1
|
Kreitz B, Gusmão GS, Nai D, Sahoo SJ, Peterson AA, Bross DH, Goldsmith CF, Medford AJ. Unifying thermochemistry concepts in computational heterogeneous catalysis. Chem Soc Rev 2025; 54:560-589. [PMID: 39611700 DOI: 10.1039/d4cs00768a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Thermophysical properties of adsorbates and gas-phase species define the free energy landscape of heterogeneously catalyzed processes and are pivotal for an atomistic understanding of the catalyst performance. These thermophysical properties, such as the free energy or the enthalpy, are typically derived from density functional theory (DFT) calculations. Enthalpies are species-interdependent properties that are only meaningful when referenced to other species. The widespread use of DFT has led to a proliferation of new energetic data in the literature and databases. However, there is a lack of consistency in how DFT data is referenced and how the associated enthalpies or free energies are stored and reported, leading to challenges in reproducing or utilizing the results of prior work. Additionally, DFT suffers from exchange-correlation errors that often require corrections to align the data with other global thermochemical networks, which are not always clearly documented or explained. In this review, we introduce a set of consistent terminology and definitions, review existing approaches, and unify the techniques using the framework of linear algebra. This set of terminology and tools facilitates the correction and alignment of energies between different data formats and sources, promoting the sharing and reuse of ab initio data. Standardization of thermochemistry concepts in computational heterogeneous catalysis reduces computational cost and enhances fundamental understanding of catalytic processes, which will accelerate the computational design of optimally performing catalysts.
Collapse
Affiliation(s)
- Bjarne Kreitz
- School of Engineering, Brown University, Providence, Rhode Island 02912, USA.
| | - Gabriel S Gusmão
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
| | - Dingqi Nai
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
| | - Sushree Jagriti Sahoo
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
| | - Andrew A Peterson
- School of Engineering, Brown University, Providence, Rhode Island 02912, USA.
| | - David H Bross
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | | | - Andrew J Medford
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
| |
Collapse
|
2
|
Xiouras C, Cameli F, Quilló GL, Kavousanakis ME, Vlachos DG, Stefanidis GD. Applications of Artificial Intelligence and Machine Learning Algorithms to Crystallization. Chem Rev 2022; 122:13006-13042. [PMID: 35759465 DOI: 10.1021/acs.chemrev.2c00141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Artificial intelligence and specifically machine learning applications are nowadays used in a variety of scientific applications and cutting-edge technologies, where they have a transformative impact. Such an assembly of statistical and linear algebra methods making use of large data sets is becoming more and more integrated into chemistry and crystallization research workflows. This review aims to present, for the first time, a holistic overview of machine learning and cheminformatics applications as a novel, powerful means to accelerate the discovery of new crystal structures, predict key properties of organic crystalline materials, simulate, understand, and control the dynamics of complex crystallization process systems, as well as contribute to high throughput automation of chemical process development involving crystalline materials. We critically review the advances in these new, rapidly emerging research areas, raising awareness in issues such as the bridging of machine learning models with first-principles mechanistic models, data set size, structure, and quality, as well as the selection of appropriate descriptors. At the same time, we propose future research at the interface of applied mathematics, chemistry, and crystallography. Overall, this review aims to increase the adoption of such methods and tools by chemists and scientists across industry and academia.
Collapse
Affiliation(s)
- Christos Xiouras
- Chemical Process R&D, Crystallization Technology Unit, Janssen R&D, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Fabio Cameli
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
| | - Gustavo Lunardon Quilló
- Chemical Process R&D, Crystallization Technology Unit, Janssen R&D, Turnhoutseweg 30, 2340 Beerse, Belgium.,Chemical and BioProcess Technology and Control, Department of Chemical Engineering, Faculty of Engineering Technology, KU Leuven, Gebroeders de Smetstraat 1, 9000 Ghent, Belgium
| | - Mihail E Kavousanakis
- School of Chemical Engineering, National Technical University of Athens, Heroon Polytechniou 9, 15780 Zografou, Greece
| | - Dionisios G Vlachos
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
| | - Georgios D Stefanidis
- School of Chemical Engineering, National Technical University of Athens, Heroon Polytechniou 9, 15780 Zografou, Greece.,Laboratory for Chemical Technology, Ghent University; Tech Lane Ghent Science Park 125, B-9052 Ghent, Belgium
| |
Collapse
|