1
|
Zhan YF, Meng ZH, Yan CH, Tan M, Khurshid M, Li YJ, Zheng SJ, Wang J. A novel cascade catalysis for one-pot enzymatically modified isoquercitrin (EMIQ) conversion from rutin and sucrose using rationally designed gradient temperature control. Food Chem 2024; 457:140163. [PMID: 38924912 DOI: 10.1016/j.foodchem.2024.140163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024]
Abstract
Enzymatically modified isoquercitrin (EMIQ) is a glyco-chemically modified flavonoid exhibiting notably high biological activity, such as antioxidant, anti-inflammatory and anti-allergic properties. However, the utilization of expensive substrates such as isoquercitrin and cyclodextrin in the conventional approach has hindered the industrial-scale production of EMIQ due to high cost and low yields. Hence, the development of a cost-effective and efficient method is crucial for the biological synthesis of EMIQ. In this study, a natural cascade catalytic reaction system was constructed with α-L-rhamnosidase and amylosucrase using the inexpensive substrates rutin and sucrose. Additionally, a novel approach integrating gradient temperature regulation into biological cascade reactions was implemented. Under the optimal conditions, the rutin conversion reached a remarkable 95.39% at 24 h. Meanwhile, the productivity of quercetin-3-O-tetraglucoside with the best bioavailability reached an impressive 41.69%. This study presents promising prospects for future mass production of EMIQ directly prepared from rutin and sucrose.
Collapse
Affiliation(s)
- Yu-Fan Zhan
- School of Biotechnology & School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, PR China
| | - Zhuo-Hao Meng
- School of Biotechnology & School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, PR China
| | - Cheng-Hai Yan
- School of Biotechnology & School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, PR China
| | - Min Tan
- School of Biotechnology & School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, PR China
| | - Marriam Khurshid
- School of Biotechnology & School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, PR China
| | - Yi-Jiangcheng Li
- School of Biotechnology & School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, PR China
| | - Shao-Jun Zheng
- School of Biotechnology & School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, PR China
| | - Jun Wang
- School of Biotechnology & School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, PR China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212100, PR China.
| |
Collapse
|
2
|
dos Santos A, da Costa CHS, Silva PHA, Skaf MS, Lameira J. Exploring the Reaction Mechanism of Polyethylene Terephthalate Biodegradation through QM/MM Approach. J Phys Chem B 2024; 128:7486-7499. [PMID: 39072475 PMCID: PMC11317977 DOI: 10.1021/acs.jpcb.4c02207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/06/2024] [Accepted: 07/16/2024] [Indexed: 07/30/2024]
Abstract
The enzyme PETase fromIdeonella sakaiensis (IsPETase) strain 201-F6 can catalyze the hydrolysis of polyethylene terephthalate (PET), mainly converting it into mono(2-hydroxyethyl) terephthalic acid (MHET). In this study, we used quantum mechanics/molecular mechanics (QM/MM) simulations to explore the molecular details of the catalytic reaction mechanism of IsPETase in the formation of MHET. The QM region was described with AM1d/PhoT and M06-2X/6-31+G(d,p) potential. QM/MM simulations unveil the complete enzymatic PET hydrolysis mechanism and identify two possible reaction pathways for acylation and deacylation steps. The barrier obtained at M06-2X/6-31+G(d,p)/MM potential for the deacylation step corresponds to 20.4 kcal/mol, aligning with the experimental value of 18 kcal/mol. Our findings indicate that deacylation is the rate-limiting step of the process. Furthermore, per-residue interaction energy contributions revealed unfavorable contributions to the transition state of amino acids located at positions 200-230, suggesting potential sites for targeted mutations. These results can contribute to the development of more active and selective enzymes for PET depolymerization.
Collapse
Affiliation(s)
- Alberto
M. dos Santos
- Institute
of Chemistry and Centre for Computer in Engineering and Sciences, University of Campinas (UNICAMP), Campinas 13084-862, Sao Paulo, Brazil
| | - Clauber H. S. da Costa
- Institute
of Chemistry and Centre for Computer in Engineering and Sciences, University of Campinas (UNICAMP), Campinas 13084-862, Sao Paulo, Brazil
| | - Pedro H. A. Silva
- Institute
of Biological Sciences, Federal University
of Para, 66075-110 Belem, Para, Brazil
| | - Munir S. Skaf
- Institute
of Chemistry and Centre for Computer in Engineering and Sciences, University of Campinas (UNICAMP), Campinas 13084-862, Sao Paulo, Brazil
| | - Jerônimo Lameira
- Institute
of Biological Sciences, Federal University
of Para, 66075-110 Belem, Para, Brazil
| |
Collapse
|
3
|
Mó O, Montero-Campillo MM, Yáñez M, Alkorta I, Elguero J. Discovering trends in the Lewis acidity of beryllium and magnesium hydrides and fluorides with increasing clusters size. J Comput Chem 2024; 45:1702-1715. [PMID: 38567760 DOI: 10.1002/jcc.27356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/13/2024] [Accepted: 03/18/2024] [Indexed: 06/13/2024]
Abstract
We have reported in the last years the strong effect that Be- and Mg-containing Lewis acids have on the intrinsic properties of typical bases, which become acids upon complexation. In an effort to investigate these changes when the Be and Mg derivatives form clusters of increasing size, we have examined the behavior of the (MX2)n (M = Be, Mg; X = H, F; n = 1, 2, 3) clusters when they interact with ammonia, methanimine, hydrogen cyanide and pyridine, and with their corresponding deprotonated forms. The complexes obtained at the M06-2X/aug-cc-pVTZ level were analyzed using the MBIE energy decomposition formalism, in parallel with QTAIM, ELF, NCIPLOT and AdNDP analyses of their electron density. For n = 1 the interaction enthalpy for the different families of monomers, Be (Mg) hydrides and Be (Mg) fluorides, follows the same trend as the intrinsic basicity of the base that interacts with them. This interaction is greatly reinforced after the deprotonation of the base, resulting in a significant enhancement of the intrinsic acidity of the corresponding MX2-Base complex. For (MX2)2 clusters a further reinforcement of the interaction with the base is observed, this reinforcement being again larger for the deprotonated complexes. However, the concomitant increase of their intrinsic acidity is one order of magnitude larger for hydrides than for fluorides. Unexpectedly, the cyclic conformers (MX2)3, which are more unstable than the linear ones, become the global minima after association with the base and the same is true for the deprotonated complex. Accordingly, a further increase of the intrinsic acidity of the (MX2)3-Base complexes with respect to the (MX2)2-Base ones is observed. This effect is maximum for (MgF2)3 clusters, to the point that the (MgF2)3-Base complexes become more acidic than nitric acid, the extreme case being the cluster (MgF2)3-NCH, whose acidity is higher than that of perchloric acid.
Collapse
Affiliation(s)
- Otilia Mó
- Departamento de Química, Módulo 13, Facultad de Ciencias, and Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid, Spain
| | - M Merced Montero-Campillo
- Departamento de Química, Módulo 13, Facultad de Ciencias, and Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid, Spain
| | - Manuel Yáñez
- Departamento de Química, Módulo 13, Facultad de Ciencias, and Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid, Spain
| | - Ibon Alkorta
- Instituto de Química Médica, IQM-CSIC, Madrid, Spain
| | - José Elguero
- Instituto de Química Médica, IQM-CSIC, Madrid, Spain
| |
Collapse
|
4
|
Gallegos M, Vassilev-Galindo V, Poltavsky I, Martín Pendás Á, Tkatchenko A. Explainable chemical artificial intelligence from accurate machine learning of real-space chemical descriptors. Nat Commun 2024; 15:4345. [PMID: 38773090 PMCID: PMC11522690 DOI: 10.1038/s41467-024-48567-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 04/24/2024] [Indexed: 05/23/2024] Open
Abstract
Machine-learned computational chemistry has led to a paradoxical situation in which molecular properties can be accurately predicted, but they are difficult to interpret. Explainable AI (XAI) tools can be used to analyze complex models, but they are highly dependent on the AI technique and the origin of the reference data. Alternatively, interpretable real-space tools can be employed directly, but they are often expensive to compute. To address this dilemma between explainability and accuracy, we developed SchNet4AIM, a SchNet-based architecture capable of dealing with local one-body (atomic) and two-body (interatomic) descriptors. The performance of SchNet4AIM is tested by predicting a wide collection of real-space quantities ranging from atomic charges and delocalization indices to pairwise interaction energies. The accuracy and speed of SchNet4AIM breaks the bottleneck that has prevented the use of real-space chemical descriptors in complex systems. We show that the group delocalization indices, arising from our physically rigorous atomistic predictions, provide reliable indicators of supramolecular binding events, thus contributing to the development of Explainable Chemical Artificial Intelligence (XCAI) models.
Collapse
Affiliation(s)
- Miguel Gallegos
- Department of Analytical and Physical Chemistry, University of Oviedo, E-33006, Oviedo, Spain
| | | | - Igor Poltavsky
- Department of Physics and Materials Science, University of Luxembourg, L-1511, Luxembourg City, Luxembourg
| | - Ángel Martín Pendás
- Department of Analytical and Physical Chemistry, University of Oviedo, E-33006, Oviedo, Spain.
| | - Alexandre Tkatchenko
- Department of Physics and Materials Science, University of Luxembourg, L-1511, Luxembourg City, Luxembourg.
| |
Collapse
|
5
|
Xiong X, Friedman R, Wu W, Su P. QM/MM-Based Energy Decomposition Analysis Method for Large Systems. J Phys Chem A 2024. [PMID: 38687960 DOI: 10.1021/acs.jpca.4c00183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
In this work, a QM/MM-based EDA method, called GKS-EDA(QM/MM), is proposed. As an extension of GKS-EDA, this scheme divides the total interaction energy into electrostatic, exchange-repulsion, polarization, and correlation/dispersion terms. GKS-EDA(QM/MM) can be applied to describe the interactions of large-scale systems combined with various QM/MM platforms. By using the examples of a hydrated hydronium ion complex in water solution, the barnase-barstar complex, and MMP-13-pyrimidinetrione in a metalloprotein, the capability of GKS-EDA(QM/MM) for various interactions in large systems is validated.
Collapse
Affiliation(s)
- Xuewei Xiong
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| | - Ran Friedman
- Department of Chemistry and Biomedical Sciences, Linnaeus University, 39182 Kalmar, Sweden
| | - Wei Wu
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| | - Peifeng Su
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| |
Collapse
|
6
|
Pérez-Barcia Á, Cárdenas G, Nogueira JJ, Mandado M. Effect of the QM Size, Basis Set, and Polarization on QM/MM Interaction Energy Decomposition Analysis. J Chem Inf Model 2023; 63:882-897. [PMID: 36661314 PMCID: PMC9930123 DOI: 10.1021/acs.jcim.2c01184] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Herein, an Energy Decomposition Analysis (EDA) scheme extended to the framework of QM/MM calculations in the context of electrostatic embeddings (QM/MM-EDA) including atomic charges and dipoles is applied to assess the effect of the QM region size on the convergence of the different interaction energy components, namely, electrostatic, Pauli, and polarization, for cationic, anionic, and neutral systems interacting with a strong polar environment (water). Significant improvements are found when the bulk solvent environment is described by a MM potential in the EDA scheme as compared to pure QM calculations that neglect bulk solvation. The predominant electrostatic interaction requires sizable QM regions. The results reported here show that it is necessary to include a surprisingly large number of water molecules in the QM region to obtain converged values for this energy term, contrary to most cluster models often employed in the literature. Both the improvement of the QM wave function by means of a larger basis set and the introduction of polarization into the MM region through a polarizable force field do not translate to a faster convergence with the QM region size, but they lead to better results for the different interaction energy components. The results obtained in this work provide insight into the effect of each energy component on the convergence of the solute-solvent interaction energy with the QM region size. This information can be used to improve the MM FFs and embedding schemes employed in QM/MM calculations of solvated systems.
Collapse
Affiliation(s)
- Álvaro Pérez-Barcia
- Department
of Physical Chemistry, University of Vigo, Lagoas-Marcosende s\n, ES-36310-Vigo, Galicia, Spain
| | - Gustavo Cárdenas
- Department
of Chemistry, Universidad Autónoma
de Madrid, 28049, Madrid, Spain
| | - Juan J. Nogueira
- Department
of Chemistry, Universidad Autónoma
de Madrid, 28049, Madrid, Spain,Institute
for Advanced Research in Chemistry (IAdChem), Universidad Autónoma de Madrid, 28049Madrid, Spain,E-mail:
| | - Marcos Mandado
- Department
of Physical Chemistry, University of Vigo, Lagoas-Marcosende s\n, ES-36310-Vigo, Galicia, Spain,E-mail:
| |
Collapse
|
7
|
The IQA Energy Partition in a Drug Design Setting: A Hepatitis C Virus RNA-Dependent RNA Polymerase (NS5B) Case Study. Pharmaceuticals (Basel) 2022; 15:ph15101237. [PMID: 36297349 PMCID: PMC9609620 DOI: 10.3390/ph15101237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/30/2022] [Accepted: 10/01/2022] [Indexed: 11/05/2022] Open
Abstract
The interaction of the thumb site II of the NS5B protein of hepatitis C virus and a pair of drug candidates was studied using a topological energy decomposition method called interacting quantum atoms (IQA). The atomic energies were then processed by the relative energy gradient (REG) method, which extracts chemical insight by computation based on minimal assumptions. REG reveals the most important IQA energy contributions, by atom and energy type (electrostatics, sterics, and exchange–correlation), that are responsible for the behaviour of the whole system, systematically from a short-range ligand–pocket interaction until a distance of approximately 22 Å. The degree of covalency in various key interatomic interactions can be quantified. No exchange–correlation contribution is responsible for the changes in the energy profile of both pocket–ligand systems investigated in the ligand–pocket distances equal to or greater than that of the global minimum. Regarding the hydrogen bonds in the system, a “neighbour effect” was observed thanks to the REG method, which states that a carbon atom would rather not have its covalent neighbour oxygen form a hydrogen bond. The combination of IQA and REG enables the automatic identification of the pharmacophore in the ligands. The coarser Interacting Quantum Fragments (IQF) enables the determination of which amino acids of the pocket contribute most to the binding and the type of energy of said binding. This work is an example of the contribution topological energy decomposition methods can make to fragment-based drug design.
Collapse
|
8
|
Fernandes HS, Cerqueira NMFSA, Sousa SF, Melo A. A Molecular Mechanics Energy Partitioning Software for Biomolecular Systems. Molecules 2022; 27:molecules27175524. [PMID: 36080291 PMCID: PMC9458121 DOI: 10.3390/molecules27175524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/18/2022] [Accepted: 08/23/2022] [Indexed: 11/29/2022] Open
Abstract
The partitioning of the molecular mechanics (MM) energy in calculations involving biomolecular systems is important to identify the source of major stabilizing interactions, e.g., in ligand–protein interactions, or to identify residues with considerable contributions in hybrid multiscale calculations, i.e., quantum mechanics/molecular mechanics (QM/MM). Here, we describe Energy Split, a software program to calculate MM energy partitioning considering the AMBER Hamiltonian and parameters. Energy Split includes a graphical interface plugin for VMD to facilitate the selection of atoms and molecules belonging to each part of the system. Energy Split is freely available at or can be easily installed through the VMD Store.
Collapse
Affiliation(s)
- Henrique S. Fernandes
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
- UCIBIO–Applied Molecular Biosciences Unit, BioSIM—Departamento de Biomedicina, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
| | - Nuno M. F. S. A. Cerqueira
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
- UCIBIO–Applied Molecular Biosciences Unit, BioSIM—Departamento de Biomedicina, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
| | - Sérgio F. Sousa
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
- UCIBIO–Applied Molecular Biosciences Unit, BioSIM—Departamento de Biomedicina, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
| | - André Melo
- Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 1021 1055, 4169-007 Porto, Portugal
- Correspondence:
| |
Collapse
|