1
|
Alsaad I, Abdel Rahman DMA, Al-Tamimi O, Alhaj SA, Sabbah DA, Hajjo R, Bardaweel SK. Targeting MAO-B with Small-Molecule Inhibitors: A Decade of Advances in Anticancer Research (2012-2024). Molecules 2024; 30:126. [PMID: 39795182 PMCID: PMC11722196 DOI: 10.3390/molecules30010126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/17/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
Monoamine oxidase B (MAO-B) is a key enzyme in the mitochondrial outer membrane, pivotal for the oxidative deamination of biogenic amines. Its overexpression has been implicated in the pathogenesis of several cancers, including glioblastoma and colorectal, lung, renal, and bladder cancers, primarily through the increased production of reactive oxygen species (ROS). Inhibition of MAO-B impedes cell proliferation, making it a potential therapeutic target. Various monoamine oxidase B inhibitors have shown promise in inhibiting tumor growth and inducing apoptosis across different cancer types. In this review, we investigate MAO-B network biology, which highlighted glycolysis pathways as notable links between MAO-B and cancer. Further molecular modeling analysis illustrated the basis of MAO-B ligand binding, revealing a hydrophobic binding pocket, with key residues such as Tyr398 and Tyr435 playing crucial roles in substrate oxidation. MAO-B inhibitors that were reportsed in the literature (2012-2024) and their potential application in cancer therapy were discussed, highlighting key molecular scaffolds, such as propargyl analogs of phenyl alkyl amines, hydrazine derivatives, cyclopropylamine derivatives, MAO-B activated pro-drugs, and natural phenylpropanoid derivatives. The reported literature underscores the therapeutic potential of MAO-B inhibitors as versatile anticancer agents, warranting further investigation to optimize their efficacy and specificity across various malignancies.
Collapse
Affiliation(s)
- Iyman Alsaad
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Jordan, Amman 11942, Jordan (O.A.-T.)
| | - Diana M. A. Abdel Rahman
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Jordan, Amman 11942, Jordan (O.A.-T.)
| | - Ola Al-Tamimi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Jordan, Amman 11942, Jordan (O.A.-T.)
| | - Shayma’a A. Alhaj
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Jordan, Amman 11942, Jordan (O.A.-T.)
| | - Dima A. Sabbah
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman 11733, Jordan; (D.A.S.); (R.H.)
| | - Rima Hajjo
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman 11733, Jordan; (D.A.S.); (R.H.)
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Jordan CDC, Amman 11118, Jordan
| | - Sanaa K. Bardaweel
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Jordan, Amman 11942, Jordan (O.A.-T.)
| |
Collapse
|
2
|
Tananta VL, Costa EV, Mary YS, Mary YS, S Al-Otaibi J, Costa RA. DFT, ADME studies and evaluation of the binding with HSA and MAO-B inhibitory potential of protoberberine alkaloids from Guatteria friesiana: theoretical insights of promising candidates for the treatment of Parkinson's disease. J Mol Model 2023; 29:353. [PMID: 37907772 DOI: 10.1007/s00894-023-05756-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 10/13/2023] [Indexed: 11/02/2023]
Abstract
CONTEXT Parkinson's disease is a chronic neurodegenerative condition that has no cure, characterized by the progressive degeneration of specific brain cells responsible for producing dopamine, a crucial neurotransmitter for controlling movement and muscle coordination. Parkinson's disease is estimated to affect around 1% of the world's population over the age of 60, but it can be diagnosed at younger ages. One of the treatment strategies for Parkinson's disease involves the use of drugs that aim to increase dopamine levels or simulate the action of dopamine in the brain. A class of commonly prescribed drugs are the so-called monoamine oxidase B (MAO-B) inhibitors due to the fact that this enzyme is responsible for metabolizing dopamine, thus reducing its levels in the brain. Studies have shown that berberine-derived alkaloids have the ability to selectively inhibit MAO-B activity, resulting in increased dopamine availability in the brain. In this context, berberine derivatives 13-hydroxy-discretinine and 7,8-dihydro-8-hydroxypalmatine, isolated from Guatteria friesiana, were evaluated via density functional theory followed by ADME studies, docking and molecular dynamic simulations with MAO-B, aiming to evaluate their anti-Parkinson potential, which have not been reported yet. Docking simulations with HSA were carried out aiming to evaluate the transport of these molecules through the circulatory system. METHODS The 3D structures of the berberine-derived alkaloids were modeled via the DFT approach at B3LYP-D3(BJ)/6-311 + + G(2df, 2pd) theory level using Gaussian 09 software. Solvation free energies were determined through Truhlar's solvation model. MEP and ALIE maps were generated with Multiwfn software. Autodock Vina software was used for molecular docking simulations and analysis of the interactions in the binding sites. The 3D structure of MAO-B was obtained from the Protein Data Bank website under PDB code 2V5Z. For the interaction of studied alkaloids with human serum albumin (HSA) drug sites, 3D structures with PDB codes 2BXD, 2BXG, and 4L9K were used. Molecular dynamics simulations were carried out using GROMACS 2019.4 software, with the GROMOS 53A6 force field at 100 ns simulation time. The estimation of the ligand's binding free energies was obtained via molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) method.
Collapse
Affiliation(s)
- Victor L Tananta
- Department of Chemistry, Federal University of Amazonas (DQ-UFAM), Manaus, AM, 69080-900, Brazil
| | - Emmanoel V Costa
- Department of Chemistry, Federal University of Amazonas (DQ-UFAM), Manaus, AM, 69080-900, Brazil
| | | | | | - Jamelah S Al-Otaibi
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 8442811671, Riyadh, Saudi Arabia
| | - Renyer A Costa
- Department of Chemistry, Federal University of Amazonas (DQ-UFAM), Manaus, AM, 69080-900, Brazil.
| |
Collapse
|
3
|
Mateev E, Georgieva M, Mateeva A, Zlatkov A, Ahmad S, Raza K, Azevedo V, Barh D. Structure-Based Design of Novel MAO-B Inhibitors: A Review. Molecules 2023; 28:4814. [PMID: 37375370 DOI: 10.3390/molecules28124814] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/09/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
With the significant growth of patients suffering from neurodegenerative diseases (NDs), novel classes of compounds targeting monoamine oxidase type B (MAO-B) are promptly emerging as distinguished structures for the treatment of the latter. As a promising function of computer-aided drug design (CADD), structure-based virtual screening (SBVS) is being heavily applied in processes of drug discovery and development. The utilization of molecular docking, as a helping tool for SBVS, is providing essential data about the poses and the occurring interactions between ligands and target molecules. The current work presents a brief discussion of the role of MAOs in the treatment of NDs, insight into the advantages and drawbacks of docking simulations and docking software, and a look into the active sites of MAO-A and MAO-B and their main characteristics. Thereafter, we report new chemical classes of MAO-B inhibitors and the essential fragments required for stable interactions focusing mainly on papers published in the last five years. The reviewed cases are separated into several chemically distinct groups. Moreover, a modest table for rapid revision of the revised works including the structures of the reported inhibitors together with the utilized docking software and the PDB codes of the crystal targets applied in each study is provided. Our work could be beneficial for further investigations in the search for novel, effective, and selective MAO-B inhibitors.
Collapse
Affiliation(s)
- Emilio Mateev
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University-Sofia, 1000 Sofia, Bulgaria
| | - Maya Georgieva
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University-Sofia, 1000 Sofia, Bulgaria
| | - Alexandrina Mateeva
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University-Sofia, 1000 Sofia, Bulgaria
| | - Alexander Zlatkov
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University-Sofia, 1000 Sofia, Bulgaria
| | - Shaban Ahmad
- Department of Computer Science, Jamia Millia Islamia, New Delhi 110025, India
| | - Khalid Raza
- Department of Computer Science, Jamia Millia Islamia, New Delhi 110025, India
| | - Vasco Azevedo
- Departamento de Genetica, Ecologia e Evolucao, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Debmalya Barh
- Departamento de Genetica, Ecologia e Evolucao, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
- Institute of Integrative Omics and Applied Biotechnology (IIOAB), Nonakuri, Purba Medinipur 721172, India
| |
Collapse
|
4
|
Murugan NA, Zaleśny R. Computational Investigations into Two-Photon Fibril Imaging Using the DANIR-2c Probe. J Phys Chem B 2023; 127:3119-3125. [PMID: 37015058 PMCID: PMC10108348 DOI: 10.1021/acs.jpcb.2c07783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2023]
Abstract
The design of novel fibril imaging molecules for medical diagnosis requires the simultaneous optimization of fibril-specific optical properties and binding specificity toward amyloid fibrils. Because of the possibility to monitor internal organs and deep tissues, the two-photon probes that can absorb in the infrared (IR) and near-IR (NIR) region with a significant two-photon absorption cross section are of immense interest. To contribute to this exploration of chemical compounds suitable for two-photon fibril imaging, we have computationally studied the one- and two-photon properties of a donor-acceptor-substituted DANIR-2c probe, which was used for in vivo detection of β-amyloid deposits using fluorescence spectroscopy. In particular, a multiscale computational approach was employed involving molecular docking, molecular dynamics, hybrid QM/MM molecular dynamics, and coupled-cluster/MM to study the binding of the studied probe to amyloid fibril and its one- and two-photon absorption properties in the fibrillar environment. Multiple binding sites are available for this probe in amyloid fibril, and the one corresponding to the largest binding affinity exhibits also the largest and experimentally meaningful two-photon absorption cross section, thus demonstrating the potential of the studied probe in two-photon microscopy.
Collapse
Affiliation(s)
- N Arul Murugan
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi 110020, India
| | - Robert Zaleśny
- Faculty of Chemistry, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, PL-50370 Wrocław, Poland
| |
Collapse
|
5
|
Computationally Assisted Lead Optimization of Novel Potent and Selective MAO-B Inhibitors. Biomedicines 2021; 9:biomedicines9101304. [PMID: 34680421 PMCID: PMC8533211 DOI: 10.3390/biomedicines9101304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/10/2021] [Accepted: 09/18/2021] [Indexed: 12/24/2022] Open
Abstract
A series of dietary flavonoid acacetin 7-O-methyl ether derivatives were computationally designed aiming to improve the selectivity and potency profiles against monoamine oxidase (MAO) B. The designed compounds were evaluated for their potential to inhibit human MAO-A and -B. Compounds 1c, 2c, 3c, and 4c were the most potent with a Ki of 37 to 68 nM against MAO-B. Compounds 1c–4c displayed more than a thousand-fold selectivity index towards MAO-B compared with MAO-A. Moreover, compounds 1c and 2c showed reversible inhibition of MAO-B. These results provide a basis for further studies on the potential application of these modified flavonoids for the treatment of Parkinson’s Disease and other neurological disorders.
Collapse
|
6
|
Murugan NA, Muvva C, Jeyarajpandian C, Jeyakanthan J, Subramanian V. Performance of Force-Field- and Machine Learning-Based Scoring Functions in Ranking MAO-B Protein-Inhibitor Complexes in Relevance to Developing Parkinson's Therapeutics. Int J Mol Sci 2020; 21:ijms21207648. [PMID: 33081086 PMCID: PMC7589968 DOI: 10.3390/ijms21207648] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/27/2020] [Accepted: 10/08/2020] [Indexed: 01/11/2023] Open
Abstract
Monoamine oxidase B (MAOB) is expressed in the mitochondrial membrane and has a key role in degrading various neurologically active amines such as benzylamine, phenethylamine and dopamine with the help of Flavin adenine dinucleotide (FAD) cofactor. The Parkinson’s disease associated symptoms can be treated using inhibitors of MAO-B as the dopamine degradation can be reduced. Currently, many inhibitors are available having micromolar to nanomolar binding affinities. However, still there is demand for compounds with superior binding affinity and binding specificity with favorable pharmacokinetic properties for treating Parkinson’s disease and computational screening methods can be majorly recruited for this. However, the accuracy of currently available force-field methods for ranking the inhibitors or lead drug-like compounds should be improved and novel methods for screening compounds need to be developed. We studied the performance of various force-field-based methods and data driven approaches in ranking about 3753 compounds having activity against the MAO-B target. The binding affinities computed using autodock and autodock-vina are shown to be non-reliable. The force-field-based MM-GBSA also under-performs. However, certain machine learning approaches, in particular KNN, are found to be superior, and we propose KNN as the most reliable approach for ranking the complexes to reasonable accuracy. Furthermore, all the employed machine learning approaches are also computationally less demanding.
Collapse
Affiliation(s)
- Natarajan Arul Murugan
- Department of Theoretical Chemistry and Biology, School of Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 10691 Stockholm, Sweden
- Correspondence:
| | | | - Chitra Jeyarajpandian
- Department of Biotechnology, Dr. Umayal Ramanathan College for Women, Karaikudi 630 004, India;
| | | | - Venkatesan Subramanian
- Centre for High Computing, CSIR-Central Leather Research Institute, Adyar, Chennai 600 020, India;
| |
Collapse
|