• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4643607)   Today's Articles (625)   Subscriber (50553)
For: Nguyen P, Loveland D, Kim JT, Karande P, Hiszpanski AM, Han TYJ. Predicting Energetics Materials' Crystalline Density from Chemical Structure by Machine Learning. J Chem Inf Model 2021;61:2147-2158. [PMID: 33899482 DOI: 10.1021/acs.jcim.0c01318] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Number Cited by Other Article(s)
1
Yang Y, Yang Z, Pang X, Cao H, Sun Y, Wang L, Zhou Z, Wang P, Liang Y, Wang Y. Molecular designing of potential environmentally friendly PFAS based on deep learning and generative models. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024;953:176095. [PMID: 39245376 DOI: 10.1016/j.scitotenv.2024.176095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
2
Yang S, Ni J, Xu P. AI4ACEIP: A Computing Tool to Identify Food Peptides with High Inhibitory Activity for ACE by Merged Molecular Representation and Rich Intrinsic Sequence Information Based on an Ensemble Learning Strategy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39495772 DOI: 10.1021/acs.jafc.4c05650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
3
Bao Z, Tom G, Cheng A, Watchorn J, Aspuru-Guzik A, Allen C. Towards the prediction of drug solubility in binary solvent mixtures at various temperatures using machine learning. J Cheminform 2024;16:117. [PMID: 39468626 PMCID: PMC11520512 DOI: 10.1186/s13321-024-00911-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/28/2024] [Indexed: 10/30/2024]  Open
4
Liu R, Liu J, Zhou P. Theoretical advances in understanding and enhancing the thermostability of energetic materials. Phys Chem Chem Phys 2024;26:26209-26221. [PMID: 39380550 DOI: 10.1039/d4cp02499k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
5
Boiko DA, Arkhipova DM, Ananikov VP. Recognition of Molecular Structure of Phosphonium Salts from the Visual Appearance of Material with Deep Learning Can Reveal Subtle Homologs. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2403423. [PMID: 39254289 DOI: 10.1002/smll.202403423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/31/2024] [Indexed: 09/11/2024]
6
Pallikara I, Skelton JM, Hatcher LE, Pallipurath AR. Going beyond the Ordered Bulk: A Perspective on the Use of the Cambridge Structural Database for Predictive Materials Design. CRYSTAL GROWTH & DESIGN 2024;24:6911-6930. [PMID: 39247224 PMCID: PMC11378158 DOI: 10.1021/acs.cgd.4c00694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 09/10/2024]
7
Niu X, Zhang Q, Dang Y, Hu W, Sun Y. MolPackL: Quantification and Interpretation of Intermolecular Interactions Driven by Molecular Packing. J Am Chem Soc 2024;146:24075-24084. [PMID: 39141522 DOI: 10.1021/jacs.4c08132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
8
Liu Y, Yang F, Zhang W, Xia H, Wu Z, Zhang Z. High precision deep-learning model combined with high-throughput screening to discover fused [5,5] biheterocyclic energetic materials with excellent comprehensive properties. RSC Adv 2024;14:23672-23682. [PMID: 39077321 PMCID: PMC11284349 DOI: 10.1039/d4ra03233k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/16/2024] [Indexed: 07/31/2024]  Open
9
Luan Y, Li X, Kong D, Li W, Li W, Zhang Q, Pang A. Development and uniqueness test of highly selective atomic topological indices based on the number of attached hydrogen atoms. J Mol Graph Model 2024;129:108752. [PMID: 38479237 DOI: 10.1016/j.jmgm.2024.108752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 02/27/2024] [Indexed: 04/15/2024]
10
King-Smith E. Transfer learning for a foundational chemistry model. Chem Sci 2024;15:5143-5151. [PMID: 38577363 PMCID: PMC10988575 DOI: 10.1039/d3sc04928k] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/15/2023] [Indexed: 04/06/2024]  Open
11
Zhang D, Chu Q, Chen D. Predicting the enthalpy of formation of energetic molecules via conventional machine learning and GNN. Phys Chem Chem Phys 2024;26:7029-7041. [PMID: 38345363 DOI: 10.1039/d3cp05490j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
12
Malashin IP, Tynchenko VS, Nelyub VA, Borodulin AS, Gantimurov AP. Estimation and Prediction of the Polymers' Physical Characteristics Using the Machine Learning Models. Polymers (Basel) 2023;16:115. [PMID: 38201778 PMCID: PMC10780762 DOI: 10.3390/polym16010115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/23/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024]  Open
13
Li J, Wu N, Zhang J, Wu HH, Pan K, Wang Y, Liu G, Liu X, Yao Z, Zhang Q. Machine Learning-Assisted Low-Dimensional Electrocatalysts Design for Hydrogen Evolution Reaction. NANO-MICRO LETTERS 2023;15:227. [PMID: 37831203 PMCID: PMC10575847 DOI: 10.1007/s40820-023-01192-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/10/2023] [Indexed: 10/14/2023]
14
Jin JX, Ren GP, Hu J, Liu Y, Gao Y, Wu KJ, He Y. Force field-inspired transformer network assisted crystal density prediction for energetic materials. J Cheminform 2023;15:65. [PMID: 37468954 DOI: 10.1186/s13321-023-00736-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023]  Open
15
Shirokii N, Din Y, Petrov I, Seregin Y, Sirotenko S, Razlivina J, Serov N, Vinogradov V. Quantitative Prediction of Inorganic Nanomaterial Cellular Toxicity via Machine Learning. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023;19:e2207106. [PMID: 36772908 DOI: 10.1002/smll.202207106] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/09/2023] [Indexed: 05/11/2023]
16
Zang X, Zhou X, Bian H, Jin W, Pan X, Jiang J, Koroleva MY, Shen R. Prediction and Construction of Energetic Materials Based on Machine Learning Methods. Molecules 2022;28:322. [PMID: 36615516 PMCID: PMC9821915 DOI: 10.3390/molecules28010322] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/18/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023]  Open
17
Lansford JL, Barnes BC, Rice BM, Jensen KF. Building Chemical Property Models for Energetic Materials from Small Datasets Using a Transfer Learning Approach. J Chem Inf Model 2022;62:5397-5410. [PMID: 36240441 DOI: 10.1021/acs.jcim.2c00841] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
18
Antoniuk ER, Li P, Kailkhura B, Hiszpanski AM. Representing Polymers as Periodic Graphs with Learned Descriptors for Accurate Polymer Property Predictions. J Chem Inf Model 2022;62:5435-5445. [PMID: 36315033 DOI: 10.1021/acs.jcim.2c00875] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
19
Zhang Z, Cheng M, Xiao X, Bi K, Song T, Hu KQ, Dai Y, Zhou L, Liu C, Ji X, Shi WQ. Machine-Learning-Guided Identification of Coordination Polymer Ligands for Crystallizing Separation of Cs/Sr. ACS APPLIED MATERIALS & INTERFACES 2022;14:33076-33084. [PMID: 35801670 DOI: 10.1021/acsami.2c05272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
20
Bürgi HB. Crystal structures. ACTA CRYSTALLOGRAPHICA SECTION B, STRUCTURAL SCIENCE, CRYSTAL ENGINEERING AND MATERIALS 2022;78:283-289. [PMID: 35695099 DOI: 10.1107/s205252062200292x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/16/2022] [Indexed: 06/15/2023]
21
Wang R, Liu J, He X, Xie W, Zhang C. Decoding hexanitrobenzene (HNB) and 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) as two distinctive energetic nitrobenzene compounds by machine learning. Phys Chem Chem Phys 2022;24:9875-9884. [PMID: 35415730 DOI: 10.1039/d2cp00439a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA