1
|
Yuan L, Guo J. PharmaRedefine: A database server for repurposing drugs against pathogenic bacteria. Methods 2024; 227:78-85. [PMID: 38754711 DOI: 10.1016/j.ymeth.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/03/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024] Open
Abstract
Pathogenic bacteria represent a formidable threat to human health, necessitating substantial resources for prevention and treatment. With the escalating concern regarding antibiotic resistance, there is a pressing need for innovative approaches to combat these pathogens. Repurposing existing drugs offers a promising solution. Our present work hypothesizes that proteins harboring ligand-binding pockets with similar chemical environments may be able to bind the same drug. To facilitate this drug-repurposing strategy against pathogenic bacteria, we introduce an online server, PharmaRedefine. Leveraging a combination of sequence and structure alignment and protein pocket similarity analysis, this platform enables the prediction of potential targets in representative bacteria for specific FDA-approved drugs. This novel approach holds tremendous potential for drug repositioning that effectively combat infections caused by pathogenic bacteria. PharmaRedefine is freely available at http://guolab.mpu.edu.mo/pharmredefine.
Collapse
Affiliation(s)
- Longxiao Yuan
- Centre in Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao 999097, China
| | - Jingjing Guo
- Centre in Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao 999097, China.
| |
Collapse
|
2
|
Avilés-Alía AI, Zulaica J, Perez JJ, Rubio-Martínez J, Geller R, Granadino-Roldán JM. The Discovery of inhibitors of the SARS-CoV-2 S protein through computational drug repurposing. Comput Biol Med 2024; 171:108163. [PMID: 38417382 DOI: 10.1016/j.compbiomed.2024.108163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/08/2024] [Accepted: 02/13/2024] [Indexed: 03/01/2024]
Abstract
SARS-CoV-2 must bind its principal receptor, ACE2, on the target cell to initiate infection. This interaction is largely driven by the receptor binding domain (RBD) of the viral Spike (S) protein. Accordingly, antiviral compounds that can block RBD/ACE2 interactions can constitute promising antiviral agents. To identify such molecules, we performed a virtual screening of the Selleck FDA approved drugs and the Selleck database of Natural Products using a multistep computational procedure. An initial set of candidates was identified from an ensemble docking process using representative structures determined from the analysis of four 3 μ s molecular dynamics trajectories of the RBD/ACE2 complex. Two procedures were used to construct an initial set of candidates including a standard and a pharmacophore guided docking procedure. The initial set was subsequently subjected to a multistep sieving process to reduce the number of candidates to be tested experimentally, using increasingly demanding computational procedures, including the calculation of the binding free energy computed using the MMPBSA and MMGBSA methods. After the sieving process, a final list of 10 candidates was proposed, compounds which were subsequently purchased and tested ex-vivo. The results identified estradiol cypionate and telmisartan as inhibitors of SARS-CoV-2 entry into cells. Our findings demonstrate that the methodology presented here enables the discovery of inhibitors targeting viruses for which high-resolution structures are available.
Collapse
Affiliation(s)
- Ana Isabel Avilés-Alía
- Institute for Integrative Systems Biology (I2SysBio, UV-CSIC), C/ Catedrático José Beltrán, 2, 46980, Paterna, Valencia, Spain
| | - Joao Zulaica
- Institute for Integrative Systems Biology (I2SysBio, UV-CSIC), C/ Catedrático José Beltrán, 2, 46980, Paterna, Valencia, Spain
| | - Juan J Perez
- Department of Chemical Engineering, Universitat Politecnica de Catalunya- Barcelona Tech, 08028, Barcelona, Spain
| | - Jaime Rubio-Martínez
- Department of Materials Science and Physical Chemistry, University of Barcelona and the Institut de Recerca en Quimica Teorica i Computacional (IQTCUB), 08028, Barcelona, Spain
| | - Ron Geller
- Institute for Integrative Systems Biology (I2SysBio, UV-CSIC), C/ Catedrático José Beltrán, 2, 46980, Paterna, Valencia, Spain.
| | - José M Granadino-Roldán
- Departamento de Química Física y Analítica. Universidad de Jaén, Campus "Las Lagunillas" s/n, 23071, Jaén, Spain.
| |
Collapse
|
3
|
Alsmadi MM, Jaradat MM, Obaidat RM, Alnaief M, Tayyem R, Idkaidek N. The In Vitro, In Vivo, and PBPK Evaluation of a Novel Lung-Targeted Cardiac-Safe Hydroxychloroquine Inhalation Aerogel. AAPS PharmSciTech 2023; 24:172. [PMID: 37566183 DOI: 10.1208/s12249-023-02627-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/12/2023] Open
Abstract
Hydroxychloroquine (HCQ) was repurposed for COVID-19 treatment. Subtherapeutic HCQ lung levels and cardiac toxicity of oral HCQ were overcome by intratracheal (IT) administration of lower HCQ doses. The crosslinker-free supercritical fluid technology (SFT) produces aerogels and impregnates them with drugs in their amorphous form with efficient controlled release. Mechanistic physiologically based pharmacokinetic (PBPK) modeling can predict the lung's epithelial lining fluid (ELF) drug levels. This study aimed to develop a novel HCQ SFT formulation for IT administration to achieve maximal ELF levels and minimal cardiac toxicity. HCQ SFT formulation was prepared and evaluated for physicochemical, in vitro release, pharmacokinetics, and cardiac toxicity. Finally, the rat HCQ ELF concentrations were predicted using PBPK modeling. HCQ was amorphous after loading into the chitosan-alginate nanoporous microparticles (22.7±7.6 μm). The formulation showed a zero-order release, with only 40% released over 30 min compared to 94% for raw HCQ. The formulation had a tapped density of 0.28 g/cm3 and a loading efficiency of 35.3±1.3%. The IT administration of SFT HCQ at 1 mg/kg resulted in 23.7-fold higher bioavailability, fourfold longer MRT, and eightfold faster absorption but lower CK-MB and LDH levels than oral raw HCQ at 4 mg/kg. The PBPK model predicted 6 h of therapeutic ELF levels for IT SFT HCQ and a 100-fold higher ELF-to-heart concentration ratio than oral HCQ. Our findings support the feasibility of lung-targeted and more effective SFT HCQ IT administration for COVID-19 compared to oral HCQ with less cardiac toxicity. Graphical abstract.
Collapse
Affiliation(s)
- Mo'tasem M Alsmadi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan.
- Nanotechnology Institute, Jordan University of Science and Technology, Irbid, Jordan.
| | - Mays M Jaradat
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan
| | - Rana M Obaidat
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The University of Jordan, Amman, Jordan
| | - Mohammad Alnaief
- Department of Pharmaceutical and Chemical Engineering, Faculty of Applied Medical Sciences, German Jordanian University, Amman, Jordan
| | | | | |
Collapse
|
4
|
Soulère L, Barbier T, Queneau Y. In Silico Identification of Potential Inhibitors of the SARS-CoV-2 Main Protease among a PubChem Database of Avian Infectious Bronchitis Virus 3CLPro Inhibitors. Biomolecules 2023; 13:956. [PMID: 37371536 DOI: 10.3390/biom13060956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Remarkable structural homologies between the main proteases of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the avian infectious bronchitis virus (IBV) were revealed by comparative amino-acid sequence and 3D structural alignment. Assessing whether reported IBV 3CLPro inhibitors could also interact with SARS-CoV-2 has been undertaken in silico using a PubChem BioAssay database of 388 compounds active on the avian infectious bronchitis virus 3C-like protease. Docking studies of this database on the SARS-CoV-2 protease resulted in the identification of four covalent inhibitors targeting the catalytic cysteine residue and five non-covalent inhibitors for which the binding was further investigated by molecular dynamics (MD) simulations. Predictive ADMET calculations on the nine compounds suggest promising pharmacokinetic properties.
Collapse
Affiliation(s)
- Laurent Soulère
- Univ Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CNRS, CPE-Lyon, ICBMS, UMR 5246, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires, Bâtiment Lederer, 1 Rue Victor Grignard, F-69622 Villeurbanne, France
| | - Thibaut Barbier
- Univ Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CNRS, CPE-Lyon, ICBMS, UMR 5246, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires, Bâtiment Lederer, 1 Rue Victor Grignard, F-69622 Villeurbanne, France
| | - Yves Queneau
- Univ Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CNRS, CPE-Lyon, ICBMS, UMR 5246, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires, Bâtiment Lederer, 1 Rue Victor Grignard, F-69622 Villeurbanne, France
| |
Collapse
|
5
|
Schultz B, DeLong LN, Masny A, Lentzen M, Raschka T, van Dijk D, Zaliani A, Fröhlich H. A machine learning method for the identification and characterization of novel COVID-19 drug targets. Sci Rep 2023; 13:7159. [PMID: 37137934 PMCID: PMC10156718 DOI: 10.1038/s41598-023-34287-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 04/27/2023] [Indexed: 05/05/2023] Open
Abstract
In addition to vaccines, the World Health Organization sees novel medications as an urgent matter to fight the ongoing COVID-19 pandemic. One possible strategy is to identify target proteins, for which a perturbation by an existing compound is likely to benefit COVID-19 patients. In order to contribute to this effort, we present GuiltyTargets-COVID-19 ( https://guiltytargets-covid.eu/ ), a machine learning supported web tool to identify novel candidate drug targets. Using six bulk and three single cell RNA-Seq datasets, together with a lung tissue specific protein-protein interaction network, we demonstrate that GuiltyTargets-COVID-19 is capable of (i) prioritizing meaningful target candidates and assessing their druggability, (ii) unraveling their linkage to known disease mechanisms, (iii) mapping ligands from the ChEMBL database to the identified targets, and (iv) pointing out potential side effects in the case that the mapped ligands correspond to approved drugs. Our example analyses identified 4 potential drug targets from the datasets: AKT3 from both the bulk and single cell RNA-Seq data as well as AKT2, MLKL, and MAPK11 in the single cell experiments. Altogether, we believe that our web tool will facilitate future target identification and drug development for COVID-19, notably in a cell type and tissue specific manner.
Collapse
Affiliation(s)
- Bruce Schultz
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), 53757, Sankt, Augustin, Germany
- Fraunhofer Center for Machine Learning, Sankt, Germany
| | - Lauren Nicole DeLong
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), 53757, Sankt, Augustin, Germany
- Artificial Intelligence and its Applications Institute, University of Edinburgh School of Informatics, 10 Crichton St, Edinburgh, EH8 9AB, UK
| | - Aliaksandr Masny
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), 53757, Sankt, Augustin, Germany
- Fraunhofer Center for Machine Learning, Sankt, Germany
| | - Manuel Lentzen
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), 53757, Sankt, Augustin, Germany
- University of Bonn, Bonn-Aachen Center for IT (b-it), Friedrich Hirzebruch-Allee 6, 53115, Bonn, Germany
| | - Tamara Raschka
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), 53757, Sankt, Augustin, Germany
- University of Bonn, Bonn-Aachen Center for IT (b-it), Friedrich Hirzebruch-Allee 6, 53115, Bonn, Germany
- Fraunhofer Center for Machine Learning, Sankt, Germany
| | - David van Dijk
- Center for Biomedical Data Science, Yale School of Medicine, Yale University, 333 Cedar Street, New Haven, CT, 06510, USA
| | - Andrea Zaliani
- Fraunhofer Institute for Translational Medicine and Pharmacologie (ITMP), Drug Discovery Research ScreeningPort, VolksparkLabs, Schnackenburgallee 114, 22535, Hamburg, Germany
| | - Holger Fröhlich
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), 53757, Sankt, Augustin, Germany.
- University of Bonn, Bonn-Aachen Center for IT (b-it), Friedrich Hirzebruch-Allee 6, 53115, Bonn, Germany.
| |
Collapse
|
6
|
Alsmadi MM. The investigation of the complex population-drug-drug interaction between ritonavir-boosted lopinavir and chloroquine or ivermectin using physiologically-based pharmacokinetic modeling. Drug Metab Pers Ther 2023; 38:87-105. [PMID: 36205215 DOI: 10.1515/dmpt-2022-0130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/19/2022] [Indexed: 11/07/2022]
Abstract
OBJECTIVES Therapy failure caused by complex population-drug-drug (PDDI) interactions including CYP3A4 can be predicted using mechanistic physiologically-based pharmacokinetic (PBPK) modeling. A synergy between ritonavir-boosted lopinavir (LPVr), ivermectin, and chloroquine was suggested to improve COVID-19 treatment. This work aimed to study the PDDI of the two CYP3A4 substrates (ivermectin and chloroquine) with LPVr in mild-to-moderate COVID-19 adults, geriatrics, and pregnancy populations. METHODS The PDDI of LPVr with ivermectin or chloroquine was investigated. Pearson's correlations between plasma, saliva, and lung interstitial fluid (ISF) levels were evaluated. Target site (lung epithelial lining fluid [ELF]) levels of ivermectin and chloroquine were estimated. RESULTS Upon LPVr coadministration, while the chloroquine plasma levels were reduced by 30, 40, and 20%, the ivermectin plasma levels were increased by a minimum of 425, 234, and 453% in adults, geriatrics, and pregnancy populations, respectively. The established correlation equations can be useful in therapeutic drug monitoring (TDM) and dosing regimen optimization. CONCLUSIONS Neither chloroquine nor ivermectin reached therapeutic ELF levels in the presence of LPVr despite reaching toxic ivermectin plasma levels. PBPK modeling, guided with TDM in saliva, can be advantageous to evaluate the probability of reaching therapeutic ELF levels in the presence of PDDI, especially in home-treated patients.
Collapse
Affiliation(s)
- Mo'tasem M Alsmadi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
7
|
Desai AV, Vornholt SM, Major LL, Ettlinger R, Jansen C, Rainer DN, de Rome R, So V, Wheatley PS, Edward AK, Elliott CG, Pramanik A, Karmakar A, Armstrong AR, Janiak C, Smith TK, Morris RE. Surface-Functionalized Metal-Organic Frameworks for Binding Coronavirus Proteins. ACS APPLIED MATERIALS & INTERFACES 2023; 15:9058-9065. [PMID: 36786318 PMCID: PMC9940617 DOI: 10.1021/acsami.2c21187] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/11/2023] [Indexed: 06/18/2023]
Abstract
Since the outbreak of SARS-CoV-2, a multitude of strategies have been explored for the means of protection and shielding against virus particles: filtration equipment (PPE) has been widely used in daily life. In this work, we explore another approach in the form of deactivating coronavirus particles through selective binding onto the surface of metal-organic frameworks (MOFs) to further the fight against the transmission of respiratory viruses. MOFs are attractive materials in this regard, as their rich pore and surface chemistry can easily be modified on demand. The surfaces of three MOFs, UiO-66(Zr), UiO-66-NH2(Zr), and UiO-66-NO2(Zr), have been functionalized with repurposed antiviral agents, namely, folic acid, nystatin, and tenofovir, to enable specific interactions with the external spike protein of the SARS virus. Protein binding studies revealed that this surface modification significantly improved the binding affinity toward glycosylated and non-glycosylated proteins for all three MOFs. Additionally, the pores for the surface-functionalized MOFs can adsorb water, making them suitable for locally dehydrating microbial aerosols. Our findings highlight the immense potential of MOFs in deactivating respiratory coronaviruses to be better equipped to fight future pandemics.
Collapse
Affiliation(s)
- Aamod V. Desai
- EastChem
School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, U.K.
| | - Simon M. Vornholt
- EastChem
School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, U.K.
| | - Louise L. Major
- School
of Biology, University of St Andrews, Biomedical Sciences Research Complex
North Haugh, St Andrews KY16 9ST, U.K.
| | - Romy Ettlinger
- EastChem
School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, U.K.
| | - Christian Jansen
- Institut
für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, 40204 Düsseldorf, Germany
| | - Daniel N. Rainer
- EastChem
School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, U.K.
| | - Richard de Rome
- EastChem
School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, U.K.
| | - Venus So
- EastChem
School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, U.K.
| | - Paul S. Wheatley
- EastChem
School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, U.K.
| | - Ailsa K. Edward
- EastChem
School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, U.K.
| | - Caroline G. Elliott
- EastChem
School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, U.K.
| | - Atin Pramanik
- EastChem
School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, U.K.
| | - Avishek Karmakar
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United
States of America
| | - A. Robert Armstrong
- EastChem
School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, U.K.
| | - Christoph Janiak
- Institut
für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, 40204 Düsseldorf, Germany
| | - Terry K. Smith
- EastChem
School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, U.K.
- School
of Biology, University of St Andrews, Biomedical Sciences Research Complex
North Haugh, St Andrews KY16 9ST, U.K.
| | - Russell E. Morris
- EastChem
School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, U.K.
| |
Collapse
|
8
|
Lazniewski M, Dermawan D, Hidayat S, Muchtaridi M, Dawson WK, Plewczynski D. Drug repurposing for identification of potential spike inhibitors for SARS-CoV-2 using molecular docking and molecular dynamics simulations. Methods 2022; 203:498-510. [PMID: 35167916 PMCID: PMC8839799 DOI: 10.1016/j.ymeth.2022.02.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/04/2022] [Accepted: 02/10/2022] [Indexed: 01/25/2023] Open
Abstract
For the last two years, the COVID-19 pandemic has continued to bring consternation on most of the world. According to recent WHO estimates, there have been more than 5.6 million deaths worldwide. The virus continues to evolve all over the world, thus requiring both vigilance and the necessity to find and develop a variety of therapeutic treatments, including the identification of specific antiviral drugs. Multiple studies have confirmed that SARS-CoV-2 utilizes its membrane-bound spike protein to recognize human angiotensin-converting enzyme 2 (ACE2). Thus, preventing spike-ACE2 interactions is a potentially viable strategy for COVID-19 treatment as it would block the virus from binding and entering into a host cell. This work aims to identify potential drugs using an in silico approach. Molecular docking was carried out on both approved drugs and substances previously tested in vivo. This step was followed by a more detailed analysis of selected ligands by molecular dynamics simulations to identify the best molecules that thwart the ability of the virus to interact with the ACE2 receptor. Because the SARS-CoV-2 virus evolves rapidly due to a plethora of immunocompromised hosts, the compounds were tested against five different known lineages. As a result, we could identify substances that work well on individual lineages and those showing broader efficacy. The most promising candidates among the currently used drugs were zafirlukast and simeprevir with an average binding affinity of -22 kcal/mol for spike proteins originating from various lineages. The first compound is a leukotriene receptor antagonist that is used to treat asthma, while the latter is a protease inhibitor used for hepatitis C treatment. From among the in vivo tested substances that concurrently exhibit promising free energy of binding and ADME parameters (indicating a possible oral administration) we selected the compound BDBM50136234. In conclusion, these molecules are worth exploring further by in vitro and in vivo studies against SARS-CoV-2.
Collapse
Affiliation(s)
- Michal Lazniewski
- Centre for Advanced Materials and Technologies, Warsaw University of Technology, Warsaw, Poland,Corresponding authors
| | - Doni Dermawan
- Applied Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland,Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Indonesia
| | - Syahrul Hidayat
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Indonesia
| | - Muchtaridi Muchtaridi
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Indonesia
| | - Wayne K. Dawson
- Veritas In Silico, 1-11-1 Nishigotanda, Shinagawa-ku, Tokyo 141-0031, Japan
| | - Dariusz Plewczynski
- Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland,Laboratory of Functional and Structural Genomics, Centre of New Technologies, University of Warsaw, Warsaw, Poland,Corresponding authors
| |
Collapse
|
9
|
Wang B, Svetlov D, Bartikofsky D, Wobus CE, Artsimovitch I. Going Retro, Going Viral: Experiences and Lessons in Drug Discovery from COVID-19. Molecules 2022; 27:3815. [PMID: 35744940 PMCID: PMC9228142 DOI: 10.3390/molecules27123815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 12/15/2022] Open
Abstract
The severity of the COVID-19 pandemic and the pace of its global spread have motivated researchers to opt for repurposing existing drugs against SARS-CoV-2 rather than discover or develop novel ones. For reasons of speed, throughput, and cost-effectiveness, virtual screening campaigns, relying heavily on in silico docking, have dominated published reports. A particular focus as a drug target has been the principal active site (i.e., RNA synthesis) of RNA-dependent RNA polymerase (RdRp), despite the existence of a second, and also indispensable, active site in the same enzyme. Here we report the results of our experimental interrogation of several small-molecule inhibitors, including natural products proposed to be effective by in silico studies. Notably, we find that two antibiotics in clinical use, fidaxomicin and rifabutin, inhibit RNA synthesis by SARS-CoV-2 RdRp in vitro and inhibit viral replication in cell culture. However, our mutagenesis studies contradict the binding sites predicted computationally. We discuss the implications of these and other findings for computational studies predicting the binding of ligands to large and flexible protein complexes and therefore for drug discovery or repurposing efforts utilizing such studies. Finally, we suggest several improvements on such efforts ongoing against SARS-CoV-2 and future pathogens as they arise.
Collapse
Affiliation(s)
- Bing Wang
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA;
| | | | - Dylan Bartikofsky
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA; (D.B.); (C.E.W.)
| | - Christiane E. Wobus
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA; (D.B.); (C.E.W.)
| | - Irina Artsimovitch
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA;
| |
Collapse
|
10
|
Antivirales (a excepción del virus de la inmunodeficiencia humana y la hepatitis). EMC - TRATADO DE MEDICINA 2022. [PMCID: PMC9167942 DOI: 10.1016/s1636-5410(22)46453-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Los antivirales son un elemento esencial de la farmacopea antiinfecciosa. Aunque los antirretrovirales y los antivirales dirigidos contra los virus de las hepatitis B y C constituyen el componente principal, varias moléculas antivirales también se utilizan contra las infecciones por herpesvirus, adenovirus, poxvirus, papilomavirus, coronavirus, pneumovirus y virus de la gripe. La mayoría de estas moléculas se dirigen contra las enzimas virales implicadas en la replicación de los genomas virales. En los virus de ácido desoxirribonucleico (ADN), la mayoría de los análogos nucleosídicos, como el aciclovir, y los análogos nucleotídicos, como el cidofovir, requieren una fosforilación intracelular previa para inhibir, por un mecanismo de competición y, en ocasiones, de terminación, la actividad de una ADN polimerasa. El foscarnet, análogo de pirofosfato, ejerce esta inhibición directamente sin modificación. En los virus ARN (ácido ribonucleico), para los que se dispone de menos antivirales que para los virus ADN, los inhibidores de neuraminidasa han demostrado su eficacia contra los virus de la gripe y los inhibidores de la ARN polimerasa parecen ser activos contra el coronavirus 2 del síndrome respiratorio agudo grave (SARS-CoV-2), coronavirus responsable de la COVID-19. La especificidad de los antivirales suele ser estrecha, limitada para cada molécula a unos pocos virus relacionados. Las otras limitaciones de su uso son la imposibilidad de erradicar las infecciones latentes, la aparición de resistencia, los efectos indeseables relacionados a menudo con la toxicidad celular relativa de las moléculas y el coste. Se esperan avances tanto en la actividad antiviral de los fármacos como en su tolerabilidad clínica y el número de las enfermedades virales tratadas. Al margen del desarrollo de los antivirales propiamente dichos, los anticuerpos monoclonales y la modificación de la indicación de otros fármacos antiinfecciosos que tienen una actividad antiviral mediante modificaciones de su funcionamiento celular también son pistas prometedoras Es esencial que las exigencias económicas no restrinjan la dinámica de este ámbito muy innovador de la medicina contemporánea.
Collapse
|
11
|
Farahani MD, França TCC, Alapour S, Shahout F, Boulon R, Iddir M, Maddalena M, Ayotte Y, Laplante SR. Jumping From Fragment To Drug Via Smart Scaffolds. ChemMedChem 2022; 17:e202200092. [PMID: 35298873 DOI: 10.1002/cmdc.202200092] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/16/2022] [Indexed: 11/08/2022]
Abstract
A focused drug repurposing approach is described where an FDA-approved drug is rationally selected for biological testing based on structural similarities to a fragment compound found to bind a target protein by an NMR screen. The approach is demonstrated by first screening a curated fragment library using 19F NMR to discover a quality binder to ACE2, the human receptor required for entry and infection by the SARS-CoV-2 virus. Based on this binder, a highly related scaffold was derived and used as a "smart scaffold" or template in a computer-aided finger-print search of a library of FDA-approved or marketed drugs. The most interesting structural match involved the drug vortioxetine which was then experimentally shown by NMR spectroscopy to bind directly to human ACE2. Also, an ELISA assay showed that the drug inhibits the interaction of human ACE2 to the SARS-CoV-2 receptor-binding-domain (RBD). Moreover, our cell-culture infectivity assay confirmed that vortioxetine is active against SARS-CoV-2 and inhibits viral replication. Thus, the use of "smart scaffolds" based on binders from fragment screens may have general utility for identifying candidates of FDA-approved or marketed drugs as a rapid repurposing strategy. Similar approaches can be envisioned for other fields involving small-molecule chemical applications.
Collapse
Affiliation(s)
- Majid D Farahani
- Institut national de la recherche scientifique, Armand-Frappier Santé Biotechnologie, 531 boulevard des Prairies, H7V1B7, Laval, CANADA
| | - Tanos C C França
- Institut national de la recherche scientifique, Armand-Frappier Santé Biotechnologie, 531 boulevard des Prairies, H7V1B7, Laval, CANADA
| | - Saba Alapour
- National Institute of Scientific Research: Institut national de la recherche scientifique, Armand-Frappier Santé Biotechnologie, 531 boulevard des Prairies, H7V1B7, Laval, CANADA
| | - Fatma Shahout
- National Institute of Scientific Research: Institut national de la recherche scientifique, Armand-Frappier Santé Biotechnologie, 531 boulevard des Prairies, H7V1B7, Laval, CANADA
| | - Richard Boulon
- National Institute of Scientific Research: Institut national de la recherche scientifique, Armand-Frappier Santé Biotechnologie, 531 boulevard des Prairies, H7V1B7, Laval, CANADA
| | - Mustapha Iddir
- National Institute of Scientific Research: Institut national de la recherche scientifique, Armand-Frappier Santé Biotechnologie, 531 boulevard des Prairies, H7V1B7, Laval, CANADA
| | - Michael Maddalena
- National Institute of Scientific Research: Institut national de la recherche scientifique, Armand-Frappier Santé Biotechnologie, 531 boulevard des Prairies, H7V1B7, Laval, CANADA
| | - Yann Ayotte
- National Institute of Scientific Research: Institut national de la recherche scientifique, Armand-Frappier Santé Biotechnologie, 531 boulevard des Prairies, H7V1B7, Laval, CANADA
| | - Steven R Laplante
- Institut national de la recherche scientifique, Armand-Frappier Santé Biotechnologie, 531, boulevard des Prairies, H7V 1B7, Canada, H7V1B7, Laval, CANADA
| |
Collapse
|
12
|
Jiang H, Yang P, Zhang J. Potential Inhibitors Targeting Papain-Like Protease of SARS-CoV-2: Two Birds With One Stone. Front Chem 2022; 10:822785. [PMID: 35281561 PMCID: PMC8905519 DOI: 10.3389/fchem.2022.822785] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/28/2022] [Indexed: 12/23/2022] Open
Abstract
Severe acute respiratory syndrome Coronavirus-2 (SARS-CoV-2), the pathogen of the Coronavirus disease-19 (COVID-19), is still devastating the world causing significant chaos to the international community and posing a significant threat to global health. Since the first outbreak in late 2019, several lines of intervention have been developed to prevent the spread of this virus. Nowadays, some vaccines have been approved and extensively administered. However, the fact that SARS-CoV-2 rapidly mutates makes the efficacy and safety of this approach constantly under debate. Therefore, antivirals are still needed to combat the infection of SARS-CoV-2. Papain-like protease (PLpro) of SARS-CoV-2 supports viral reproduction and suppresses the innate immune response of the host, which makes PLpro an attractive pharmaceutical target. Inhibition of PLpro could not only prevent viral replication but also restore the antiviral immunity of the host, resulting in the speedy recovery of the patient. In this review, we describe structural and functional features on PLpro of SARS-CoV-2 and the latest development in searching for PLpro inhibitors. Currently available inhibitors targeting PLpro as well as their structural basis are also summarized.
Collapse
Affiliation(s)
- Haihai Jiang
- School of Basic Medical Sciences, Nanchang University, Nanchang, China
- *Correspondence: Haihai Jiang, ; Jin Zhang,
| | - Peiyao Yang
- Queen Mary School, Nanchang University, Nanchang, China
| | - Jin Zhang
- School of Basic Medical Sciences, Nanchang University, Nanchang, China
- *Correspondence: Haihai Jiang, ; Jin Zhang,
| |
Collapse
|
13
|
Luedemann M, Stadler D, Cheng CC, Protzer U, Knolle PA, Donakonda S. Montelukast is a dual-purpose inhibitor of SARS-CoV-2 infection and virus-induced IL-6 expression identified by structure-based drug repurposing. Comput Struct Biotechnol J 2022; 20:799-811. [PMID: 35126884 PMCID: PMC8800171 DOI: 10.1016/j.csbj.2022.01.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 01/22/2022] [Accepted: 01/23/2022] [Indexed: 12/13/2022] Open
Abstract
Drug-repurposing has been instrumental to identify drugs preventing SARS-CoV-2 replication or attenuating the disease course of COVID-19. Here, we identify through structure-based drug-repurposing a dual-purpose inhibitor of SARS-CoV-2 infection and of IL-6 production by immune cells. We created a computational structure model of the receptor binding domain (RBD) of the SARS-CoV-2 spike 1 protein, and used this model for insilico screening against a library of 6171 molecularly defined binding-sites from drug molecules. Molecular dynamics simulation of candidate molecules with high RBD binding-scores in docking analysis predicted montelukast, an antagonist of the cysteinyl-leukotriene-receptor, to disturb the RBD structure, and infection experiments demonstrated inhibition of SARS-CoV-2 infection, although montelukast binding was outside the ACE2-binding site. Molecular dynamics simulation of SARS-CoV-2 variant RBDs correctly predicted interference of montelukast with infection by the beta but not the more infectious alpha variant. With distinct binding sites for RBD and the leukotriene receptor, montelukast also prevented SARS-CoV-2-induced IL-6 release from immune cells. The inhibition of SARS-CoV-2 infection through a molecule binding distal to the ACE-binding site of the RBD points towards an allosteric mechanism that is not conserved in the more infectious alpha and delta SARS-CoV-2 variants.
Collapse
|
14
|
Lewis RA. Best practices for repurposing studies. J Comput Aided Mol Des 2021; 35:1189-1193. [PMID: 34766233 PMCID: PMC8585576 DOI: 10.1007/s10822-021-00430-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/30/2021] [Indexed: 12/13/2022]
Affiliation(s)
- Richard A Lewis
- Global Discovery Chemistry, Novartis Pharma AG, Basel, Switzerland.
| |
Collapse
|