1
|
Shi W, Yang H, Xie L, Yin XX, Zhang Y. A review of machine learning-based methods for predicting drug-target interactions. Health Inf Sci Syst 2024; 12:30. [PMID: 38617016 PMCID: PMC11014838 DOI: 10.1007/s13755-024-00287-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 03/04/2024] [Indexed: 04/16/2024] Open
Abstract
The prediction of drug-target interactions (DTI) is a crucial preliminary stage in drug discovery and development, given the substantial risk of failure and the prolonged validation period associated with in vitro and in vivo experiments. In the contemporary landscape, various machine learning-based methods have emerged as indispensable tools for DTI prediction. This paper begins by placing emphasis on the data representation employed by these methods, delineating five representations for drugs and four for proteins. The methods are then categorized into traditional machine learning-based approaches and deep learning-based ones, with a discussion of representative approaches in each category and the introduction of a novel taxonomy for deep neural network models in DTI prediction. Additionally, we present a synthesis of commonly used datasets and evaluation metrics to facilitate practical implementation. In conclusion, we address current challenges and outline potential future directions in this research field.
Collapse
Affiliation(s)
- Wen Shi
- Cyberspace Institute of Advanced Technology, Guangzhou University, Guangzhou, 510006 China
- School of Computer Science and Technology, Zhejiang Normal University, Jinhua, 321004 China
| | - Hong Yang
- Cyberspace Institute of Advanced Technology, Guangzhou University, Guangzhou, 510006 China
| | - Linhai Xie
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing, 102206 China
| | - Xiao-Xia Yin
- Cyberspace Institute of Advanced Technology, Guangzhou University, Guangzhou, 510006 China
| | - Yanchun Zhang
- School of Computer Science and Technology, Zhejiang Normal University, Jinhua, 321004 China
- Department of New Networks, Peng Cheng Laboratory, Shenzhen, 518000 China
| |
Collapse
|
2
|
Mohamed Abdul Cader J, Newton MAH, Rahman J, Mohamed Abdul Cader AJ, Sattar A. Ensembling methods for protein-ligand binding affinity prediction. Sci Rep 2024; 14:24447. [PMID: 39424851 PMCID: PMC11489440 DOI: 10.1038/s41598-024-72784-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 09/10/2024] [Indexed: 10/21/2024] Open
Abstract
Protein-ligand binding affinity prediction is a key element of computer-aided drug discovery. Most of the existing deep learning methods for protein-ligand binding affinity prediction utilize single models and suffer from low accuracy and generalization capability. In this paper, we train 13 deep learning models from combinations of 5 input features. Then, we explore all possible ensembles of the trained models to find the best ensembles. Our deep learning models use cross-attention and self-attention layers to extract short and long-range interactions. Our method is named Ensemble Binding Affinity (EBA). EBA extracts information from various models using different combinations of input features, such as simple 1D sequential and structural features of the protein-ligand complexes rather than 3D complex features. EBA is implemented to accurately predict the binding affinity of a protein-ligand complex. One of our ensembles achieves the highest Pearson correlation coefficient (R) value of 0.914 and the lowest root mean square error (RMSE) value of 0.957 on the well-known benchmark test set CASF2016. Our ensembles show significant improvements of more than 15% in R-value and 19% in RMSE on both well-known benchmark CSAR-HiQ test sets over the second-best predictor named CAPLA. Furthermore, the superior performance of the ensembles across all metrics compared to existing state-of-the-art protein-ligand binding affinity prediction methods on all five benchmark test datasets demonstrates the effectiveness and robustness of our approach. Therefore, our approach to improving binding affinity prediction between proteins and ligands can contribute to improving the success rate of potential drugs and accelerate the drug development process.
Collapse
Affiliation(s)
- Jiffriya Mohamed Abdul Cader
- School of Information and Communication Technology, Griffith University, Nathan Campus, Australia.
- Department of IT, Sri Lanka Institute of Advanced Technological Education, Colombo, Sri Lanka.
| | - M A Hakim Newton
- Institute for Integrated and Intelligent Systems (IIIS), Griffith University, Nathan Campus, Australia
- School of Information and Physical Sciences, The University of Newcastle, Callaghan, Australia
| | - Julia Rahman
- School of Information and Communication Technology, Griffith University, Nathan Campus, Australia
- Department of Computer Science and Engineering, Rajshahi University of Engineering and Technology, Rajshahi, Bangladesh
| | | | - Abdul Sattar
- School of Information and Communication Technology, Griffith University, Nathan Campus, Australia
- Institute for Integrated and Intelligent Systems (IIIS), Griffith University, Nathan Campus, Australia
| |
Collapse
|
3
|
Li MM, Huang Y, Sumathipala M, Liang MQ, Valdeolivas A, Ananthakrishnan AN, Liao K, Marbach D, Zitnik M. Contextual AI models for single-cell protein biology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.18.549602. [PMID: 37503080 PMCID: PMC10370131 DOI: 10.1101/2023.07.18.549602] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Understanding protein function and developing molecular therapies require deciphering the cell types in which proteins act as well as the interactions between proteins. However, modeling protein interactions across biological contexts remains challenging for existing algorithms. Here, we introduce Pinnacle, a geometric deep learning approach that generates context-aware protein representations. Leveraging a multi-organ single-cell atlas, Pinnacle learns on contextualized protein interaction networks to produce 394,760 protein representations from 156 cell type contexts across 24 tissues. Pinnacle's embedding space reflects cellular and tissue organization, enabling zero-shot retrieval of the tissue hierarchy. Pretrained protein representations can be adapted for downstream tasks: enhancing 3D structure-based representations for resolving immuno-oncological protein interactions, and investigating drugs' effects across cell types. Pinnacle outperforms state-of-the-art models in nominating therapeutic targets for rheumatoid arthritis and inflammatory bowel diseases, and pinpoints cell type contexts with higher predictive capability than context-free models. Pinnacle's ability to adjust its outputs based on the context in which it operates paves way for large-scale context-specific predictions in biology.
Collapse
Affiliation(s)
- Michelle M. Li
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Yepeng Huang
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Marissa Sumathipala
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Man Qing Liang
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Alberto Valdeolivas
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Ashwin N. Ananthakrishnan
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
| | - Katherine Liao
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital, Boston, MA, USA
| | - Daniel Marbach
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Marinka Zitnik
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Kempner Institute for the Study of Natural and Artificial Intelligence, Harvard University, Allston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Data Science Initiative, Cambridge, MA, USA
| |
Collapse
|
4
|
Wu H, Liu J, Zhang R, Lu Y, Cui G, Cui Z, Ding Y. A review of deep learning methods for ligand based drug virtual screening. FUNDAMENTAL RESEARCH 2024; 4:715-737. [PMID: 39156568 PMCID: PMC11330120 DOI: 10.1016/j.fmre.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/10/2024] [Accepted: 02/18/2024] [Indexed: 08/20/2024] Open
Abstract
Drug discovery is costly and time consuming, and modern drug discovery endeavors are progressively reliant on computational methodologies, aiming to mitigate temporal and financial expenditures associated with the process. In particular, the time required for vaccine and drug discovery is prolonged during emergency situations such as the coronavirus 2019 pandemic. Recently, the performance of deep learning methods in drug virtual screening has been particularly prominent. It has become a concern for researchers how to summarize the existing deep learning in drug virtual screening, select different models for different drug screening problems, exploit the advantages of deep learning models, and further improve the capability of deep learning in drug virtual screening. This review first introduces the basic concepts of drug virtual screening, common datasets, and data representation methods. Then, large numbers of common deep learning methods for drug virtual screening are compared and analyzed. In addition, a dataset of different sizes is constructed independently to evaluate the performance of each deep learning model for the difficult problem of large-scale ligand virtual screening. Finally, the existing challenges and future directions in the field of virtual screening are presented.
Collapse
Affiliation(s)
- Hongjie Wu
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Junkai Liu
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Runhua Zhang
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yaoyao Lu
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Guozeng Cui
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Zhiming Cui
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yijie Ding
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou 324000, China
| |
Collapse
|
5
|
Nguyen VTD, Hy TS. Multimodal pretraining for unsupervised protein representation learning. Biol Methods Protoc 2024; 9:bpae043. [PMID: 38983679 PMCID: PMC11233121 DOI: 10.1093/biomethods/bpae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/30/2024] [Accepted: 06/12/2024] [Indexed: 07/11/2024] Open
Abstract
Proteins are complex biomolecules essential for numerous biological processes, making them crucial targets for advancements in molecular biology, medical research, and drug design. Understanding their intricate, hierarchical structures, and functions is vital for progress in these fields. To capture this complexity, we introduce Multimodal Protein Representation Learning (MPRL), a novel framework for symmetry-preserving multimodal pretraining that learns unified, unsupervised protein representations by integrating primary and tertiary structures. MPRL employs Evolutionary Scale Modeling (ESM-2) for sequence analysis, Variational Graph Auto-Encoders (VGAE) for residue-level graphs, and PointNet Autoencoder (PAE) for 3D point clouds of atoms, each designed to capture the spatial and evolutionary intricacies of proteins while preserving critical symmetries. By leveraging Auto-Fusion to synthesize joint representations from these pretrained models, MPRL ensures robust and comprehensive protein representations. Our extensive evaluation demonstrates that MPRL significantly enhances performance in various tasks such as protein-ligand binding affinity prediction, protein fold classification, enzyme activity identification, and mutation stability prediction. This framework advances the understanding of protein dynamics and facilitates future research in the field. Our source code is publicly available at https://github.com/HySonLab/Protein_Pretrain.
Collapse
Affiliation(s)
| | - Truong Son Hy
- FPT Software AI Center, HCMC, Hanoi, Vietnam
- Department of Mathematics and Computer Science, Indiana State University, Terre Haute, IN, 47809, United States
| |
Collapse
|
6
|
Kairys V, Baranauskiene L, Kazlauskiene M, Zubrienė A, Petrauskas V, Matulis D, Kazlauskas E. Recent advances in computational and experimental protein-ligand affinity determination techniques. Expert Opin Drug Discov 2024; 19:649-670. [PMID: 38715415 DOI: 10.1080/17460441.2024.2349169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 04/25/2024] [Indexed: 05/22/2024]
Abstract
INTRODUCTION Modern drug discovery revolves around designing ligands that target the chosen biomolecule, typically proteins. For this, the evaluation of affinities of putative ligands is crucial. This has given rise to a multitude of dedicated computational and experimental methods that are constantly being developed and improved. AREAS COVERED In this review, the authors reassess both the industry mainstays and the newest trends among the methods for protein - small-molecule affinity determination. They discuss both computational affinity predictions and experimental techniques, describing their basic principles, main limitations, and advantages. Together, this serves as initial guide to the currently most popular and cutting-edge ligand-binding assays employed in rational drug design. EXPERT OPINION The affinity determination methods continue to develop toward miniaturization, high-throughput, and in-cell application. Moreover, the availability of data analysis tools has been constantly increasing. Nevertheless, cross-verification of data using at least two different techniques and careful result interpretation remain of utmost importance.
Collapse
Affiliation(s)
- Visvaldas Kairys
- Department of Bioinformatics, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Lina Baranauskiene
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | | | - Asta Zubrienė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Vytautas Petrauskas
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Daumantas Matulis
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Egidijus Kazlauskas
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
7
|
van Tilborg D, Brinkmann H, Criscuolo E, Rossen L, Özçelik R, Grisoni F. Deep learning for low-data drug discovery: Hurdles and opportunities. Curr Opin Struct Biol 2024; 86:102818. [PMID: 38669740 DOI: 10.1016/j.sbi.2024.102818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024]
Abstract
Deep learning is becoming increasingly relevant in drug discovery, from de novo design to protein structure prediction and synthesis planning. However, it is often challenged by the small data regimes typical of certain drug discovery tasks. In such scenarios, deep learning approaches-which are notoriously 'data-hungry'-might fail to live up to their promise. Developing novel approaches to leverage the power of deep learning in low-data scenarios is sparking great attention, and future developments are expected to propel the field further. This mini-review provides an overview of recent low-data-learning approaches in drug discovery, analyzing their hurdles and advantages. Finally, we venture to provide a forecast of future research directions in low-data learning for drug discovery.
Collapse
Affiliation(s)
- Derek van Tilborg
- Institute for Complex Molecular Systems (ICMS), Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, the Netherlands; Centre for Living Technologies, Alliance TU/e, WUR, UU, UMC Utrecht, Princetonlaan 6, 3584 CB, Utrecht, the Netherlands. https://twitter.com/DerekvTilborg
| | - Helena Brinkmann
- Institute for Complex Molecular Systems (ICMS), Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, the Netherlands. https://twitter.com/hlnbrkmnn
| | - Emanuele Criscuolo
- Institute for Complex Molecular Systems (ICMS), Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, the Netherlands. https://twitter.com/emanuelecriscu9
| | - Luke Rossen
- Institute for Complex Molecular Systems (ICMS), Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, the Netherlands. https://twitter.com/molecular_ml
| | - Rıza Özçelik
- Institute for Complex Molecular Systems (ICMS), Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, the Netherlands; Centre for Living Technologies, Alliance TU/e, WUR, UU, UMC Utrecht, Princetonlaan 6, 3584 CB, Utrecht, the Netherlands. https://twitter.com/Rza_ozcelik
| | - Francesca Grisoni
- Institute for Complex Molecular Systems (ICMS), Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, the Netherlands; Centre for Living Technologies, Alliance TU/e, WUR, UU, UMC Utrecht, Princetonlaan 6, 3584 CB, Utrecht, the Netherlands.
| |
Collapse
|
8
|
Pan F, Yin C, Liu SQ, Huang T, Bian Z, Yuen PC. BindingSiteDTI: differential-scale binding site modelling for drug-target interaction prediction. Bioinformatics 2024; 40:btae308. [PMID: 38730554 PMCID: PMC11256917 DOI: 10.1093/bioinformatics/btae308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/06/2024] [Accepted: 05/09/2024] [Indexed: 05/13/2024] Open
Abstract
MOTIVATION Enhanced by contemporary computational advances, the prediction of drug-target interactions (DTIs) has become crucial in developing de novo and effective drugs. Existing deep learning approaches to DTI prediction are frequently beleaguered by a tendency to overfit specific molecular representations, which significantly impedes their predictive reliability and utility in novel drug discovery contexts. Furthermore, existing DTI networks often disregard the molecular size variance between macro molecules (targets) and micro molecules (drugs) by treating them at an equivalent scale that undermines the accurate elucidation of their interaction. RESULTS We propose a novel DTI network with a differential-scale scheme to model the binding site for enhancing DTI prediction, which is named as BindingSiteDTI. It explicitly extracts multiscale substructures from targets with different scales of molecular size and fixed-scale substructures from drugs, facilitating the identification of structurally similar substructural tokens, and models the concealed relationships at the substructural level to construct interaction feature. Experiments conducted on popular benchmarks, including DUD-E, human, and BindingDB, shown that BindingSiteDTI contains significant improvements compared with recent DTI prediction methods. AVAILABILITY AND IMPLEMENTATION The source code of BindingSiteDTI can be accessed at https://github.com/MagicPF/BindingSiteDTI.
Collapse
Affiliation(s)
- Feng Pan
- Department of Computer Science, Hong Kong Baptist University, Kowloon, 999077, Hong Kong
| | - Chong Yin
- Department of Computer Science, Hong Kong Baptist University, Kowloon, 999077, Hong Kong
| | - Si-Qi Liu
- Department of Computer Science, Hong Kong Baptist University, Kowloon, 999077, Hong Kong
- Shenzhen Research Institute of Big Data, The Chinese University of Hong Kong (Shenzhen), 518172, China
| | - Tao Huang
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, 999077, Hong Kong
| | - Zhaoxiang Bian
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, 999077, Hong Kong
| | - Pong Chi Yuen
- Department of Computer Science, Hong Kong Baptist University, Kowloon, 999077, Hong Kong
| |
Collapse
|
9
|
Gao M, Zhang D, Chen Y, Zhang Y, Wang Z, Wang X, Li S, Guo Y, Webb GI, Nguyen ATN, May L, Song J. GraphormerDTI: A graph transformer-based approach for drug-target interaction prediction. Comput Biol Med 2024; 173:108339. [PMID: 38547658 DOI: 10.1016/j.compbiomed.2024.108339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 03/05/2024] [Accepted: 03/17/2024] [Indexed: 04/17/2024]
Abstract
The application of Artificial Intelligence (AI) to screen drug molecules with potential therapeutic effects has revolutionized the drug discovery process, with significantly lower economic cost and time consumption than the traditional drug discovery pipeline. With the great power of AI, it is possible to rapidly search the vast chemical space for potential drug-target interactions (DTIs) between candidate drug molecules and disease protein targets. However, only a small proportion of molecules have labelled DTIs, consequently limiting the performance of AI-based drug screening. To solve this problem, a machine learning-based approach with great ability to generalize DTI prediction across molecules is desirable. Many existing machine learning approaches for DTI identification failed to exploit the full information with respect to the topological structures of candidate molecules. To develop a better approach for DTI prediction, we propose GraphormerDTI, which employs the powerful Graph Transformer neural network to model molecular structures. GraphormerDTI embeds molecular graphs into vector-format representations through iterative Transformer-based message passing, which encodes molecules' structural characteristics by node centrality encoding, node spatial encoding and edge encoding. With a strong structural inductive bias, the proposed GraphormerDTI approach can effectively infer informative representations for out-of-sample molecules and as such, it is capable of predicting DTIs across molecules with an exceptional performance. GraphormerDTI integrates the Graph Transformer neural network with a 1-dimensional Convolutional Neural Network (1D-CNN) to extract the drugs' and target proteins' representations and leverages an attention mechanism to model the interactions between them. To examine GraphormerDTI's performance for DTI prediction, we conduct experiments on three benchmark datasets, where GraphormerDTI achieves a superior performance than five state-of-the-art baselines for out-of-molecule DTI prediction, including GNN-CPI, GNN-PT, DeepEmbedding-DTI, MolTrans and HyperAttentionDTI, and is on a par with the best baseline for transductive DTI prediction. The source codes and datasets are publicly accessible at https://github.com/mengmeng34/GraphormerDTI.
Collapse
Affiliation(s)
- Mengmeng Gao
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Daokun Zhang
- Department of Data Science and Artificial Intelligence, Faculty of Information Technology, Monash University, Melbourne, Australia.
| | - Yi Chen
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, China.
| | - Yiwen Zhang
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia
| | - Zhikang Wang
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia
| | - Xiaoyu Wang
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia
| | - Shanshan Li
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia
| | - Yuming Guo
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia
| | - Geoffrey I Webb
- Department of Data Science and Artificial Intelligence, Faculty of Information Technology, Monash University, Melbourne, Australia
| | - Anh T N Nguyen
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Lauren May
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Jiangning Song
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia.
| |
Collapse
|
10
|
Hong Q, Zhou G, Qin Y, Shen J, Li H. SadNet: a novel multimodal fusion network for protein-ligand binding affinity prediction. Phys Chem Chem Phys 2024; 26:12880-12891. [PMID: 38625412 DOI: 10.1039/d3cp05664c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Protein-ligand binding affinity prediction plays an important role in the field of drug discovery. Existing deep learning-based approaches have significantly improved the efficiency of protein-ligand binding affinity prediction through their excellent inductive bias capability. However, these methods only focus on fragmented three-dimensional data, which truncates the integrity of pocket data, leading to the neglect of potential long-range interactions. In this paper, we propose a dual-stream framework, with amino acid sequence assisting the atomic data fusion for graph neural network (termed SadNet), to fuse both 3D atomic data and sequence data for more accurate prediction results. In detail, SadNet consists of a pocket module and a sequence module. The sequence module expands the "receptive field" of the pocket module through a mid-term virtual node fusion. To better integrate sequence-level information from the sequence module and 3D structural information from the pocket module, we incorporate structural information for each amino acid within the sequence module. Besides, to better understand the intrinsic relationship between sequences and 3D atomic information, our SadNet utilizes information stacking from both the early stage and later stage. Experimental results on publicly available benchmark datasets demonstrate the superiority of the proposed dual-stream approach over the state-of-the-art alternatives. The code of this work is available online at https://github.com/wardhong/SadNet.
Collapse
Affiliation(s)
- Qiansen Hong
- Nanjing University of Posts and Telecommunications, NanJing, China.
| | - Guoqiang Zhou
- Nanjing University of Posts and Telecommunications, NanJing, China.
| | - Yuke Qin
- Nanjing University of Posts and Telecommunications, NanJing, China.
| | - Jun Shen
- University of Wollongong, Australia
| | | |
Collapse
|
11
|
Ghandikota SK, Jegga AG. Application of artificial intelligence and machine learning in drug repurposing. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 205:171-211. [PMID: 38789178 DOI: 10.1016/bs.pmbts.2024.03.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
The purpose of drug repurposing is to leverage previously approved drugs for a particular disease indication and apply them to another disease. It can be seen as a faster and more cost-effective approach to drug discovery and a powerful tool for achieving precision medicine. In addition, drug repurposing can be used to identify therapeutic candidates for rare diseases and phenotypic conditions with limited information on disease biology. Machine learning and artificial intelligence (AI) methodologies have enabled the construction of effective, data-driven repurposing pipelines by integrating and analyzing large-scale biomedical data. Recent technological advances, especially in heterogeneous network mining and natural language processing, have opened up exciting new opportunities and analytical strategies for drug repurposing. In this review, we first introduce the challenges in repurposing approaches and highlight some success stories, including those during the COVID-19 pandemic. Next, we review some existing computational frameworks in the literature, organized on the basis of the type of biomedical input data analyzed and the computational algorithms involved. In conclusion, we outline some exciting new directions that drug repurposing research may take, as pioneered by the generative AI revolution.
Collapse
Affiliation(s)
- Sudhir K Ghandikota
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Anil G Jegga
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.
| |
Collapse
|
12
|
Jimenes-Vargas K, Pazos A, Munteanu CR, Perez-Castillo Y, Tejera E. Prediction of compound-target interaction using several artificial intelligence algorithms and comparison with a consensus-based strategy. J Cheminform 2024; 16:27. [PMID: 38449058 PMCID: PMC10919000 DOI: 10.1186/s13321-024-00816-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/15/2024] [Indexed: 03/08/2024] Open
Abstract
For understanding a chemical compound's mechanism of action and its side effects, as well as for drug discovery, it is crucial to predict its possible protein targets. This study examines 15 developed target-centric models (TCM) employing different molecular descriptions and machine learning algorithms. They were contrasted with 17 third-party models implemented as web tools (WTCM). In both sets of models, consensus strategies were implemented as potential improvement over individual predictions. The findings indicate that TCM reach f1-score values greater than 0.8. Comparing both approaches, the best TCM achieves values of 0.75, 0.61, 0.25 and 0.38 for true positive/negative rates (TPR, TNR) and false negative/positive rates (FNR, FPR); outperforming the best WTCM. Moreover, the consensus strategy proves to have the most relevant results in the top 20 % of target profiles. TCM consensus reach TPR and FNR values of 0.98 and 0; while on WTCM reach values of 0.75 and 0.24. The implemented computational tool with the TCM and their consensus strategy at: https://bioquimio.udla.edu.ec/tidentification01/ . Scientific Contribution: We compare and discuss the performances of 17 public compound-target interaction prediction models and 15 new constructions. We also explore a compound-target interaction prioritization strategy using a consensus approach, and we analyzed the challenging involved in interactions modeling.
Collapse
Affiliation(s)
- Karina Jimenes-Vargas
- Bio-Cheminformatics Research Group, Universidad de Las Américas, Quito, 170504, Ecuador.
- Departament of Computer Science and Information Technologies, Faculty of Computer Science, Universidade da Coruña, Campus Elviña s/n, 15071, A Coruña, Spain.
| | - Alejandro Pazos
- Departament of Computer Science and Information Technologies, Faculty of Computer Science, Universidade da Coruña, Campus Elviña s/n, 15071, A Coruña, Spain
- CITIC-Research Center of Information and Communication Technologies, Universidade da Coruña, 15071, A Coruña, Spain
- Biomedical Research Institute of A Coruña (INIBIC), University Hospital Complex of A Coruna (CHUAC), 15006, A Coruna, Spain
| | - Cristian R Munteanu
- Departament of Computer Science and Information Technologies, Faculty of Computer Science, Universidade da Coruña, Campus Elviña s/n, 15071, A Coruña, Spain
- CITIC-Research Center of Information and Communication Technologies, Universidade da Coruña, 15071, A Coruña, Spain
- Biomedical Research Institute of A Coruña (INIBIC), University Hospital Complex of A Coruna (CHUAC), 15006, A Coruna, Spain
| | | | - Eduardo Tejera
- Bio-Cheminformatics Research Group, Universidad de Las Américas, Quito, 170504, Ecuador.
| |
Collapse
|
13
|
Gu X, Liu J, Yu Y, Xiao P, Ding Y. MFD-GDrug: multimodal feature fusion-based deep learning for GPCR-drug interaction prediction. Methods 2024; 223:75-82. [PMID: 38286333 DOI: 10.1016/j.ymeth.2024.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/14/2024] [Accepted: 01/26/2024] [Indexed: 01/31/2024] Open
Abstract
The accurate identification of drug-protein interactions (DPIs) is crucial in drug development, especially concerning G protein-coupled receptors (GPCRs), which are vital targets in drug discovery. However, experimental validation of GPCR-drug pairings is costly, prompting the need for accurate predictive methods. To address this, we propose MFD-GDrug, a multimodal deep learning model. Leveraging the ESM pretrained model, we extract protein features and employ a CNN for protein feature representation. For drugs, we integrated multimodal features of drug molecular structures, including three-dimensional features derived from Mol2vec and the topological information of drug graph structures extracted through Graph Convolutional Neural Networks (GCN). By combining structural characterizations and pretrained embeddings, our model effectively captures GPCR-drug interactions. Our tests on leading GPCR-drug interaction datasets show that MFD-GDrug outperforms other methods, demonstrating superior predictive accuracy.
Collapse
Affiliation(s)
- Xingyue Gu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Junkai Liu
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yue Yu
- School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou 450001, China
| | - Pengfeng Xiao
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Yijie Ding
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, Zhejiang 324003, China; Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611730, China.
| |
Collapse
|
14
|
Qi H, Yu T, Yu W, Liu C. Drug-target affinity prediction with extended graph learning-convolutional networks. BMC Bioinformatics 2024; 25:75. [PMID: 38365583 PMCID: PMC10874073 DOI: 10.1186/s12859-024-05698-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 02/12/2024] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND High-performance computing plays a pivotal role in computer-aided drug design, a field that holds significant promise in pharmaceutical research. The prediction of drug-target affinity (DTA) is a crucial stage in this process, potentially accelerating drug development through rapid and extensive preliminary compound screening, while also minimizing resource utilization and costs. Recently, the incorporation of deep learning into DTA prediction and the enhancement of its accuracy have emerged as key areas of interest in the research community. Drugs and targets can be characterized through various methods, including structure-based, sequence-based, and graph-based representations. Despite the progress in structure and sequence-based techniques, they tend to provide limited feature information. Conversely, graph-based approaches have risen to prominence, attracting considerable attention for their comprehensive data representation capabilities. Recent studies have focused on constructing protein and drug molecular graphs using sequences and SMILES, subsequently deriving representations through graph neural networks. However, these graph-based approaches are limited by the use of a fixed adjacent matrix of protein and drug molecular graphs for graph convolution. This limitation restricts the learning of comprehensive feature representations from intricate compound and protein structures, consequently impeding the full potential of graph-based feature representation in DTA prediction. This, in turn, significantly impacts the models' generalization capabilities in the complex realm of drug discovery. RESULTS To tackle these challenges, we introduce GLCN-DTA, a model specifically designed for proficiency in DTA tasks. GLCN-DTA innovatively integrates a graph learning module into the existing graph architecture. This module is designed to learn a soft adjacent matrix, which effectively and efficiently refines the contextual structure of protein and drug molecular graphs. This advancement allows for learning richer structural information from protein and drug molecular graphs via graph convolution, specifically tailored for DTA tasks, compared to the conventional fixed adjacent matrix approach. A series of experiments have been conducted to validate the efficacy of the proposed GLCN-DTA method across diverse scenarios. The results demonstrate that GLCN-DTA possesses advantages in terms of robustness and high accuracy. CONCLUSIONS The proposed GLCN-DTA model enhances DTA prediction performance by introducing a novel framework that synergizes graph learning operations with graph convolution operations, thereby achieving richer representations. GLCN-DTA does not distinguish between different protein classifications, including structurally ordered and intrinsically disordered proteins, focusing instead on improving feature representation. Therefore, its applicability scope may be more effective in scenarios involving structurally ordered proteins, while potentially being limited in contexts with intrinsically disordered proteins.
Collapse
Affiliation(s)
- Haiou Qi
- Nursing Department, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Ting Yu
- Operating Room Department, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
| | - Wenwen Yu
- School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chenxi Liu
- School of Medicine and Health Management, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
15
|
Heifetz A. Accelerating COVID-19 Drug Discovery with High-Performance Computing. Methods Mol Biol 2024; 2716:405-411. [PMID: 37702951 DOI: 10.1007/978-1-0716-3449-3_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
The recent COVID-19 pandemic has served as a timely reminder that the existing drug discovery is a laborious, expensive, and slow process. Never has there been such global demand for a therapeutic treatment to be identified as a matter of such urgency. Unfortunately, this is a scenario likely to repeat itself in future, so it is of interest to explore ways in which to accelerate drug discovery at pandemic speed. Computational methods naturally lend themselves to this because they can be performed rapidly if sufficient computational resources are available. Recently, high-performance computing (HPC) technologies have led to remarkable achievements in computational drug discovery and yielded a series of new platforms, algorithms, and workflows. The application of artificial intelligence (AI) and machine learning (ML) approaches is also a promising and relatively new avenue to revolutionize the drug design process and therefore reduce costs. In this review, I describe how molecular dynamics simulations (MD) were successfully integrated with ML and adapted to HPC to form a powerful tool to study inhibitors for four of the COVID-19 target proteins. The emphasis of this review is on the strategy that was used with an explanation of each of the steps in the accelerated drug discovery workflow. For specific technical details, the reader is directed to the relevant research publications.
Collapse
|
16
|
Wu H, Liu J, Jiang T, Zou Q, Qi S, Cui Z, Tiwari P, Ding Y. AttentionMGT-DTA: A multi-modal drug-target affinity prediction using graph transformer and attention mechanism. Neural Netw 2024; 169:623-636. [PMID: 37976593 DOI: 10.1016/j.neunet.2023.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/29/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
The accurate prediction of drug-target affinity (DTA) is a crucial step in drug discovery and design. Traditional experiments are very expensive and time-consuming. Recently, deep learning methods have achieved notable performance improvements in DTA prediction. However, one challenge for deep learning-based models is appropriate and accurate representations of drugs and targets, especially the lack of effective exploration of target representations. Another challenge is how to comprehensively capture the interaction information between different instances, which is also important for predicting DTA. In this study, we propose AttentionMGT-DTA, a multi-modal attention-based model for DTA prediction. AttentionMGT-DTA represents drugs and targets by a molecular graph and binding pocket graph, respectively. Two attention mechanisms are adopted to integrate and interact information between different protein modalities and drug-target pairs. The experimental results showed that our proposed model outperformed state-of-the-art baselines on two benchmark datasets. In addition, AttentionMGT-DTA also had high interpretability by modeling the interaction strength between drug atoms and protein residues. Our code is available at https://github.com/JK-Liu7/AttentionMGT-DTA.
Collapse
Affiliation(s)
- Hongjie Wu
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Junkai Liu
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; Yangtze Delta Region Institute(Quzhou), University of Electronic Science and Technology of China, Quzhou, 324003, China.
| | - Tengsheng Jiang
- Gusu School, Nanjing Medical University, Suzhou, 215009, China.
| | - Quan Zou
- Yangtze Delta Region Institute(Quzhou), University of Electronic Science and Technology of China, Quzhou, 324003, China.
| | - Shujie Qi
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Zhiming Cui
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Prayag Tiwari
- School of Information Technology, Halmstad University, Sweden.
| | - Yijie Ding
- Yangtze Delta Region Institute(Quzhou), University of Electronic Science and Technology of China, Quzhou, 324003, China.
| |
Collapse
|
17
|
Chen J, Gu Z, Lai L, Pei J. In silico protein function prediction: the rise of machine learning-based approaches. MEDICAL REVIEW (2021) 2023; 3:487-510. [PMID: 38282798 PMCID: PMC10808870 DOI: 10.1515/mr-2023-0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/11/2023] [Indexed: 01/30/2024]
Abstract
Proteins function as integral actors in essential life processes, rendering the realm of protein research a fundamental domain that possesses the potential to propel advancements in pharmaceuticals and disease investigation. Within the context of protein research, an imperious demand arises to uncover protein functionalities and untangle intricate mechanistic underpinnings. Due to the exorbitant costs and limited throughput inherent in experimental investigations, computational models offer a promising alternative to accelerate protein function annotation. In recent years, protein pre-training models have exhibited noteworthy advancement across multiple prediction tasks. This advancement highlights a notable prospect for effectively tackling the intricate downstream task associated with protein function prediction. In this review, we elucidate the historical evolution and research paradigms of computational methods for predicting protein function. Subsequently, we summarize the progress in protein and molecule representation as well as feature extraction techniques. Furthermore, we assess the performance of machine learning-based algorithms across various objectives in protein function prediction, thereby offering a comprehensive perspective on the progress within this field.
Collapse
Affiliation(s)
- Jiaxiao Chen
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Zhonghui Gu
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Luhua Lai
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Research Unit of Drug Design Method, Chinese Academy of Medical Sciences (2021RU014), Beijing, China
| | - Jianfeng Pei
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Research Unit of Drug Design Method, Chinese Academy of Medical Sciences (2021RU014), Beijing, China
| |
Collapse
|
18
|
Song N, Dong R, Pu Y, Wang E, Xu J, Guo F. Pmf-cpi: assessing drug selectivity with a pretrained multi-functional model for compound-protein interactions. J Cheminform 2023; 15:97. [PMID: 37838703 PMCID: PMC10576287 DOI: 10.1186/s13321-023-00767-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/28/2023] [Indexed: 10/16/2023] Open
Abstract
Compound-protein interactions (CPI) play significant roles in drug development. To avoid side effects, it is also crucial to evaluate drug selectivity when binding to different targets. However, most selectivity prediction models are constructed for specific targets with limited data. In this study, we present a pretrained multi-functional model for compound-protein interaction prediction (PMF-CPI) and fine-tune it to assess drug selectivity. This model uses recurrent neural networks to process the protein embedding based on the pretrained language model TAPE, extracts molecular information from a graph encoder, and produces the output from dense layers. PMF-CPI obtained the best performance compared to outstanding approaches on both the binding affinity regression and CPI classification tasks. Meanwhile, we apply the model to analyzing drug selectivity after fine-tuning it on three datasets related to specific targets, including human cytochrome P450s. The study shows that PMF-CPI can accurately predict different drug affinities or opposite interactions toward similar targets, recognizing selective drugs for precise therapeutics.Kindly confirm if corresponding authors affiliations are identified correctly and amend if any.Yes, it is correct.
Collapse
Affiliation(s)
- Nan Song
- School of New Media and Communication, Tianjin University, Tianjin, Tianjin, 300072, China
- College of Intelligence and Computing, Tianjin University, Tianjin, Tianjin, 300350, China
| | - Ruihan Dong
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, Beijing, 100871, China
| | - Yuqian Pu
- College of Intelligence and Computing, Tianjin University, Tianjin, Tianjin, 300350, China
| | - Ercheng Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
- Zhejiang Laboratory, Hangzhou, 311100, Zhejiang, China.
| | - Junhai Xu
- School of New Media and Communication, Tianjin University, Tianjin, Tianjin, 300072, China.
- College of Intelligence and Computing, Tianjin University, Tianjin, Tianjin, 300350, China.
| | - Fei Guo
- School of Computer Science and Engineering, Central South University, Changsha, 410083, Hunan, China.
| |
Collapse
|
19
|
Hagg A, Kirschner KN. Open-Source Machine Learning in Computational Chemistry. J Chem Inf Model 2023; 63:4505-4532. [PMID: 37466636 PMCID: PMC10430767 DOI: 10.1021/acs.jcim.3c00643] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Indexed: 07/20/2023]
Abstract
The field of computational chemistry has seen a significant increase in the integration of machine learning concepts and algorithms. In this Perspective, we surveyed 179 open-source software projects, with corresponding peer-reviewed papers published within the last 5 years, to better understand the topics within the field being investigated by machine learning approaches. For each project, we provide a short description, the link to the code, the accompanying license type, and whether the training data and resulting models are made publicly available. Based on those deposited in GitHub repositories, the most popular employed Python libraries are identified. We hope that this survey will serve as a resource to learn about machine learning or specific architectures thereof by identifying accessible codes with accompanying papers on a topic basis. To this end, we also include computational chemistry open-source software for generating training data and fundamental Python libraries for machine learning. Based on our observations and considering the three pillars of collaborative machine learning work, open data, open source (code), and open models, we provide some suggestions to the community.
Collapse
Affiliation(s)
- Alexander Hagg
- Institute
of Technology, Resource and Energy-Efficient Engineering (TREE), University of Applied Sciences Bonn-Rhein-Sieg, 53757 Sankt Augustin, Germany
- Department
of Electrical Engineering, Mechanical Engineering and Technical Journalism, University of Applied Sciences Bonn-Rhein-Sieg, 53757 Sankt Augustin, Germany
| | - Karl N. Kirschner
- Institute
of Technology, Resource and Energy-Efficient Engineering (TREE), University of Applied Sciences Bonn-Rhein-Sieg, 53757 Sankt Augustin, Germany
- Department
of Computer Science, University of Applied
Sciences Bonn-Rhein-Sieg, 53757 Sankt Augustin, Germany
| |
Collapse
|
20
|
Li L, Zhao Y, Yu H, Wang Z, Zhao Y, Jiang M. An XGBoost Algorithm Based on Molecular Structure and Molecular Specificity Parameters for Predicting Gas Adsorption. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:6756-6766. [PMID: 37130050 DOI: 10.1021/acs.langmuir.3c00255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In this paper, an improved Extreme Gradient Boosting (XGBoost) algorithm based on the Graph Isomorphic Network (GIN) for predicting the adsorption performance of metal-organic frameworks (MOFs) is developed. It is shown that the graph isomorphic layer of this algorithm can directly learn the feature representation of materials from the connection of atoms in MOFs. Then, XGBoost can be used to predict the adsorption performance of MOFs based on feature representation. In this sense, it is not only possible to achieve end-to-end prediction directly from the structure of MOFs to adsorption performance but also to ensure the accuracy of prediction. The comparison between Grand Canonical Monte Carlo (GCMC) simulation and prediction supports the performance and effectiveness of the proposed algorithm.
Collapse
Affiliation(s)
- Lujun Li
- Department of Automation, University of Science and Technology of China, Hefei 230026, China
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
- Key Laboratory of Networked Control Systems, Chinese Academy of Sciences, Shenyang 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China
| | - Yiming Zhao
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China
| | - Haibin Yu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
- Key Laboratory of Networked Control Systems, Chinese Academy of Sciences, Shenyang 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China
| | - Zhuo Wang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China
| | - Yongjia Zhao
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China
| | - Mingqi Jiang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
21
|
Lu R, Wang J, Li P, Li Y, Tan S, Pan Y, Liu H, Gao P, Xie G, Yao X. Improving drug-target affinity prediction via feature fusion and knowledge distillation. Brief Bioinform 2023; 24:7142721. [PMID: 37099690 DOI: 10.1093/bib/bbad145] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/15/2023] [Accepted: 03/27/2023] [Indexed: 04/28/2023] Open
Abstract
Rapid and accurate prediction of drug-target affinity can accelerate and improve the drug discovery process. Recent studies show that deep learning models may have the potential to provide fast and accurate drug-target affinity prediction. However, the existing deep learning models still have their own disadvantages that make it difficult to complete the task satisfactorily. Complex-based models rely heavily on the time-consuming docking process, and complex-free models lacks interpretability. In this study, we introduced a novel knowledge-distillation insights drug-target affinity prediction model with feature fusion inputs to make fast, accurate and explainable predictions. We benchmarked the model on public affinity prediction and virtual screening dataset. The results show that it outperformed previous state-of-the-art models and achieved comparable performance to previous complex-based models. Finally, we study the interpretability of this model through visualization and find it can provide meaningful explanations for pairwise interaction. We believe this model can further improve the drug-target affinity prediction for its higher accuracy and reliable interpretability.
Collapse
Affiliation(s)
- Ruiqiang Lu
- College of Chemistry and Chemical Engineering, Lanzhou University, 730000 Gansu, China
- Ping An Healthcare Technology, 100027 Beijing, China
| | - Jun Wang
- Ping An Healthcare Technology, 100027 Beijing, China
| | - Pengyong Li
- School of Computer Science and Technology, Xidian University, 710126 Shaanxi, China
| | - Yuquan Li
- College of Chemistry and Chemical Engineering, Lanzhou University, 730000 Gansu, China
| | - Shuoyan Tan
- College of Chemistry and Chemical Engineering, Lanzhou University, 730000 Gansu, China
- Ping An Healthcare Technology, 100027 Beijing, China
| | - Yiting Pan
- College of Chemistry and Chemical Engineering, Lanzhou University, 730000 Gansu, China
| | - Huanxiang Liu
- Faculty of Applied Science, Macao Polytechnic University, 999078 Macau, China
| | - Peng Gao
- Ping An Healthcare Technology, 100027 Beijing, China
| | - Guotong Xie
- Ping An Healthcare Technology, 100027 Beijing, China
- Ping An Health Cloud Company Limited, 100027 Beijing, China
- Ping An International Smart City Technology Co., Ltd., 100027 Beijing, China
| | - Xiaojun Yao
- College of Chemistry and Chemical Engineering, Lanzhou University, 730000 Gansu, China
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, 999078 Macau, China
| |
Collapse
|
22
|
Brinkhaus HO, Rajan K, Schaub J, Zielesny A, Steinbeck C. Open data and algorithms for open science in AI-driven molecular informatics. Curr Opin Struct Biol 2023; 79:102542. [PMID: 36805192 DOI: 10.1016/j.sbi.2023.102542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/10/2023] [Accepted: 01/13/2023] [Indexed: 02/19/2023]
Abstract
Recent years have seen a sharp increase in the development of deep learning and artificial intelligence-based molecular informatics. There has been a growing interest in applying deep learning to several subfields, including the digital transformation of synthetic chemistry, extraction of chemical information from the scientific literature, and AI in natural product-based drug discovery. The application of AI to molecular informatics is still constrained by the fact that most of the data used for training and testing deep learning models are not available as FAIR and open data. As open science practices continue to grow in popularity, initiatives which support FAIR and open data as well as open-source software have emerged. It is becoming increasingly important for researchers in the field of molecular informatics to embrace open science and to submit data and software in open repositories. With the advent of open-source deep learning frameworks and cloud computing platforms, academic researchers are now able to deploy and test their own deep learning models with ease. With the development of new and faster hardware for deep learning and the increasing number of initiatives towards digital research data management infrastructures, as well as a culture promoting open data, open source, and open science, AI-driven molecular informatics will continue to grow. This review examines the current state of open data and open algorithms in molecular informatics, as well as ways in which they could be improved in future.
Collapse
Affiliation(s)
- Henning Otto Brinkhaus
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Lessingstr. 8, 07743 Jena, Germany
| | - Kohulan Rajan
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Lessingstr. 8, 07743 Jena, Germany
| | - Jonas Schaub
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Lessingstr. 8, 07743 Jena, Germany
| | - Achim Zielesny
- Institute for Bioinformatics and Chemoinformatics, Westphalian University of Applied Sciences, August-Schmidt-Ring 10, 45665 Recklinghausen, Germany
| | - Christoph Steinbeck
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Lessingstr. 8, 07743 Jena, Germany.
| |
Collapse
|
23
|
Yue ZX, Yan TC, Xu HQ, Liu YH, Hong YF, Chen GX, Xie T, Tao L. A systematic review on the state-of-the-art strategies for protein representation. Comput Biol Med 2023; 152:106440. [PMID: 36543002 DOI: 10.1016/j.compbiomed.2022.106440] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/08/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
The study of drug-target protein interaction is a key step in drug research. In recent years, machine learning techniques have become attractive for research, including drug research, due to their automated nature, predictive power, and expected efficiency. Protein representation is a key step in the study of drug-target protein interaction by machine learning, which plays a fundamental role in the ultimate accomplishment of accurate research. With the progress of machine learning, protein representation methods have gradually attracted attention and have consequently developed rapidly. Therefore, in this review, we systematically classify current protein representation methods, comprehensively review them, and discuss the latest advances of interest. According to the information extraction methods and information sources, these representation methods are generally divided into structure and sequence-based representation methods. Each primary class can be further divided into specific subcategories. As for the particular representation methods involve both traditional and the latest approaches. This review contains a comprehensive assessment of the various methods which researchers can use as a reference for their specific protein-related research requirements, including drug research.
Collapse
Affiliation(s)
- Zi-Xuan Yue
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
| | - Tian-Ci Yan
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
| | - Hong-Quan Xu
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yu-Hong Liu
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yan-Feng Hong
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
| | - Gong-Xing Chen
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
| | - Tian Xie
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Lin Tao
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China.
| |
Collapse
|
24
|
Dong R, Yang H, Ai C, Duan G, Wang J, Guo F. DeepBLI: A Transferable Multichannel Model for Detecting β-Lactamase-Inhibitor Interaction. J Chem Inf Model 2022; 62:5830-5840. [PMID: 36245217 DOI: 10.1021/acs.jcim.2c01008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pathogens producing β-lactamase pose a great challenge to antibiotic-resistant infection treatment; thus, it is urgent to discover novel β-lactamase inhibitors for drug development. Conventional high-throughput screening is very costly, and structure-based virtual screening is limited with mechanisms. In this study, we construct a novel multichannel deep neural network (DeepBLI) for β-lactamase inhibitor screening, pretrained with a label reversal KIBA data set and fine-tuned on β-lactamase-inhibitor pairs from BindingDB. First, the pairs of encoders (Conv and Att) fuse the information spatially and sequentially for both enzymes and inhibitors. Then, a co-attention module creates the connection between the inhibitor and enzyme embeddings. Finally, multichannel outputs fuse with an element-wise product and then are fed into 3-layer fully connected networks to predict interactions. Comparing the state-of-the-art methods, DeepBLI yields an AUROC of 0.9240 and an AUPRC of 0.9715, which indicates that it can identify new β-lactamase-inhibitor interactions. To demonstrate its prediction ability, an application of DeepBLI is described to screen potential inhibitor compounds for metallo-β-lactamase AIM-1 and repurpose rottlerin for four classes of β-lactamase targets, showing the possibility of being a broad-spectrum inhibitor. DeepBLI provides an effective way for antibacterial drug development, contributing to antibiotic-resistant therapeutics.
Collapse
Affiliation(s)
- Ruihan Dong
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing100871, China
| | - Hongpeng Yang
- Department of Computer Science and Engineering, University of South Carolina, Columbia, South Carolina29208, United States
| | - Chengwei Ai
- College of Intelligence and Computing, Tianjin University, Tianjin300350, China
| | - Guihua Duan
- School of Computer Science and Engineering, Central South University, Changsha410083, China
| | - Jianxin Wang
- School of Computer Science and Engineering, Central South University, Changsha410083, China
| | - Fei Guo
- School of Computer Science and Engineering, Central South University, Changsha410083, China
| |
Collapse
|
25
|
Yuan Q, Chen S, Wang Y, Zhao H, Yang Y. Alignment-free metal ion-binding site prediction from protein sequence through pretrained language model and multi-task learning. Brief Bioinform 2022; 23:6770088. [PMID: 36274238 DOI: 10.1093/bib/bbac444] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 09/02/2022] [Accepted: 09/17/2022] [Indexed: 12/14/2022] Open
Abstract
More than one-third of the proteins contain metal ions in the Protein Data Bank. Correct identification of metal ion-binding residues is important for understanding protein functions and designing novel drugs. Due to the small size and high versatility of metal ions, it remains challenging to computationally predict their binding sites from protein sequence. Existing sequence-based methods are of low accuracy due to the lack of structural information, and time-consuming owing to the usage of multi-sequence alignment. Here, we propose LMetalSite, an alignment-free sequence-based predictor for binding sites of the four most frequently seen metal ions in BioLiP (Zn2+, Ca2+, Mg2+ and Mn2+). LMetalSite leverages the pretrained language model to rapidly generate informative sequence representations and employs transformer to capture long-range dependencies. Multi-task learning is adopted to compensate for the scarcity of training data and capture the intrinsic similarities between different metal ions. LMetalSite was shown to surpass state-of-the-art structure-based methods by more than 19.7, 14.4, 36.8 and 12.6% in area under the precision recall on the four independent tests, respectively. Further analyses indicated that the self-attention modules are effective to learn the structural contexts of residues from protein sequence. We provide the data sets, source codes and trained models of LMetalSite at https://github.com/biomed-AI/LMetalSite.
Collapse
Affiliation(s)
- Qianmu Yuan
- School of Computer Science and Engineering at Sun Yat-sen University, Guangzhou 510000, China
| | - Sheng Chen
- School of Computer Science and Engineering at Sun Yat-sen University, Guangzhou 510000, China
| | - Yu Wang
- Peng Cheng National Laboratory at Shenzhen, Guangzhou 510000, China
| | - Huiying Zhao
- Sun Yat-sen Memorial Hospital at Sun Yat-sen University, Guangzhou 510000, China
| | - Yuedong Yang
- School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou 510000, China, and Key Laboratory of Machine Intelligence and Advanced Computing of MOE, Sun Yat-sen University, Guangzhou 510000, China
| |
Collapse
|