrate science.
Collapse
Affiliation(s)
- Bin Fang
- School
of Mathematics and Physics, China University
of Geosciences, Wuhan 430074, China
- Engineering
Thermodynamics, Process & Energy Department, Faculty of Mechanical,
Maritime and Materials Engineering, Delft
University of Technology, Leeghwaterstraat 39, Delft 2628CB, The Netherlands
| | - Parsa Habibi
- Engineering
Thermodynamics, Process & Energy Department, Faculty of Mechanical,
Maritime and Materials Engineering, Delft
University of Technology, Leeghwaterstraat 39, Delft 2628CB, The Netherlands
| | - Othonas A. Moultos
- Engineering
Thermodynamics, Process & Energy Department, Faculty of Mechanical,
Maritime and Materials Engineering, Delft
University of Technology, Leeghwaterstraat 39, Delft 2628CB, The Netherlands
| | - Tao Lü
- School
of Automation, China University of Geosciences, Wuhan 430074, China
- Hubei
Key Laboratory of Advanced Control and Intelligent Automation for
Complex Systems, Wuhan 430074, China
| | - Fulong Ning
- Faculty
of Engineering, China University of Geosciences, Wuhan, Hubei 430074, China
- National
Center for International Research on Deep Earth Drilling and Resource
Development, China University of Geosciences, Wuhan 430074, China
| | - Thijs J. H. Vlugt
- Engineering
Thermodynamics, Process & Energy Department, Faculty of Mechanical,
Maritime and Materials Engineering, Delft
University of Technology, Leeghwaterstraat 39, Delft 2628CB, The Netherlands
| |
Collapse
|
2
|
Sharma S, Sleijfer JJ, Op de Beek J, van der Zeeuw S, Zorzos D, Lasala S, Rigutto MS, Zuidema E, Agarwal U, Baur R, Calero S, Dubbeldam D, Vlugt TJ. Prediction of Thermochemical Properties of Long-Chain Alkanes Using Linear Regression: Application to Hydroisomerization. J Phys Chem B 2024; 128:9619-9629. [PMID: 39307994 PMCID: PMC11457146 DOI: 10.1021/acs.jpcb.4c05355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 10/04/2024]
Abstract
Linear regression (LR) is used to predict thermochemical properties of alkanes at temperatures (0-1000) K to study chemical reaction equilibria inside zeolites. The thermochemical properties of C1 until C10 isomers reported by Scott are used as training data sets in the LR model which is used to predict these properties for alkanes longer than C10 isomers. Second-order groups are used as independent variables which account for the interactions between the neighboring groups of atoms. This model accurately predicts Gibbs free energies, enthalpies, Gibbs free energies of formation, and enthalpies of formation for alkanes which exceeds the chemical accuracy of 1 kcal/mol and outperforms the group contribution methods developed by Benson et al., Joback and Reid, and Constantinou and Gani. Predictions from our model are used to compute the reaction equilibrium distribution of hydroisomerization of C10 and C14 isomers in MTW-type zeolite. Calculation of reaction equilibrium distribution inside zeolites also requires Henry coefficients of the isomers which can be computed using classical force field-based molecular simulations using the RASPA2 software for which we created an automated workflow. The reaction equilibrium distribution for C10 isomers obtained using the LR model and the training data set for this model are in very good agreement. The tools developed in this study will enable the computational study of hydroisomerization of long-chain alkanes (>C10).
Collapse
Affiliation(s)
- Shrinjay Sharma
- Engineering
Thermodynamics, Process & Energy Department, Faculty of Mechanical
Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| | - Josh J. Sleijfer
- Delft
Institute of Applied Mathematics, Faculty of Electrical Engineering,
Mathematics and Computer Science, Delft
University of Technology, Mekelweg 4, 2628CD Delft, The Netherlands
- Faculty
of Applied Sciences, Delft University of
Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
| | - Jeroen Op de Beek
- Delft
Institute of Applied Mathematics, Faculty of Electrical Engineering,
Mathematics and Computer Science, Delft
University of Technology, Mekelweg 4, 2628CD Delft, The Netherlands
| | - Stach van der Zeeuw
- Faculty
of Applied Sciences, Delft University of
Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
| | - Daniil Zorzos
- Faculty
of Aerospace Engineering, Delft University
of Technology, Kluyverweg 1, 2629 HS Delft, The Netherlands
| | - Silvia Lasala
- Université
de Lorraine, CNRS, LRGP, F-54000 Nancy, France
| | - Marcello S. Rigutto
- Shell
Global
Solutions International B.V., Grasweg 39, 1031HW Amsterdam, The Netherlands
| | - Erik Zuidema
- Shell
Global
Solutions International B.V., Grasweg 39, 1031HW Amsterdam, The Netherlands
| | - Umang Agarwal
- Shell
Chemical LP, Monaca, Pennsylvania 15061, United States
| | - Richard Baur
- Shell
Global
Solutions International B.V., Grasweg 39, 1031HW Amsterdam, The Netherlands
| | - Sofia Calero
- Department
of Applied Physics, Eindhoven University
of Technology, 5600MB Eindhoven, The Netherlands
| | - David Dubbeldam
- Van’t
Hoff Institute of Molecular Sciences, University
of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| | - Thijs J.H. Vlugt
- Engineering
Thermodynamics, Process & Energy Department, Faculty of Mechanical
Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| |
Collapse
|
3
|
Hatch HW, Siderius DW, Shen VK. Monte Carlo molecular simulations with FEASST version 0.25.1. J Chem Phys 2024; 161:092501. [PMID: 39234968 DOI: 10.1063/5.0224283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/08/2024] [Indexed: 09/06/2024] Open
Abstract
FEASST is an open-source Monte Carlo software package for particle-based simulations. This software, which was released in 2017, has been used to study phase equilibrium, self-assembly, aggregation or gelation in biological materials, colloids, polymers, ionic liquids, and adsorption in porous networks. We highlight some of the unique features available in FEASST, such as flat-histogram grand canonical ensemble, Gibbs ensemble, and Mayer-sampling simulations with support for anisotropic models and parallelization with flat-histogram and prefetching. We also discuss how the challenges of supporting a variety of Monte Carlo algorithms were overcome by an object-oriented design. This also allows others to extend classes, which improves software interoperability, as inspired by LAMMPS classes and user packages. This article describes version 0.25.1 with benchmarks, compilation instructions, and introductory tutorials for running, restarting, and testing simulations, user guidelines, software design strategies, alternative interfaces, and the test-driven development strategy.
Collapse
Affiliation(s)
- Harold W Hatch
- Chemical Informatics Research Group, Chemical Sciences Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8380, USA
| | - Daniel W Siderius
- Chemical Informatics Research Group, Chemical Sciences Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8380, USA
| | - Vincent K Shen
- Chemical Informatics Research Group, Chemical Sciences Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8380, USA
| |
Collapse
|
4
|
Wasik D, Vicent-Luna JM, Rezaie S, Luna-Triguero A, Vlugt TJH, Calero S. The Impact of Metal Centers in the M-MOF-74 Series on Formic Acid Production. ACS APPLIED MATERIALS & INTERFACES 2024; 16:45006-45019. [PMID: 39141894 PMCID: PMC11367578 DOI: 10.1021/acsami.4c10678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/01/2024] [Accepted: 08/08/2024] [Indexed: 08/16/2024]
Abstract
The confinement effect of porous materials on the thermodynamical equilibrium of the CO2 hydrogenation reaction presents a cost-effective alternative to transition metal catalysts. In metal-organic frameworks, the type of metal center has a greater impact on the enhancement of formic acid production than the scale of confinement resulting from the pore size. The M-MOF-74 series enables a comprehensive study of how different metal centers affect HCOOH production, minimizing the effect of pore size. In this work, molecular simulations were used to analyze the adsorption of HCOOH and the CO2 hydrogenation reaction in M-MOF-74, where M = Ni, Cu, Co, Fe, Mn, Zn. We combine classical simulations and density functional theory calculations to gain insights into the mechanisms that govern the low coverage adsorption of HCOOH in the surrounding of the metal centers of M-MOF-74. The impact of metal centers on the HCOOH yield was assessed by Monte Carlo simulations in the grand-canonical ensemble, using gas-phase compositions of CO2, H2, and HCOOH at chemical equilibrium at 298.15-800 K, 1-60 bar. The performance of M-MOF-74 in HCOOH production follows the same order as the uptake and the heat of HCOOH adsorption: Ni > Co > Fe > Mn > Zn > Cu. Ni-MOF-74 increases the mole fraction of HCOOH by ca. 105 times compared to the gas phase at 298.15 K, 60 bar. Ni-MOF-74 has the potential to be more economically attractive for CO2 conversion than transition metal catalysts, achieving HCOOH production at concentrations comparable to the highest formate levels reported for transition metal catalysts and offering a more valuable molecular form of the product.
Collapse
Affiliation(s)
- Dominika
O. Wasik
- Materials
Simulation and Modelling, Department of Applied Physics and Science
Education, Eindhoven University of Technology, 5600MB Eindhoven, The Netherlands
- Eindhoven
Institute for Renewable Energy Systems, Eindhoven University of Technology,
PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - José Manuel Vicent-Luna
- Materials
Simulation and Modelling, Department of Applied Physics and Science
Education, Eindhoven University of Technology, 5600MB Eindhoven, The Netherlands
| | - Shima Rezaie
- Energy
Technology, Department of Mechanical Engineering, Eindhoven University of Technology, 5600MB Eindhoven, The Netherlands
| | - Azahara Luna-Triguero
- Eindhoven
Institute for Renewable Energy Systems, Eindhoven University of Technology,
PO Box 513, 5600 MB Eindhoven, The Netherlands
- Energy
Technology, Department of Mechanical Engineering, Eindhoven University of Technology, 5600MB Eindhoven, The Netherlands
| | - Thijs J. H. Vlugt
- Engineering
Thermodynamics, Process & Energy Department, Faculty of Mechanical,
Maritime and Materials Engineering, Delft
University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| | - Sofía Calero
- Materials
Simulation and Modelling, Department of Applied Physics and Science
Education, Eindhoven University of Technology, 5600MB Eindhoven, The Netherlands
- Eindhoven
Institute for Renewable Energy Systems, Eindhoven University of Technology,
PO Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
5
|
Raju D, Ramdin M, Vlugt TJH. Thermophysical Properties and Phase Behavior of CO 2 with Impurities: Insight from Molecular Simulations. JOURNAL OF CHEMICAL AND ENGINEERING DATA 2024; 69:2735-2755. [PMID: 39139986 PMCID: PMC11318637 DOI: 10.1021/acs.jced.4c00268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/19/2024] [Accepted: 07/02/2024] [Indexed: 08/15/2024]
Abstract
Experimentally determining thermophysical properties for various compositions commonly found in CO2 transportation systems is extremely challenging. To overcome this challenge, we performed Monte Carlo (MC) and Molecular Dynamics (MD) simulations of CO2 rich mixtures to compute thermophysical properties such as densities, thermal expansion coefficients, isothermal compressibilities, heat capacities, Joule-Thomson coefficients, speed of sound, and viscosities at temperatures of (235-313) K and pressures of (20-200) bar. We computed thermophysical properties of pure CO2 and CO2 rich mixtures with N2, Ar, H2, and CH4 as impurities of (1-10) mol % and showed good agreement with available Equations of State (EoS). We showed that impurities decrease the values of thermal expansion coefficients, isothermal compressibilities, heat capacities, and Joule-Thomson coefficients in the gas phase, while these values increase in the liquid and supercritical phases. In contrast, impurities increase the value of speed of sound in the gas phase and decrease it in the liquid and supercritical phases. We present an extensive data set of thermophysical properties for CO2 rich mixtures with various impurities, which will help to design the safe and efficient operation of CO2 transportation systems.
Collapse
Affiliation(s)
- D. Raju
- Engineering Thermodynamics, Process & Energy Department, Faculty of
Mechanical Engineering, Delft University of Technology,
Leeghwaterstraat 39, Delft 2628CB, The Netherlands
| | - M. Ramdin
- Engineering Thermodynamics, Process & Energy Department, Faculty of
Mechanical Engineering, Delft University of Technology,
Leeghwaterstraat 39, Delft 2628CB, The Netherlands
| | - T. J. H. Vlugt
- Engineering Thermodynamics, Process & Energy Department, Faculty of
Mechanical Engineering, Delft University of Technology,
Leeghwaterstraat 39, Delft 2628CB, The Netherlands
| |
Collapse
|
6
|
Habibi P, Dey P, Vlugt TJH, Moultos OA. Effect of dissolved KOH and NaCl on the solubility of water in hydrogen: A Monte Carlo simulation study. J Chem Phys 2024; 161:054304. [PMID: 39087538 DOI: 10.1063/5.0221004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/15/2024] [Indexed: 08/02/2024] Open
Abstract
Vapor-Liquid Equilibria (VLE) of hydrogen (H2) and aqueous electrolyte (KOH and NaCl) solutions are central to numerous industrial applications such as alkaline electrolysis and underground hydrogen storage. Continuous fractional component Monte Carlo simulations are performed to compute the VLE of H2 and aqueous electrolyte solutions at 298-423 K, 10-400 bar, 0-8 mol KOH/kg water, and 0-6 mol NaCl/kg water. The densities and activities of water in aqueous KOH and NaCl solutions are accurately modeled (within 2% deviation from experiments) using the non-polarizable Madrid-2019 Na+/Cl- ion force fields for NaCl and the Madrid-Transport K+ and Delft Force Field of OH- for KOH, combined with the TIP4P/2005 water force field. A free energy correction (independent of pressure, salt type, and salt molality) is applied to the computed infinite dilution excess chemical potentials of H2 and water, resulting in accurate predictions (within 5% of experiments) for the solubilities of H2 in water and the saturated vapor pressures of water for a temperature range of 298-363 K. The compositions of water and H2 are computed using an iterative scheme from the liquid phase excess chemical potentials and densities, in which the gas phase fugacities are computed using the GERG-2008 equation of state. For the first time, the VLE of H2 and aqueous KOH/NaCl systems are accurately captured with respect to experiments (i.e., for both the liquid and gas phase compositions) without compromising the liquid phase properties or performing any refitting of force fields.
Collapse
Affiliation(s)
- Parsa Habibi
- Engineering Thermodynamics, Process and Energy Department, Faculty of Mechanical Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
- Department of Materials Science and Engineering, Faculty of Mechanical Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Poulumi Dey
- Department of Materials Science and Engineering, Faculty of Mechanical Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Thijs J H Vlugt
- Engineering Thermodynamics, Process and Energy Department, Faculty of Mechanical Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Othonas A Moultos
- Engineering Thermodynamics, Process and Energy Department, Faculty of Mechanical Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| |
Collapse
|
7
|
Hulikal Chakrapani T, Hajibeygi H, Moultos OA, Vlugt TJH. Mutual Diffusivities of Mixtures of Carbon Dioxide and Hydrogen and Their Solubilities in Brine: Insight from Molecular Simulations. Ind Eng Chem Res 2024; 63:10456-10481. [PMID: 38882502 PMCID: PMC11177264 DOI: 10.1021/acs.iecr.4c01078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/14/2024] [Accepted: 05/20/2024] [Indexed: 06/18/2024]
Abstract
H2-CO2 mixtures find wide-ranging applications, including their growing significance as synthetic fuels in the transportation industry, relevance in capture technologies for carbon capture and storage, occurrence in subsurface storage of hydrogen, and hydrogenation of carbon dioxide to form hydrocarbons and alcohols. Here, we focus on the thermodynamic properties of H2-CO2 mixtures pertinent to underground hydrogen storage in depleted gas reservoirs. Molecular dynamics simulations are used to compute mutual (Fick) diffusivities for a wide range of pressures (5 to 50 MPa), temperatures (323.15 to 423.15 K), and mixture compositions (hydrogen mole fraction from 0 to 1). At 5 MPa, the computed mutual diffusivities agree within 5% with the kinetic theory of Chapman and Enskog at 423.15 K, albeit exhibiting deviations of up to 25% between 323.15 and 373.15 K. Even at 50 MPa, kinetic theory predictions match computed diffusivities within 15% for mixtures comprising over 80% H2 due to the ideal-gas-like behavior. In mixtures with higher concentrations of CO2, the Moggridge correlation emerges as a dependable substitute for the kinetic theory. Specifically, when the CO2 content reaches 50%, the Moggridge correlation achieves predictions within 10% of the computed Fick diffusivities. Phase equilibria of ternary mixtures involving CO2-H2-NaCl were explored using Gibbs Ensemble (GE) simulations with the Continuous Fractional Component Monte Carlo (CFCMC) technique. The computed solubilities of CO2 and H2 in NaCl brine increased with the fugacity of the respective component but decreased with NaCl concentration (salting out effect). While the solubility of CO2 in NaCl brine decreased in the ternary system compared to the binary CO2-NaCl brine system, the solubility of H2 in NaCl brine increased less in the ternary system compared to the binary H2-NaCl brine system. The cooperative effect of H2-CO2 enhances the H2 solubility while suppressing the CO2 solubility. The water content in the gas phase was found to be intermediate between H2-NaCl brine and CO2-NaCl brine systems. Our findings have implications for hydrogen storage and chemical technologies dealing with CO2-H2 mixtures, particularly where experimental data are lacking, emphasizing the need for reliable thermodynamic data on H2-CO2 mixtures.
Collapse
Affiliation(s)
- Thejas Hulikal Chakrapani
- Reservoir Engineering, Geoscience and Engineering Department, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft 2628 CN, The Netherlands
| | - Hadi Hajibeygi
- Reservoir Engineering, Geoscience and Engineering Department, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft 2628 CN, The Netherlands
| | - Othonas A Moultos
- Engineering Thermodynamics, Process and Energy Department, Faculty of Mechanical Engineering, Delft University of Technology, Delft 2628 CB, The Netherlands
| | - Thijs J H Vlugt
- Engineering Thermodynamics, Process and Energy Department, Faculty of Mechanical Engineering, Delft University of Technology, Delft 2628 CB, The Netherlands
| |
Collapse
|
8
|
Habibi P, Polat HM, Blazquez S, Vega C, Dey P, Vlugt TJH, Moultos OA. Accurate Free Energies of Aqueous Electrolyte Solutions from Molecular Simulations with Non-polarizable Force Fields. J Phys Chem Lett 2024; 15:4477-4485. [PMID: 38634502 PMCID: PMC11057036 DOI: 10.1021/acs.jpclett.4c00428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/19/2024]
Abstract
Non-polarizable force fields fail to accurately predict free energies of aqueous electrolytes without compromising the predictive ability for densities and transport properties. A new approach is presented in which (1) TIP4P/2005 water and scaled charge force fields are used to describe the interactions in the liquid phase and (2) an additional Effective Charge Surface (ECS) is used to compute free energies at zero additional computational expense. The ECS is obtained using a single temperature-independent charge scaling parameter per species. Thereby, the chemical potential of water and the free energies of hydration of various aqueous salts (e.g., NaCl and LiCl) are accurately described (deviations less than 5% from experiments), in sharp contrast to calculations where the ECS is omitted (deviations larger than 20%). This approach enables accurate predictions of free energies of aqueous electrolyte solutions using non-polarizable force fields, without compromising liquid-phase properties.
Collapse
Affiliation(s)
- Parsa Habibi
- Engineering
Thermodynamics, Process & Energy Department, Faculty of Mechanical
Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628 CB Delft, Netherlands
- Department
of Materials Science and Engineering, Faculty of Mechanical Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, Netherlands
| | - H. Mert Polat
- Engineering
Thermodynamics, Process & Energy Department, Faculty of Mechanical
Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628 CB Delft, Netherlands
| | - Samuel Blazquez
- Departamento
de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Carlos Vega
- Departamento
de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Poulumi Dey
- Department
of Materials Science and Engineering, Faculty of Mechanical Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, Netherlands
| | - Thijs J. H. Vlugt
- Engineering
Thermodynamics, Process & Energy Department, Faculty of Mechanical
Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628 CB Delft, Netherlands
| | - Othonas A. Moultos
- Engineering
Thermodynamics, Process & Energy Department, Faculty of Mechanical
Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628 CB Delft, Netherlands
| |
Collapse
|
9
|
van Rooijen WA, Habibi P, Xu K, Dey P, Vlugt TJH, Hajibeygi H, Moultos OA. Interfacial Tensions, Solubilities, and Transport Properties of the H 2/H 2O/NaCl System: A Molecular Simulation Study. JOURNAL OF CHEMICAL AND ENGINEERING DATA 2024; 69:307-319. [PMID: 38352074 PMCID: PMC10859954 DOI: 10.1021/acs.jced.2c00707] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 12/23/2022] [Indexed: 02/16/2024]
Abstract
Data for several key thermodynamic and transport properties needed for technologies using hydrogen (H2), such as underground H2 storage and H2O electrolysis are scarce or completely missing. Force field-based Molecular Dynamics (MD) and Continuous Fractional Component Monte Carlo (CFCMC) simulations are carried out in this work to cover this gap. Extensive new data sets are provided for (a) interfacial tensions of H2 gas in contact with aqueous NaCl solutions for temperatures of (298 to 523) K, pressures of (1 to 600) bar, and molalities of (0 to 6) mol NaCl/kg H2O, (b) self-diffusivities of infinitely diluted H2 in aqueous NaCl solutions for temperatures of (298 to 723) K, pressures of (1 to 1000) bar, and molalities of (0 to 6) mol NaCl/kg H2O, and (c) solubilities of H2 in aqueous NaCl solutions for temperatures of (298 to 363) K, pressures of (1 to 1000) bar, and molalities of (0 to 6) mol NaCl/kg H2O. The force fields used are the TIP4P/2005 for H2O, the Madrid-2019 and the Madrid-Transport for NaCl, and the Vrabec and Marx for H2. Excellent agreement between the simulation results and available experimental data is found with average deviations lower than 10%.
Collapse
Affiliation(s)
- W. A. van Rooijen
- Reservoir
Engineering, Geoscience and Engineering Department, Faculty of Civil
Engineering and Geosciences, Delft University
of Technology, Stevinweg 1, 2628CN, Delft, The Netherlands
| | - P. Habibi
- Engineering
Thermodynamics, Process and Energy Department, Faculty of Mechanical,
Maritime and Materials Engineering, Delft
University of Technology, Leeghwaterstraat 39, 2628CB, Delft, The Netherlands
- Department
of Materials Science and Engineering, Faculty of Mechanical, Maritime
and Materials Engineering, Delft University
of Technology, Mekelweg
2, 2628CD, Delft, The Netherlands
| | - K. Xu
- Department
of Materials Science and Engineering, Faculty of Mechanical, Maritime
and Materials Engineering, Delft University
of Technology, Mekelweg
2, 2628CD, Delft, The Netherlands
| | - P. Dey
- Department
of Materials Science and Engineering, Faculty of Mechanical, Maritime
and Materials Engineering, Delft University
of Technology, Mekelweg
2, 2628CD, Delft, The Netherlands
| | - T. J. H. Vlugt
- Engineering
Thermodynamics, Process and Energy Department, Faculty of Mechanical,
Maritime and Materials Engineering, Delft
University of Technology, Leeghwaterstraat 39, 2628CB, Delft, The Netherlands
| | - H. Hajibeygi
- Reservoir
Engineering, Geoscience and Engineering Department, Faculty of Civil
Engineering and Geosciences, Delft University
of Technology, Stevinweg 1, 2628CN, Delft, The Netherlands
| | - O. A. Moultos
- Engineering
Thermodynamics, Process and Energy Department, Faculty of Mechanical,
Maritime and Materials Engineering, Delft
University of Technology, Leeghwaterstraat 39, 2628CB, Delft, The Netherlands
| |
Collapse
|
10
|
Hulikal Chakrapani T, Hajibeygi H, Moultos OA, Vlugt TJH. Calculating Thermodynamic Factors for Diffusion Using the Continuous Fractional Component Monte Carlo Method. J Chem Theory Comput 2024; 20:333-347. [PMID: 38113860 PMCID: PMC10782482 DOI: 10.1021/acs.jctc.3c01144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/28/2023] [Accepted: 11/28/2023] [Indexed: 12/21/2023]
Abstract
Thermodynamic factors for diffusion connect the Fick and Maxwell-Stefan diffusion coefficients used to quantify mass transfer. Activity coefficient models or equations of state can be fitted to experimental or simulation data, from which thermodynamic factors can be obtained by differentiation. The accuracy of thermodynamic factors determined using indirect routes is dictated by the specific choice of an activity coefficient model or an equation of state. The Permuted Widom's Test Particle Insertion (PWTPI) method developed by Balaji et al. enables direct determination of thermodynamic factors in binary and multicomponent systems. For highly dense systems, for example, typical liquids, it is well known that molecular test insertion methods fail. In this article, we use the Continuous Fractional Component Monte Carlo (CFCMC) method to directly calculate thermodynamic factors by adopting the PWTPI method. The CFCMC method uses fractional molecules whose interactions with their surrounding molecules are modulated by a coupling parameter. Even in highly dense systems, the CFCMC method efficiently handles molecule insertions and removals, overcoming the limitations of the PWTPI method. We show excellent agreement between the results of the PWTPI and CFCMC methods for the calculation of thermodynamic factors in binary systems of Lennard-Jones molecules and ternary systems of Weeks-Chandler-Andersen molecules. The CFCMC method applied to calculate the thermodynamic factors of realistic molecular systems consisting of binary mixtures of carbon dioxide and hydrogen agrees well with the NIST REFPROP database. Our study highlights the effectiveness of the CFCMC method in determining thermodynamic factors for diffusion, even in densely packed systems, using relatively small numbers of molecules.
Collapse
Affiliation(s)
- Thejas Hulikal Chakrapani
- Reservoir
Engineering, Geoscience and Engineering Department, Faculty of Civil
Engineering and Geosciences, Delft University
of Technology, 2628 CN Delft, The
Netherlands
| | - Hadi Hajibeygi
- Reservoir
Engineering, Geoscience and Engineering Department, Faculty of Civil
Engineering and Geosciences, Delft University
of Technology, 2628 CN Delft, The
Netherlands
| | - Othonas A. Moultos
- Engineering
Thermodynamics, Process and Energy Department, Faculty of Mechanical,
Maritime and Materials Engineering, Delft
University of Technology, 2628 CB Delft, The
Netherlands
| | - Thijs J. H. Vlugt
- Engineering
Thermodynamics, Process and Energy Department, Faculty of Mechanical,
Maritime and Materials Engineering, Delft
University of Technology, 2628 CB Delft, The
Netherlands
| |
Collapse
|
11
|
Zhang J, Clennell MB, Dewhurst DN. Transport Properties of NaCl in Aqueous Solution and Hydrogen Solubility in Brine. J Phys Chem B 2023; 127:8900-8915. [PMID: 37794729 PMCID: PMC10591480 DOI: 10.1021/acs.jpcb.3c03863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/17/2023] [Indexed: 10/06/2023]
Abstract
Ion transport properties and hydrogen solubility in brine play pivotal roles in various engineering and scientific scopes including chemical, physical, geochemical, and geothermal domains. Molecular dynamics simulations were performed to obtain transport properties of NaCl in the binary H2O + NaCl system using different force fields. Brine density, ion diffusivity, molar conductivity, conductivity, and hydrogen solubilities were obtained as functions of temperature and salt concentration. We compared the performance of different force fields against the experimental correlation model and developed three mathematical models. The first was the modified brine density model based on the simulated brine density over a wide range of salinity levels, and the second and third analytical mathematical models were derived for the ion diffusivity and molar conductivity as a function of salinity and temperature. The results of this study illustrated that the modified brine density model not only produced the same results of the previous model for lower salinity levels but also applied well to predict the brine density for a higher salinity level. The derived mathematical models indicated that the ion diffusivity and molar conductivity decreased linearly with salinity, and the slope and y-intercept of the lines of diffusivity and molar conductivity versus temperature were third-order polynomials of temperature. The developed models provided the mechanism for the behavior of decreasing molar conductivity with increasing salinity and increasing conductivity with increasing salinity. The directions of the effect of salinity on the molar conductivity and conductivity were opposite. The molar conductivity increased with a decreasing salinity level. However, the conductivity increased with increasing salinity, as the contribution of the ion concentration or salinity level to conductivity dominated over that of the ion movement.
Collapse
Affiliation(s)
- Junfang Zhang
- CSIRO Energy, 26 Dick Perry Avenue, Kensington, Western Australia 6151, Australia
| | - Michael B. Clennell
- CSIRO Energy, 26 Dick Perry Avenue, Kensington, Western Australia 6151, Australia
| | - David N. Dewhurst
- CSIRO Energy, 26 Dick Perry Avenue, Kensington, Western Australia 6151, Australia
| |
Collapse
|
12
|
Xu ZX, Wang YM, Lin LC. Connectivity Analysis of Adsorption Sites in Metal-Organic Frameworks for Facilitated Water Adsorption. ACS APPLIED MATERIALS & INTERFACES 2023; 15:47081-47093. [PMID: 37754846 DOI: 10.1021/acsami.3c10710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Metal-organic frameworks (MOFs) have recently drawn considerable attention as promising adsorbents to harvest atmospheric water. To achieve an efficient harvesting process, seeking MOFs that demonstrate sharp condensation behavior is the key. Given that the clustering of water molecules in MOFs should be driven by not only MOF-water interactions but also water-water interactions, the spatial arrangement of water adsorption sites in a MOF is therefore crucial. Specifically, this study demonstrates the critical role of continuous adsorption channels (CACs) in MOFs. Such CACs will enable water molecules to stay in proximity and in a continuous manner, thus promoting the formation of hydrogen bonds and, consequently, the clustering of water molecules. We have developed an automatic algorithm to detect CACs based on the energy grid of host-guest interactions and applied the algorithm to more than 2000 diverse structures. The results show that more than 80% of the studied MOFs displaying water condensation at 298 K and 20% relative humidity predicted by Monte Carlo simulations indeed have CACs. The developments herein are anticipated to largely facilitate the future discovery of optimal adsorbents for water harvesting or water-adsorption-related applications in general. A Python-based code for detecting CACs in porous materials is also provided along with this article to employ this approach.
Collapse
Affiliation(s)
- Zhi-Xun Xu
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Yi-Ming Wang
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Li-Chiang Lin
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 W. Woodruff Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
13
|
Crawford B, Timalsina U, Quach CD, Craven NC, Gilmer JB, McCabe C, Cummings PT, Potoff JJ. MoSDeF-GOMC: Python Software for the Creation of Scientific Workflows for the Monte Carlo Simulation Engine GOMC. J Chem Inf Model 2023; 63:1218-1228. [PMID: 36791286 DOI: 10.1021/acs.jcim.2c01498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
MoSDeF-GOMC is a python interface for the Monte Carlo software GOMC to the Molecular Simulation Design Framework (MoSDeF) ecosystem. MoSDeF-GOMC automates the process of generating initial coordinates, assigning force field parameters, and writing coordinate (PDB), connectivity (PSF), force field parameter, and simulation control files. The software lowers entry barriers for novice users while allowing advanced users to create complex workflows that encapsulate simulation setup, execution, and data analysis in a single script. All relevant simulation parameters are encoded within the workflow, ensuring reproducible simulations. MoSDeF-GOMC's capabilities are illustrated through a number of examples, including prediction of the adsorption isotherm for CO2 in IRMOF-1, free energies of hydration for neon and radon over a broad temperature range, and the vapor-liquid coexistence curve of a four-component surrogate for the jet fuel S-8. The MoSDeF-GOMC software is available on GitHub at https://github.com/GOMC-WSU/MoSDeF-GOMC.
Collapse
Affiliation(s)
- Brad Crawford
- Department of Chemical Engineering, Wayne State University, Detroit, Michigan 48202-4050, United States
| | - Umesh Timalsina
- Institute for Software Integrated Systems (ISIS), Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Co D Quach
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235-1604, United States.,Multiscale Modeling and Simulation (MuMS) Center, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Nicholas C Craven
- Multiscale Modeling and Simulation (MuMS) Center, Vanderbilt University, Nashville, Tennessee 37212, United States.,Interdisciplinary Material Science Program, Vanderbilt University, Nashville, Tennessee 37235-0106, United States
| | - Justin B Gilmer
- Multiscale Modeling and Simulation (MuMS) Center, Vanderbilt University, Nashville, Tennessee 37212, United States.,Interdisciplinary Material Science Program, Vanderbilt University, Nashville, Tennessee 37235-0106, United States
| | - Clare McCabe
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235-1604, United States.,Multiscale Modeling and Simulation (MuMS) Center, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Peter T Cummings
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235-1604, United States.,Multiscale Modeling and Simulation (MuMS) Center, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Jeffrey J Potoff
- Department of Chemical Engineering, Wayne State University, Detroit, Michigan 48202-4050, United States
| |
Collapse
|
14
|
Wasik D, Polat HM, Ramdin M, Moultos OA, Calero S, Vlugt TJH. Solubility of CO 2 in Aqueous Formic Acid Solutions and the Effect of NaCl Addition: A Molecular Simulation Study. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2022; 126:19424-19434. [PMID: 36424997 PMCID: PMC9677493 DOI: 10.1021/acs.jpcc.2c05476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/15/2022] [Indexed: 06/16/2023]
Abstract
There is a growing interest in the development of routes to produce formic acid from CO2, such as the electrochemical reduction of CO2 to formic acid. The solubility of CO2 in the electrolyte influences the production rate of formic acid. Here, the dependence of the CO2 solubility in aqueous HCOOH solutions with electrolytes on the composition and the NaCl concentration was studied by Continuous Fractional Component Monte Carlo simulations at 298.15 K and 1 bar. The chemical potentials of CO2, H2O, and HCOOH were obtained directly from single simulations, enabling the calculation of Henry coefficients and subsequently considering salting in or salting out effects. As the force fields for HCOOH and H2O may not be compatible due to the presence of strong hydrogen bonds, the Gibbs-Duhem integration test was used to test this compatibility. The combination of the OPLS/AA force field with a new set of parameters, in combination with the SPC/E force field for water, was selected. It was found that the solubility of CO2 decreases with increasing NaCl concentration in the solution and increases with the increase of HCOOH concentration. This continues up to a certain concentration of HCOOH in the solution, after which the CO2 solubility is high and the NaCl concentration has no significant effect.
Collapse
Affiliation(s)
- Dominika
O. Wasik
- Materials
Simulation and Modelling, Department of Applied Physics, Eindhoven University of Technology, Eindhoven5600MB, The Netherlands
- Eindhoven
Institute for Renewable Energy Systems, Eindhoven University of Technology,
P.O. Box 513, Eindhoven5600 MB, The Netherlands
| | - H. Mert Polat
- Engineering
Thermodynamics, Process & Energy Department, Faculty of Mechanical,
Maritime and Materials Engineering, Delft
University of Technology, Leeghwaterstraat 39, Delft2628CB, The Netherlands
- CCUS
and Acid Gas Entity, Liquefied Natural Gas Department, Exploration
Production, TotalEnergies S.E., Paris92078, France
- CTP—Centre
of Thermodynamics of Processes, Mines ParisTech, PSL University, 35 rue
Saint Honoré, Fontainebleau77305, France
| | - Mahinder Ramdin
- Engineering
Thermodynamics, Process & Energy Department, Faculty of Mechanical,
Maritime and Materials Engineering, Delft
University of Technology, Leeghwaterstraat 39, Delft2628CB, The Netherlands
| | - Othonas A. Moultos
- Engineering
Thermodynamics, Process & Energy Department, Faculty of Mechanical,
Maritime and Materials Engineering, Delft
University of Technology, Leeghwaterstraat 39, Delft2628CB, The Netherlands
| | - Sofia Calero
- Materials
Simulation and Modelling, Department of Applied Physics, Eindhoven University of Technology, Eindhoven5600MB, The Netherlands
- Eindhoven
Institute for Renewable Energy Systems, Eindhoven University of Technology,
P.O. Box 513, Eindhoven5600 MB, The Netherlands
| | - Thijs J. H. Vlugt
- Engineering
Thermodynamics, Process & Energy Department, Faculty of Mechanical,
Maritime and Materials Engineering, Delft
University of Technology, Leeghwaterstraat 39, Delft2628CB, The Netherlands
| |
Collapse
|
15
|
Habibi P, Rahbari A, Blazquez S, Vega C, Dey P, Vlugt TJH, Moultos OA. A New Force Field for OH - for Computing Thermodynamic and Transport Properties of H 2 and O 2 in Aqueous NaOH and KOH Solutions. J Phys Chem B 2022; 126:9376-9387. [PMID: 36325986 PMCID: PMC9677430 DOI: 10.1021/acs.jpcb.2c06381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/20/2022] [Indexed: 11/05/2022]
Abstract
The thermophysical properties of aqueous electrolyte solutions are of interest for applications such as water electrolyzers and fuel cells. Molecular dynamics (MD) and continuous fractional component Monte Carlo (CFCMC) simulations are used to calculate densities, transport properties (i.e., self-diffusivities and dynamic viscosities), and solubilities of H2 and O2 in aqueous sodium and potassium hydroxide (NaOH and KOH) solutions for a wide electrolyte concentration range (0-8 mol/kg). Simulations are carried out for a temperature and pressure range of 298-353 K and 1-100 bar, respectively. The TIP4P/2005 water model is used in combination with a newly parametrized OH- force field for NaOH and KOH. The computed dynamic viscosities at 298 K for NaOH and KOH solutions are within 5% from the reported experimental data up to an electrolyte concentration of 6 mol/kg. For most of the thermodynamic conditions (especially at high concentrations, pressures, and temperatures) experimental data are largely lacking. We present an extensive collection of new data and engineering equations for H2 and O2 self-diffusivities and solubilities in NaOH and KOH solutions, which can be used for process design and optimization of efficient alkaline electrolyzers and fuel cells.
Collapse
Affiliation(s)
- Parsa Habibi
- Engineering
Thermodynamics, Process & Energy Department, Faculty of Mechanical,
Maritime and Materials Engineering, Delft
University of Technology, Leeghwaterstraat 39, 2628 CBDelft, The Netherlands
- Department
of Materials Science and Engineering, Faculty of Mechanical, Maritime
and Materials Engineering, Delft University
of Technology, Mekelweg
2, 2628 CDDelft, The Netherlands
| | - Ahmadreza Rahbari
- Engineering
Thermodynamics, Process & Energy Department, Faculty of Mechanical,
Maritime and Materials Engineering, Delft
University of Technology, Leeghwaterstraat 39, 2628 CBDelft, The Netherlands
| | - Samuel Blazquez
- Depto.
Química Física, Fac. Ciencias Químicas, Universidad Complutense de Madrid, 28040Madrid, Spain
| | - Carlos Vega
- Depto.
Química Física, Fac. Ciencias Químicas, Universidad Complutense de Madrid, 28040Madrid, Spain
| | - Poulumi Dey
- Department
of Materials Science and Engineering, Faculty of Mechanical, Maritime
and Materials Engineering, Delft University
of Technology, Mekelweg
2, 2628 CDDelft, The Netherlands
| | - Thijs J. H. Vlugt
- Engineering
Thermodynamics, Process & Energy Department, Faculty of Mechanical,
Maritime and Materials Engineering, Delft
University of Technology, Leeghwaterstraat 39, 2628 CBDelft, The Netherlands
| | - Othonas A. Moultos
- Engineering
Thermodynamics, Process & Energy Department, Faculty of Mechanical,
Maritime and Materials Engineering, Delft
University of Technology, Leeghwaterstraat 39, 2628 CBDelft, The Netherlands
| |
Collapse
|
16
|
Kobayashi K, Firoozabadi A. Effect of Branching on Mutual Solubility of Alkane-CO 2 Systems by Molecular Simulations. J Phys Chem B 2022; 126:8300-8308. [PMID: 36197719 DOI: 10.1021/acs.jpcb.2c05774] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mutual solubilities of hydrocarbon-CO2 systems are important in a broad range of applications. Experimental data and theoretical understanding of phase behavior of large hydrocarbon molecules and CO2 are limited. This is especially true in relation to the molecular structure of hydrocarbons when the carbon number exceeds 12. In this work, the continuous fractional component Gibbs ensemble Monte Carlo simulations are used to investigate mutual solubility of different alkane and CO2 systems and the molecular structure. We investigate the mutual solubility of n-decane, n-hexadecane, n-eicosane, and the corresponding structural isomers in the CO2-rich and hydrocarbon-rich phase. The focus will be solubility of the heavy normal alkanes and their structural isomers in CO2. The simulation results are verified by comparing the experimental data when measurements are available. The simulation of phase behavior of the n-decane-CO2 system agrees with the experiments. We also present simulation results of n-hexadecane-CO2 and n-eicosane-CO2 systems away from the critical region partly due to the finite size effect. We establish that solubility of the hydrocarbons in CO2 is improved by change of the molecular structure in heavier alkanes. The enhanced solubility is limited in decane isomers, but the isomers of hexadecane and eicosane show 2- to 3-time solubility enhancement. The molecular dynamics simulations suggest that the improvement is from a higher coordination number of CO2 for methyl (CH3) rather than for methylene (CH2) groups. This study sets the stage for molecular engineering and synthesis of hydrocarbons that are soluble in CO2 not only by considering functionality but also by changing the molecular structure. The solubility enhancement is the first step in viscosification of CO2 which broadens the use of CO2.
Collapse
Affiliation(s)
- Kazuya Kobayashi
- INPEX Corporation, Akasaka Biz Tower 5-3-1 Akasaka, Minato-ku, Tokyo107-6332, Japan.,Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas77005, United States
| | - Abbas Firoozabadi
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas77005, United States
| |
Collapse
|
17
|
Dawass N, Langeveld J, Ramdin M, Pérez-Gallent E, Villanueva AA, Giling EJM, Langerak J, van den Broeke LJP, Vlugt TJH, Moultos OA. Solubilities and Transport Properties of CO 2, Oxalic Acid, and Formic Acid in Mixed Solvents Composed of Deep Eutectic Solvents, Methanol, and Propylene Carbonate. J Phys Chem B 2022; 126:3572-3584. [PMID: 35507866 PMCID: PMC9125562 DOI: 10.1021/acs.jpcb.2c01425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
Recently, deep eutectic
solvents (DES) have been considered as
possible electrolytes for the electrochemical reduction of CO2 to value-added products such as formic and oxalic acids.
The applicability of pure DES as electrolytes is hindered by high
viscosities. Mixtures of DES with organic solvents can be a promising
way of designing superior electrolytes by exploiting the advantages
of each solvent type. In this study, densities, viscosities, diffusivities,
and ionic conductivities of mixed solvents comprising DES (i.e., reline
and ethaline), methanol, and propylene carbonate were computed using
molecular simulations. To provide a quantitative assessment of the
affinity and mass transport of CO2 and oxalic and formic
acids in the mixed solvents, the solubilities and self-diffusivities
of these solutes were also computed. Our results show that the addition
of DES to the organic solvents enhances the solubilities of oxalic
and formic acids, while the solubility of CO2 in the ethaline-containing
mixtures are in the same order of magnitude with the respective pure
organic components. A monotonic increase in the densities and viscosities
of the mixed solvents is observed as the mole fraction of DES in the
mixture increases, with the exception of the density of ethaline-propylene
carbonate which shows the opposite behavior due to the high viscosity
of the pure organic component. The self-diffusivities of all species
in the mixtures significantly decrease as the mole fraction of DES
approaches unity. Similarly, the self-diffusivities of the dissolved
CO2 and the oxalic and formic acids also decrease by at
least 1 order of magnitude as the composition of the mixture shifts
from the pure organic component to pure DES. The computed ionic conductivities
of all mixed solvents show a maximum value for mole fractions of DES
in the range from 0.2 to 0.6 and decrease as more DES is added to
the mixtures. Since for most mixtures studied here no prior experimental
measurements exist, our findings can serve as a first data set based
on which further investigation of DES-containing electrolyte solutions
can be performed for the electrochemical reduction of CO2 to useful chemicals.
Collapse
Affiliation(s)
- Noura Dawass
- Chemical Engineering Program, Texas A&M University at Qatar, P.O. Box 23874, Doha, Qatar
| | - Jilles Langeveld
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| | - Mahinder Ramdin
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| | - Elena Pérez-Gallent
- Department of Sustainable Process and Energy Systems, TNO, Delft, Zuid-Holland 2628CA, The Netherlands
| | - Angel A Villanueva
- Department of Sustainable Process and Energy Systems, TNO, Delft, Zuid-Holland 2628CA, The Netherlands
| | - Erwin J M Giling
- Department of Sustainable Process and Energy Systems, TNO, Delft, Zuid-Holland 2628CA, The Netherlands
| | - Jort Langerak
- Research and Development Department, DMT Environmental Technology, Yndustrywei 3, 8501SN Joure, The Netherlands
| | - Leo J P van den Broeke
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| | - Thijs J H Vlugt
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| | - Othonas A Moultos
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| |
Collapse
|
18
|
Salehi HS, Polat HM, de Meyer F, Houriez C, Coquelet C, Vlugt TJH, Moultos OA. Vapor pressures and vapor phase compositions of choline chloride urea and choline chloride ethylene glycol deep eutectic solvents from molecular simulation. J Chem Phys 2021; 155:114504. [PMID: 34551525 DOI: 10.1063/5.0062408] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Despite the widespread acknowledgment that deep eutectic solvents (DESs) have negligible vapor pressures, very few studies in which the vapor pressures of these solvents are measured or computed are available. Similarly, the vapor phase composition is known for only a few DESs. In this study, for the first time, the vapor pressures and vapor phase compositions of choline chloride urea (ChClU) and choline chloride ethylene glycol (ChClEg) DESs are computed using Monte Carlo simulations. The partial pressures of the DES components were obtained from liquid and vapor phase excess Gibbs energies, computed using thermodynamic integration. The enthalpies of vaporization were computed from the obtained vapor pressures, and the results were in reasonable agreement with the few available experimental data in the literature. It was found that the vapor phases of both DESs were dominated by the most volatile component (hydrogen bond donor, HBD, i.e., urea or ethylene glycol), i.e., 100% HBD in ChClEg and 88%-93% HBD in ChClU. Higher vapor pressures were observed for ChClEg compared to ChClU due to the higher volatility of ethylene glycol compared to urea. The influence of the liquid composition of the DESs on the computed properties was studied by considering different mole fractions (i.e., 0.6, 0.67, and 0.75) of the HBD. Except for the partial pressure of ethylene glycol in ChClEg, all the computed partial pressures and enthalpies of vaporization showed insensitivity toward the liquid composition. The activity coefficient of ethylene glycol in ChClEg was computed at different liquid phase mole fractions, showing negative deviations from Raoult's law.
Collapse
Affiliation(s)
- Hirad S Salehi
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| | - H Mert Polat
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| | - Frédérick de Meyer
- CCUS and Acid Gas Entity, Liquefied Natural Gas Department, Exploration Production, Total Energies S.E., 92078 Paris, France
| | - Céline Houriez
- CTP - Centre of Thermodynamics of Processes, Mines ParisTech, PSL University, 35 rue Saint Honoré, 77305 Fontainebleau, France
| | - Christophe Coquelet
- CTP - Centre of Thermodynamics of Processes, Mines ParisTech, PSL University, 35 rue Saint Honoré, 77305 Fontainebleau, France
| | - Thijs J H Vlugt
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| | - Othonas A Moultos
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| |
Collapse
|
19
|
Polat HM, Salehi HS, Hens R, Wasik DO, Rahbari A, de Meyer F, Houriez C, Coquelet C, Calero S, Dubbeldam D, Moultos OA, Vlugt TJH. New Features of the Open Source Monte Carlo Software Brick-CFCMC: Thermodynamic Integration and Hybrid Trial Moves. J Chem Inf Model 2021; 61:3752-3757. [PMID: 34383501 PMCID: PMC8385706 DOI: 10.1021/acs.jcim.1c00652] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
We present several
new major features added to the Monte Carlo
(MC) simulation code Brick-CFCMC for phase- and reaction equilibria
calculations (https://gitlab.com/ETh_TU_Delft/Brick-CFCMC). The first one
is thermodynamic integration for the computation of excess chemical
potentials (μex). For this purpose, we implemented
the computation of the ensemble average of the derivative of the potential
energy with respect to the scaling factor for intermolecular interactions
(). Efficient bookkeeping is implemented
so that the quantity is updated after every MC trial
move with
negligible computational cost. We demonstrate the accuracy and reliability
of the calculation of μex for sodium chloride in
water. Second, we implemented hybrid MC/MD translation and rotation
trial moves to increase the efficiency of sampling of the configuration
space. In these trial moves, short Molecular Dynamics (MD) trajectories
are performed to collectively displace or rotate all molecules in
the system. These trajectories are accepted or rejected based on the
total energy drift. The efficiency of these trial moves can be tuned
by changing the time step and the trajectory length. The new trial
moves are demonstrated using MC simulations of a viscous fluid (deep
eutectic solvent).
Collapse
Affiliation(s)
- H Mert Polat
- CCUS and Acid Gas Entity, Liquefied Natural Gas Department, Exploration Production, TotalEnergies S.E., 92078 Paris, France.,Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, Delft 2628CB, The Netherlands.,CTP - Centre of Thermodynamics of Processes, Mines ParisTech, PSL University, 35 rue Saint Honoré, 77305 Fontainebleau, France
| | - Hirad S Salehi
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, Delft 2628CB, The Netherlands
| | - Remco Hens
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, Delft 2628CB, The Netherlands
| | - Dominika O Wasik
- Materials Simulation and Modelling, Department of Applied Physics, Eindhoven University of Technology, 5600MB Eindhoven, The Netherlands
| | - Ahmadreza Rahbari
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, Delft 2628CB, The Netherlands
| | - Frédérick de Meyer
- CCUS and Acid Gas Entity, Liquefied Natural Gas Department, Exploration Production, TotalEnergies S.E., 92078 Paris, France.,CTP - Centre of Thermodynamics of Processes, Mines ParisTech, PSL University, 35 rue Saint Honoré, 77305 Fontainebleau, France
| | - Céline Houriez
- CTP - Centre of Thermodynamics of Processes, Mines ParisTech, PSL University, 35 rue Saint Honoré, 77305 Fontainebleau, France
| | - Christophe Coquelet
- CTP - Centre of Thermodynamics of Processes, Mines ParisTech, PSL University, 35 rue Saint Honoré, 77305 Fontainebleau, France
| | - Sofia Calero
- Materials Simulation and Modelling, Department of Applied Physics, Eindhoven University of Technology, 5600MB Eindhoven, The Netherlands.,Department of Physical, Chemical and Natural Systems, Universidad Pablo de Olavide, Ctra. Utrera Km. 1, Seville ES-41013, Spain
| | - David Dubbeldam
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, 1098XH Amsterdam, The Netherlands
| | - Othonas A Moultos
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, Delft 2628CB, The Netherlands
| | - Thijs J H Vlugt
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, Delft 2628CB, The Netherlands
| |
Collapse
|
20
|
Rahbari A, Garcia-Navarro JC, Ramdin M, van den Broeke LJP, Moultos OA, Dubbeldam D, Vlugt TJH. Effect of Water Content on Thermodynamic Properties of Compressed Hydrogen. JOURNAL OF CHEMICAL AND ENGINEERING DATA 2021; 66:2071-2087. [PMID: 34054140 PMCID: PMC8154567 DOI: 10.1021/acs.jced.1c00020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
Force field-based molecular simulations were used to calculate thermal expansivities, heat capacities, and Joule-Thomson coefficients of binary (standard) hydrogen-water mixtures for temperatures between 366.15 and 423.15 K and pressures between 50 and 1000 bar. The mole fraction of water in saturated hydrogen-water mixtures in the gas phase ranges from 0.004 to 0.138. The same properties were calculated for pure hydrogen at 323.15 K and pressures between 100 and 1000 bar. Simulations were performed using the TIP3P and a modified TIP4P force field for water and the Marx, Vrabec, Cracknell, Buch, and Hirschfelder force fields for hydrogen. The vapor-liquid equilibria of hydrogen-water mixtures were calculated along the melting line of ice Ih, corresponding to temperatures between 264.21 and 272.4 K, using the TIP3P force field for water and the Marx force field for hydrogen. In this temperature range, the solubilities and the chemical potentials of hydrogen and water were obtained. Based on the computed solubility data of hydrogen in water, the freezing-point depression of water was computed ranging from 264.21 to 272.4 K. The modified TIP4P and Marx force fields were used to improve the solubility calculations of hydrogen-water mixtures reported in our previous study [Rahbari A.;J. Chem. Eng. Data2019, 64, 4103-4115] for temperatures between 323 and 423 K and pressures ranging from 100 to 1000 bar. The chemical potentials of ice Ih were calculated as a function of pressure between 100 and 1000 bar, along the melting line for temperatures between 264.21 and 272.4 K, using the IAPWS equation of state for ice Ih. We show that at low pressures, the presence of water has a large effect on the thermodynamic properties of compressed hydrogen. Our conclusions may have consequences for the energetics of a hydrogen refueling station using electrochemical hydrogen compressors.
Collapse
Affiliation(s)
- Ahmadreza Rahbari
- Engineering
Thermodynamics, Process & Energy Department, Faculty of Mechanical,
Maritime and Materials Engineering, Delft
University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| | | | - Mahinder Ramdin
- Engineering
Thermodynamics, Process & Energy Department, Faculty of Mechanical,
Maritime and Materials Engineering, Delft
University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| | - Leo J. P. van den Broeke
- Engineering
Thermodynamics, Process & Energy Department, Faculty of Mechanical,
Maritime and Materials Engineering, Delft
University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| | - Othonas A. Moultos
- Engineering
Thermodynamics, Process & Energy Department, Faculty of Mechanical,
Maritime and Materials Engineering, Delft
University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| | - David Dubbeldam
- Van’t
Hoff Institute for Molecular Sciences, University
of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| | - Thijs J. H. Vlugt
- Engineering
Thermodynamics, Process & Energy Department, Faculty of Mechanical,
Maritime and Materials Engineering, Delft
University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| |
Collapse
|
21
|
Caro-Ortiz S, Zuidema E, Rigutto M, Dubbeldam D, Vlugt TJH. Competitive Adsorption of Xylenes at Chemical Equilibrium in Zeolites. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2021; 125:4155-4174. [PMID: 33841605 PMCID: PMC8025683 DOI: 10.1021/acs.jpcc.0c09411] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 01/28/2021] [Indexed: 06/12/2023]
Abstract
The separation of xylenes is one of the most important processes in the petrochemical industry. In this article, the competitive adsorption from a fluid-phase mixture of xylenes in zeolites is studied. Adsorption from both vapor and liquid phases is considered. Computations of adsorption of pure xylenes and a mixture of xylenes at chemical equilibrium in several zeolite types at 250 °C are performed by Monte Carlo simulations. It is observed that shape and size selectivity entropic effects are predominant for small one-dimensional systems. Entropic effects due to the efficient arrangement of xylenes become relevant for large one-dimensional systems. For zeolites with two intersecting channels, the selectivity is determined by a competition between enthalpic and entropic effects. Such effects are related to the orientation of the methyl groups of the xylenes. m-Xylene is preferentially adsorbed if xylenes fit tightly in the intersection of the channels. If the intersection is much larger than the adsorbed molecules, p-xylene is preferentially adsorbed. This study provides insight into how the zeolite topology can influence the competitive adsorption and selectivity of xylenes at reaction conditions. Different selectivities are observed when a vapor phase is adsorbed compared to the adsorption from a liquid phase. These insight have a direct impact on the design criteria for future applications of zeolites in the industry. MRE-type and AFI-type zeolites exclusively adsorb p-xylene and o-xylene from the mixture of xylenes in the liquid phase, respectively. These zeolite types show potential to be used as high-performing molecular sieves for xylene separation and catalysis.
Collapse
Affiliation(s)
- Sebastián Caro-Ortiz
- Engineering
Thermodynamics, Process & Energy Department, Faculty of Mechanical,
Maritime and Materials Engineering, Delft
University of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Erik Zuidema
- Shell
Global Solutions International B.V., PO Box 38000, 1030 BN Amsterdam, The Netherlands
| | - Marcello Rigutto
- Shell
Global Solutions International B.V., PO Box 38000, 1030 BN Amsterdam, The Netherlands
| | - David Dubbeldam
- Van’t
Hoff Institute of Molecular Sciences, University
of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Thijs J. H. Vlugt
- Engineering
Thermodynamics, Process & Energy Department, Faculty of Mechanical,
Maritime and Materials Engineering, Delft
University of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| |
Collapse
|
22
|
Erdős M, Geerdink DF, Martin-Calvo A, Pidko EA, van den Broeke LJP, Calero S, Vlugt TJH, Moultos OA. In Silico Screening of Zeolites for High-Pressure Hydrogen Drying. ACS APPLIED MATERIALS & INTERFACES 2021; 13:8383-8394. [PMID: 33566563 PMCID: PMC7908017 DOI: 10.1021/acsami.0c20892] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
According to the ISO 14687-2:2019 standard, the water content of H2 fuel for transportation and stationary applications should not exceed 5 ppm (molar). To achieve this water content, zeolites can be used as a selective adsorbent for water. In this work, a computational screening study is carried out for the first time to identify potential zeolite frameworks for the drying of high-pressure H2 gas using Monte Carlo (MC) simulations. We show that the Si/Al ratio and adsorption selectivity have a negative correlation. 218 zeolites available in the database of the International Zeolite Association are considered in the screening. We computed the adsorption selectivity of each zeolite for water from the high-pressure H2 gas having water content relevant to vehicular applications and near saturation. It is shown that due to the formation of water clusters, the water content in the H2 gas has a significant effect on the selectivity of zeolites with a helium void fraction larger than 0.1. Under each operating condition, five most promising zeolites are identified based on the adsorption selectivity, the pore limiting diameter, and the volume of H2 gas that can be dried by 1 dm3 of zeolite. It is shown that at 12.3 ppm (molar) water content, structures with helium void fractions smaller than 0.07 are preferred. The structures identified for 478 ppm (molar) water content have helium void fractions larger than 0.26. The proposed zeolites can be used to dry 400-8000 times their own volume of H2 gas depending on the operating conditions. Our findings strongly indicate that zeolites are potential candidates for the drying of high-pressure H2 gas.
Collapse
Affiliation(s)
- Máté Erdős
- Engineering
Thermodynamics, Process & Energy Department, Faculty of Mechanical,
Maritime and Materials Engineering, Delft
University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| | - Daan F. Geerdink
- Engineering
Thermodynamics, Process & Energy Department, Faculty of Mechanical,
Maritime and Materials Engineering, Delft
University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| | - Ana Martin-Calvo
- Department
of Physical, Chemical, and Natural Systems, Universidad Pablo de Olavide, Ctra. Utrera km, 1, ES-41013 Seville, Spain
| | - Evgeny A. Pidko
- Inorganic
Systems Engineering, Chemical Engineering Department, Faculty of Applied
Sciences, Delft University of Technology, Van der Maasweg 9, 2629HZ Delft, The Netherlands
| | - Leo J. P. van den Broeke
- Engineering
Thermodynamics, Process & Energy Department, Faculty of Mechanical,
Maritime and Materials Engineering, Delft
University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| | - Sofia Calero
- Materials
Simulation & Modelling, Department of Applied Physics, Eindhoven University of Technology, 5600MB Eindhoven, The Netherlands
| | - Thijs J. H. Vlugt
- Engineering
Thermodynamics, Process & Energy Department, Faculty of Mechanical,
Maritime and Materials Engineering, Delft
University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| | - Othonas A. Moultos
- Engineering
Thermodynamics, Process & Energy Department, Faculty of Mechanical,
Maritime and Materials Engineering, Delft
University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| |
Collapse
|
23
|
Dawass N, Wanderley RR, Ramdin M, Moultos OA, Knuutila HK, Vlugt TJH. Solubility of Carbon Dioxide, Hydrogen Sulfide, Methane, and Nitrogen in Monoethylene Glycol; Experiments and Molecular Simulation. JOURNAL OF CHEMICAL AND ENGINEERING DATA 2021; 66:524-534. [PMID: 33487733 PMCID: PMC7818648 DOI: 10.1021/acs.jced.0c00771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
Knowledge on the solubility of gases, especially carbon dioxide (CO2), in monoethylene glycol (MEG) is relevant for a number of industrial applications such as separation processes and gas hydrate prevention. In this study, the solubility of CO2 in MEG was measured experimentally at temperatures of 333.15, 353.15, and 373.15 K. Experimental data were used to validate Monte Carlo (MC) simulations. Continuous fractional component MC simulations in the osmotic ensemble were performed to compute the solubility of CO2 in MEG at the same temperatures and at pressures up to 10 bar. MC simulations were also used to study the solubility of methane (CH4), hydrogen sulfide (H2S), and nitrogen (N2) in MEG at 373.15 K. Solubilities from experiments and simulations are in good agreement at low pressures, but deviations were observed at high pressures. Henry coefficients were also computed using MC simulations and compared to experimental values. The order of solubilities of the gases in MEG at 373.15 K was computed as H2S > CO2 > CH4 > N2. Force field modifications may be required to improve the prediction of solubilities of gases in MEG at high pressures and low temperatures.
Collapse
Affiliation(s)
- Noura Dawass
- Engineering
Thermodynamics, Process & Energy Department, Faculty of Mechanical,
Maritime and Materials Engineering, Delft
University of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Ricardo R. Wanderley
- Department
of Chemical Engineering, Norwegian University
of Science and Technology, 7034 Trondheim, Norway
| | - Mahinder Ramdin
- Engineering
Thermodynamics, Process & Energy Department, Faculty of Mechanical,
Maritime and Materials Engineering, Delft
University of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Othonas A. Moultos
- Engineering
Thermodynamics, Process & Energy Department, Faculty of Mechanical,
Maritime and Materials Engineering, Delft
University of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Hanna K. Knuutila
- Department
of Chemical Engineering, Norwegian University
of Science and Technology, 7034 Trondheim, Norway
| | - Thijs J. H. Vlugt
- Engineering
Thermodynamics, Process & Energy Department, Faculty of Mechanical,
Maritime and Materials Engineering, Delft
University of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| |
Collapse
|
24
|
Rahbari A, Hens R, Ramdin M, Moultos OA, Dubbeldam D, Vlugt TJH. Recent advances in the continuous fractional component Monte Carlo methodology. MOLECULAR SIMULATION 2020. [DOI: 10.1080/08927022.2020.1828585] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- A. Rahbari
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, Netherlands
| | - R. Hens
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, Netherlands
| | - M. Ramdin
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, Netherlands
| | - O. A. Moultos
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, Netherlands
| | - D. Dubbeldam
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - T. J. H. Vlugt
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, Netherlands
| |
Collapse
|
25
|
Salehi HS, Hens R, Moultos OA, Vlugt TJ. Computation of gas solubilities in choline chloride urea and choline chloride ethylene glycol deep eutectic solvents using Monte Carlo simulations. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113729] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|