1
|
Pedroni L, Perugino F, Magnaghi F, Dall’Asta C, Galaverna G, Dellafiora L. Free fatty acid receptors beyond fatty acids: A computational journey to explore peptides as possible binders of GPR120. Curr Res Food Sci 2024; 8:100710. [PMID: 38496766 PMCID: PMC10940776 DOI: 10.1016/j.crfs.2024.100710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/07/2024] [Accepted: 03/01/2024] [Indexed: 03/19/2024] Open
Abstract
Free fatty acids receptors, with members among G protein-coupled receptors (GPCRs), are crucial for biological signaling, including the perception of the so called "fatty taste". In recent years, GPR120, a protein belonging to the GPCR family, drew attention as an interesting pharmacological target to cope with obesity, satiety and diabetes. Apart from long chain fatty acids, which are GPR120 natural agonists, other synthetic molecules were identified as agonists expanding the chemical space of GPR120's ligands. In this scenario, we unveiled peptides as possible GPR120 binders toward a better understanding of this multifaceted and relevant target. This study analyzed a virtual library collecting 531 441 low-polar hexapeptides, providing mechanistic insights on the GPR120 activation and further extending the possible chemical space of GPR120 agonists. The computational pipeline started with a narrow filtering of hexapeptides based on their chemical similarity with known GPR120 agonists. The best hits were tested through docking studies, molecular dynamics and umbrella sampling simulations, which pointed to G[I,L]FGGG as a promising GPR120 agonist sequence. The presence of both peptides in food-related proteins was thoroughly assessed, revealing they may occur in mushrooms, food-grade bacteria and rice. Simulations on the counterparts with D-amino acids were also performed. Umbrella sampling simulations described that GdIFGGG may have a better interaction compared to its all-L counterpart (-13 kCal/mol ΔG and -6 kCal/mol ΔG, respectively). Overall, we obtained a predictive model to better understand the underpinning mechanism of GPR120-hexapeptides interaction, hierarchizing novel potential agonist peptides for further analysis and describing promising food sources worth of further dedicated investigations.
Collapse
Affiliation(s)
- Lorenzo Pedroni
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Florinda Perugino
- Department of Food and Drug, University of Parma, Parma, Italy
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Fabio Magnaghi
- Department of Food and Drug, University of Parma, Parma, Italy
| | | | | | - Luca Dellafiora
- Department of Food and Drug, University of Parma, Parma, Italy
| |
Collapse
|
2
|
Chang L, Mondal A, Singh B, Martínez-Noa Y, Perez A. Revolutionizing Peptide-Based Drug Discovery: Advances in the Post-AlphaFold Era. WILEY INTERDISCIPLINARY REVIEWS. COMPUTATIONAL MOLECULAR SCIENCE 2024; 14:e1693. [PMID: 38680429 PMCID: PMC11052547 DOI: 10.1002/wcms.1693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 09/18/2023] [Indexed: 05/01/2024]
Abstract
Peptide-based drugs offer high specificity, potency, and selectivity. However, their inherent flexibility and differences in conformational preferences between their free and bound states create unique challenges that have hindered progress in effective drug discovery pipelines. The emergence of AlphaFold (AF) and Artificial Intelligence (AI) presents new opportunities for enhancing peptide-based drug discovery. We explore recent advancements that facilitate a successful peptide drug discovery pipeline, considering peptides' attractive therapeutic properties and strategies to enhance their stability and bioavailability. AF enables efficient and accurate prediction of peptide-protein structures, addressing a critical requirement in computational drug discovery pipelines. In the post-AF era, we are witnessing rapid progress with the potential to revolutionize peptide-based drug discovery such as the ability to rank peptide binders or classify them as binders/non-binders and the ability to design novel peptide sequences. However, AI-based methods are struggling due to the lack of well-curated datasets, for example to accommodate modified amino acids or unconventional cyclization. Thus, physics-based methods, such as docking or molecular dynamics simulations, continue to hold a complementary role in peptide drug discovery pipelines. Moreover, MD-based tools offer valuable insights into binding mechanisms, as well as the thermodynamic and kinetic properties of complexes. As we navigate this evolving landscape, a synergistic integration of AI and physics-based methods holds the promise of reshaping the landscape of peptide-based drug discovery.
Collapse
Affiliation(s)
- Liwei Chang
- Department of Chemistry, University of Florida, Gainesville, FL 32611
| | - Arup Mondal
- Department of Chemistry, University of Florida, Gainesville, FL 32611
| | - Bhumika Singh
- Department of Chemistry, University of Florida, Gainesville, FL 32611
| | | | - Alberto Perez
- Department of Chemistry and Quantum Theory Project, University of Florida, Gainesville, FL 32611
| |
Collapse
|
3
|
Grupp B, Lemkul JA, Gronemeyer T. An in silico approach to determine inter-subunit affinities in human septin complexes. Cytoskeleton (Hoboken) 2023; 80:141-152. [PMID: 36843207 DOI: 10.1002/cm.21749] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 02/28/2023]
Abstract
The septins are a conserved family of filament-forming guanine nucleotide binding proteins, often named the fourth component of the cytoskeleton. Correctly assembled septin structures are required for essential intracellular processes such as cytokinesis, vesicular transport, polarity establishment, and cellular adhesion. Structurally, septins belong to the P-Loop NTPases but they do not mediate signals to effectors through GTP binding and hydrolysis. GTP binding and hydrolysis are believed to contribute to septin complex integrity, but biochemical approaches addressing this topic are hampered by the stability of septin complexes after recombinant expression and the lack of nucleotide-depleted complexes. To overcome this limitation, we used a molecular dynamics-based approach to determine inter-subunit binding free energies in available human septin dimer structures and in their apo forms, which we generated in silico. The nucleotide in the GTPase active subunits SEPT2 and SEPT7, but not in SEPT6, was identified as a stabilizing element in the G interface. Removal of GDP from SEPT2 and SEPT7 results in flipping of a conserved Arg residue and disruption of an extensive hydrogen bond network in the septin unique element, concomitant with a decreased inter-subunit affinity. Based on these findings we propose a singular "lock-hydrolysis" mechanism stabilizing human septin filaments.
Collapse
Affiliation(s)
- Benjamin Grupp
- Institute of Molecular Genetics and Cell Biology, James Franck Ring N27, Ulm University, Ulm, Germany
| | - Justin A Lemkul
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, USA
| | - Thomas Gronemeyer
- Institute of Molecular Genetics and Cell Biology, James Franck Ring N27, Ulm University, Ulm, Germany
| |
Collapse
|
4
|
Tang R, Wang Z, Xiang S, Wang L, Yu Y, Wang Q, Deng Q, Hou T, Sun H. Uncovering the Kinetic Characteristics and Degradation Preference of PROTAC Systems with Advanced Theoretical Analyses. JACS AU 2023; 3:1775-1789. [PMID: 37388700 PMCID: PMC10301679 DOI: 10.1021/jacsau.3c00195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/16/2023] [Accepted: 05/16/2023] [Indexed: 07/01/2023]
Abstract
Proteolysis-targeting chimeras (PROTACs), which can selectively induce the degradation of target proteins, represent an attractive technology in drug discovery. A large number of PROTACs have been reported, but due to the complicated structural and kinetic characteristics of the target-PROTAC-E3 ligase ternary interaction process, the rational design of PROTACs is still quite challenging. Here, we characterized and analyzed the kinetic mechanism of MZ1, a PROTAC that targets the bromodomain (BD) of the bromodomain and extra terminal (BET) protein (Brd2, Brd3, or Brd4) and von Hippel-Lindau E3 ligase (VHL), from the kinetic and thermodynamic perspectives of view by using enhanced sampling simulations and free energy calculations. The simulations yielded satisfactory predictions on the relative residence time and standard binding free energy (rp > 0.9) for MZ1 in different BrdBD-MZ1-VHL ternary complexes. Interestingly, the simulation of the PROTAC ternary complex disintegration illustrates that MZ1 tends to remain on the surface of VHL with the BD proteins dissociating alone without a specific dissociation direction, indicating that the PROTAC prefers more to bind with E3 ligase at the first step in the formation of the target-PROTAC-E3 ligase ternary complex. Further exploration of the degradation difference of MZ1 in different Brd systems shows that the PROTAC with higher degradation efficiency tends to leave more lysine exposed on the target protein, which is guaranteed by the stability (binding affinity) and durability (residence time) of the target-PROTAC-E3 ligase ternary complex. It is quite possible that the underlying binding characteristics of the BrdBD-MZ1-VHL systems revealed by this study may be shared by different PROTAC systems as a general rule, which may accelerate rational PROTAC design with higher degradation efficiency.
Collapse
Affiliation(s)
- Rongfan Tang
- Department
of Medicinal Chemistry, China Pharmaceutical
University, Nanjing 210009, Jiangsu, P. R. China
| | - Zhe Wang
- Innovation
Institute for Artificial Intelligence in Medicine of Zhejiang University,
College of Pharmaceutical Sciences, Zhejiang
University, Hangzhou 310058, Zhejiang, P. R. China
| | - Sutong Xiang
- Department
of Medicinal Chemistry, China Pharmaceutical
University, Nanjing 210009, Jiangsu, P. R. China
| | - Lingling Wang
- Department
of Medicinal Chemistry, China Pharmaceutical
University, Nanjing 210009, Jiangsu, P. R. China
| | - Yang Yu
- Department
of Medicinal Chemistry, China Pharmaceutical
University, Nanjing 210009, Jiangsu, P. R. China
| | - Qinghua Wang
- Department
of Medicinal Chemistry, China Pharmaceutical
University, Nanjing 210009, Jiangsu, P. R. China
| | - Qirui Deng
- Department
of Medicinal Chemistry, China Pharmaceutical
University, Nanjing 210009, Jiangsu, P. R. China
| | - Tingjun Hou
- Innovation
Institute for Artificial Intelligence in Medicine of Zhejiang University,
College of Pharmaceutical Sciences, Zhejiang
University, Hangzhou 310058, Zhejiang, P. R. China
| | - Huiyong Sun
- Department
of Medicinal Chemistry, China Pharmaceutical
University, Nanjing 210009, Jiangsu, P. R. China
| |
Collapse
|
5
|
Hantz ER, Tikunova SB, Belevych N, Davis JP, Reiser PJ, Lindert S. Targeting Troponin C with Small Molecules Containing Diphenyl Moieties: Calcium Sensitivity Effects on Striated Muscles and Structure-Activity Relationship. J Chem Inf Model 2023; 63:3462-3473. [PMID: 37204863 PMCID: PMC10496875 DOI: 10.1021/acs.jcim.3c00196] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Despite large investments from academia and industry, heart failure, which results from a disruption of the contractile apparatus, remains a leading cause of death. Cardiac muscle contraction is a calcium-dependent mechanism, which is regulated by the troponin protein complex (cTn) and specifically by the N-terminal domain of its calcium-binding subunit (cNTnC). There is an increasing need for the development of small molecules that increase calcium sensitivity without altering the systolic calcium concentration, thereby strengthening the cardiac function. Here, we examined the effect of our previously identified calcium-sensitizing small molecule, ChemBridge compound 7930079, in the context of several homologous muscle systems. The effect of this molecule on force generation in isolated cardiac trabeculae and slow skeletal muscle fibers was measured. Furthermore, we explored the use of Gaussian accelerated molecular dynamics in sampling highly predictive receptor conformations based on NMR-derived starting structures. Additionally, we took a rational computational approach for lead optimization based on lipophilic diphenyl moieties. This integrated structural-biochemical-physiological approach led to the identification of three novel low-affinity binders, which had similar binding affinities to the known positive inotrope trifluoperazine. The most potent identified calcium sensitizer was compound 16 with an apparent affinity of 117 ± 17 μM.
Collapse
Affiliation(s)
- Eric R. Hantz
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210
| | - Svetlana B. Tikunova
- Davis Heart and Lung Research Institute and Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, 43210
| | - Natalya Belevych
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH 43210
| | - Jonathan P. Davis
- Davis Heart and Lung Research Institute and Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, 43210
| | - Peter J. Reiser
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH 43210
| | - Steffen Lindert
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210
| |
Collapse
|
6
|
Cool AM, Lindert S. Umbrella Sampling Simulations of Cardiac Thin Filament Reveal Thermodynamic Consequences of Troponin I Inhibitory Peptide Mutations. J Chem Inf Model 2023; 63:3534-3543. [PMID: 37261389 PMCID: PMC10506665 DOI: 10.1021/acs.jcim.3c00388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The cardiac thin filament comprises F-actin, tropomyosin, and troponin (cTn). cTn is composed of three subunits: troponin C (cTnC), troponin I (cTnI), and troponin T (cTnT). To computationally study the effect of the thin filament on cTn activation events, we employed targeted molecular dynamics followed by umbrella sampling using a model of the thin filament to measure the thermodynamics of cTn transition events. Our simulations revealed that the thin filament causes an increase in the free energy required to open the cTnC hydrophobic patch and causes a more favorable interaction between this region and the cTnI switch peptide. Mutations to the cTn complex can lead to cardiomyopathy, a collection of diseases that present clinically with symptoms of hypertrophy or dilation of the cardiac muscle, leading to impairment of the heart's ability to function normally and ultimately myocardial infarction or heart failure. Upon introduction of cardiomyopathic mutations to R145 of cTnI, we observed a general decrease in the free energy of opening the cTnC hydrophobic patch, which is on par with previous experimental results. These mutations also exhibited a decrease in electrostatic interactions between cTnI-R145 and actin-E334. After introduction of a small molecule to the wild-type cTnI-actin interface to intentionally disrupt intersubunit contacts, we successfully observed similar thermodynamic consequences and disruptions to the same protein-protein contacts as observed with the cardiomyopathic mutations. Computational studies utilizing the cTn complex in isolation would have been unable to observe these effects, highlighting the importance of using a more physiologically relevant thin-filament model to investigate the global consequences of cardiomyopathic mutations to the cTn complex.
Collapse
Affiliation(s)
- Austin M. Cool
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210
| | - Steffen Lindert
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210
| |
Collapse
|
7
|
Hantz ER, Tikunova SB, Belevych N, Davis JP, Reiser PJ, Lindert S. Targeting Troponin C with Small Molecules Containing Diphenyl Moieties: Calcium Sensitivity Effects on Striated Muscle and Structure Activity Relationship. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.06.527323. [PMID: 36798160 PMCID: PMC9934531 DOI: 10.1101/2023.02.06.527323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Despite large investments from academia and industry, heart failure, which results from a disruption of the contractile apparatus, remains a leading cause of death. Cardiac muscle contraction is a calcium-dependent mechanism, which is regulated by the troponin protein complex (cTn) and specifically by the N-terminal domain of its calcium binding subunit (cNTnC). There is an increasing need for the development of small molecules that increase calcium sensitivity without altering systolic calcium concentration, thereby strengthening cardiac function. Here, we examined the effect of our previously identified calcium sensitizing small molecule, ChemBridge compound 7930079, in the context of several homologous muscle systems. The effect of this molecule on force generation in isolated cardiac trabeculae and slow skeletal muscle fibers was measured. Furthermore, we explored the use of Gaussian accelerated molecular dynamics in sampling highly predictive receptor conformations based on NMR derived starting structures. Additionally, we took a rational computational approach for lead optimization based on lipophilic diphenyl moieties. This led to the identification of three novel low affinity binders, which had similar binding affinities to known positive inotrope trifluoperazine. The most potent identified calcium sensitizer was compound 16 with an apparent affinity of 117 ± 17 μM .
Collapse
Affiliation(s)
- Eric R. Hantz
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210
| | - Svetlana B. Tikunova
- Davis Heart and Lung Research Institute and Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, 43210
| | - Natalya Belevych
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH 43210
| | - Jonathan P. Davis
- Davis Heart and Lung Research Institute and Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, 43210
| | - Peter J. Reiser
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH 43210
| | - Steffen Lindert
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210,Correspondence to: Department of Chemistry and Biochemistry, Ohio State University, 2114 Newman & Wolfrom Laboratory, 100 W. 18th Avenue, Columbus, OH 43210, 614-292-8284 (office), 614-292-1685 (fax),
| |
Collapse
|
8
|
Hantz ER, Lindert S. Computational Exploration and Characterization of Potential Calcium Sensitizing Mutations in Cardiac Troponin C. J Chem Inf Model 2022; 62:6201-6208. [PMID: 36383927 PMCID: PMC10497304 DOI: 10.1021/acs.jcim.2c01132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Calcium-dependent heart muscle contraction is regulated by the cardiac troponin protein complex (cTn) and specifically by the N-terminal domain of its calcium binding subunit (cNTnC). cNTnC contains one calcium binding site (site II), and altered calcium binding in this site has been studied for decades. It has been previously shown that cNTnC mutants, which increase calcium sensitization may have therapeutic benefits, such as restoring cardiac muscle contractility and functionality post-myocardial infarction events. Here, we computationally characterized eight mutations for their potential effects on calcium binding affinity in site II of cNTnC. We utilized two distinct methods to estimate calcium binding: adaptive steered molecular dynamics (ASMD) and thermodynamic integration (TI). We observed a sensitizing trend for all mutations based on the employed ASMD methodology. The TI results showed excellent agreement with experimentally known calcium binding affinities in wild-type cNTnC. Based on the TI results, five mutants were predicted to increase calcium sensitivity in site II. This study presents an interesting comparison of the two computational methods, which have both been shown to be valuable tools in characterizing the impacts of calcium sensitivity in mutant cNTnC systems.
Collapse
Affiliation(s)
- Eric R. Hantz
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH, 43210
| | - Steffen Lindert
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH, 43210
| |
Collapse
|