1
|
Lian M, Song Z, Xiao Y, Yao Z, Zhu G, Tian E, Gao Y, Dong M, Mao S, Liu Y, Li Y, Lu F, Wang F. Semi-rational design based on the interaction between SmFMO and FAD isoalloxazine ring to enhance the enzyme activity. Biochem Biophys Res Commun 2024; 733:150575. [PMID: 39197199 DOI: 10.1016/j.bbrc.2024.150575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024]
Abstract
Flavin monooxygenases (FMOs) have been widely used in the biosynthesis of natural compounds due to their excellent stereoselectivity, regioselectivity and chemoselectivity. Stenotrophomonas maltophilia flavin monooxygenase (SmFMO) has been reported to catalyze the oxidation of various thiols to corresponding sulfoxides, but its activity is relatively low. Herein, we obtained a mutant SmFMOF52G which showed 4.35-fold increase in kcat/Km (4.96 mM-1s-1) and 6.84-fold increase in enzyme activity (81.76 U/g) compared to the SmFMOWT (1.14 mM-1s-1 and 11.95 U/g) through semi-rational design guided by structural analysis and catalytic mechanism combined with high-throughput screening. By forming hydrogen bond with O4 atom of FAD isoalloxazine ring and reducing steric hindrance, the conformation of FAD isoalloxazine ring in SmFMOF52G is more stable, and NADPH and substrate are closer to FAD isoalloxazine ring, shortening the distances of hydrogen transfer and substrate oxygenation, thereby increasing the rate of reduction and oxidation reactions and enhancing enzyme activity. Additionally, the overall structural stability and substrate binding capacity of the SmFMOF52G have significant improved than that of SmFMOWT. The strategy used in this study to improve the enzyme activity of FMOs may have generality, providing important references for the rational and semi-rational engineering of FMOs.
Collapse
Affiliation(s)
- Mengka Lian
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Zhaolin Song
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Yunjie Xiao
- School of Life Sciences, Tianjin University, Tianjin, 300072, PR China
| | - Zhiming Yao
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Gang Zhu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Enhua Tian
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Yuying Gao
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Mengjun Dong
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Shuhong Mao
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Yihan Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Yu Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, PR China.
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, PR China.
| | - Fenghua Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, PR China.
| |
Collapse
|
2
|
Aldakheel FM. Discovering potential asthma therapeutics targeting hematopoietic prostaglandin D2 synthase: An integrated computational approach. Arch Biochem Biophys 2024; 761:110157. [PMID: 39307263 DOI: 10.1016/j.abb.2024.110157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/05/2024] [Accepted: 09/14/2024] [Indexed: 09/29/2024]
Abstract
Allergic asthma, a chronic inflammatory illness that affects millions worldwide, has serious economic and health consequences. Despite advances in therapy, contemporary treatments have poor efficacy and negative effects. This study investigates hematopoietic prostaglandin D2 synthase (HPGDS) as a potential target for novel asthma therapies. Targeting HPGDS may provide innovative treatment methods. A library of phytochemicals was used to find putative HPGDS inhibitors by structure-based and ligand-based virtual screening. Among the 2295 compounds screened, four compounds (ZINC208828240, ZINC95627530, ZINC14727536, and ZINC14711790) demonstrated strong binding affinities of -10.4, -10.3, -9.2, -9.1 kcal/mol respectively with key residues, suggesting their potential as a highly effective HPGDS inhibitor. Molecular dynamics (MD) simulations and Molecular Mechanics Poisson-Boltzmann Surface Area (MMPBSA) computations were further performed to evaluate the stability and binding affinity of the complexes. MD simulations and MMPBSA confirmed that compound ZINC14711790 showed high stability and binding affinity (binding energy -31.52 kcal/mol) than other compounds, including HQL-79, suggesting that this compound might be used as promising inhibitors to treat asthma. RMSD and RMSF analysis also revealed that ZINC14711790 exhibited strong dynamic stability. The findings of this study show the efficacy of ZINC14711790 as HPGDS inhibitors with high binding affinity, dynamic stability, and appropriate ADMET profile.
Collapse
Affiliation(s)
- Fahad M Aldakheel
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, 11433, Saudi Arabia.
| |
Collapse
|
3
|
Owolabi AO, Akpor OB, Ndako JA, Owa SO, Oluyori AP, Oludipe EO, Afolabi SO, Asaleye RM. Antimicrobial potential of Hippocratea Indica Willd. Acetone Leaf fractions against Salmonella Typhi: an in vitro and in silico study. Sci Rep 2024; 14:25222. [PMID: 39448699 PMCID: PMC11502822 DOI: 10.1038/s41598-024-75796-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
Salmonella Typhi is a major global concern in many low- and middle-income countries. In addition, the emergence and persistence of drug resistant strains has increased the impact of this disease. Plant metabolites have been explored traditionally and scientifically as antimicrobial agents. Thus, this study was designed to investigate the antimicrobial potential of acetone leaf fractions of H. indica against S. Typhi. Dried pulverized leaves of H. indica were extracted using cold maceration with acetone after defatting with n-hexane. The leaf extract was concentrated and subjected to column chromatography and eight bioactive fractions were identified. The fractions were characterized using gas chromatography-mass spectrometry. The fractions were evaluated for antibacterial activity against Salmonella Typhi in-vitro and in-silico. The lowest MIC was observed in fractions 20 and 21 (0.375 mg/mL) while the lowest MBC was observed in all fractions except 7, 17 and 18 (0.375 mg/mL). A ligand from fraction 8 had the highest binding affinity to Type I dehydroquinase (-3.4) and a ligand from fraction 7 had the highest binding affinity to Gyrase B (-11.2). This study concludes that the overall antimicrobial activity of the acetone leaf extract of H. indica provided evidence that it contains drug-like compounds that can be further explored as a drug candidate against S. Typhi.
Collapse
Affiliation(s)
- Akinyomade Oladipo Owolabi
- Landmark University SDG 3 (Good Health and Well-being Group), Omu-Aran, Kwara, Nigeria.
- Department of Microbiology, Landmark University, PMB 1001, Omu-Aran, 251101, Nigeria.
- Landmark University SDG 17 (Partnerships for the Goals), Omu-Aran, Kwara State, Nigeria.
| | - Oghenerobor Benjamin Akpor
- Landmark University SDG 3 (Good Health and Well-being Group), Omu-Aran, Kwara, Nigeria
- Department of Biological Sciences, Afe Babalola, Ado Ekiti, Nigeria
| | - James Ajigasokoa Ndako
- Landmark University SDG 3 (Good Health and Well-being Group), Omu-Aran, Kwara, Nigeria
- Department of Microbiology, Landmark University, PMB 1001, Omu-Aran, 251101, Nigeria
| | - Stephen Oluwagbemiga Owa
- Landmark University SDG 3 (Good Health and Well-being Group), Omu-Aran, Kwara, Nigeria
- Department of Microbiology, Landmark University, PMB 1001, Omu-Aran, 251101, Nigeria
| | - Abimbola Peter Oluyori
- Landmark University SDG 3 (Good Health and Well-being Group), Omu-Aran, Kwara, Nigeria
- Department of Physical sciences, Landmark University, PMB 1001, Omu-Aran, 251101, Nigeria
| | | | | | | |
Collapse
|
4
|
Singh N, Singh AK. Screening of phytoconstituents from Bacopa monnieri (L.) Pennell and Mucuna pruriens (L.) DC. to identify potential inhibitors against Cerebroside sulfotransferase. PLoS One 2024; 19:e0307374. [PMID: 39446901 PMCID: PMC11500956 DOI: 10.1371/journal.pone.0307374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/01/2024] [Indexed: 10/26/2024] Open
Abstract
Cerebroside sulfotransferase (CST) is considered a target protein in developing substrate reduction therapy for metachromatic leukodystrophy. This study employed a multistep virtual screening approach for getting a specific and potent inhibitor against CST from 35 phytoconstituents of Bacopa monnieri (L.) Pennell and 31 phytoconstituents of Mucuna pruriens (L.) DC. from the IMPPAT 2.0 database. Using a binding score cutoff of -8.0 kcal/mol with ADME and toxicity screening, four phytoconstituents IMPHY009537 (Stigmastenol), IMPHY004141 (alpha-Amyrenyl acetate), IMPHY014836 (beta-Sitosterol), and IMPHY001534 (jujubogenin) were considered for in-depth analysis. In the binding pocket of CST, the major amino acid residues that decide the orientation and interaction of compounds are Lys85, His84, His141, Phe170, Tyr176, and Phe177. The molecular dynamics simulation with a 100ns time span further validated the stability and rigidity of the docked complexes of the four hits by exploring the structural deviation and compactness, hydrogen bond interaction, solvent accessible surface area, principal component analysis, and free energy landscape analysis. Stigmastenol from Bacopa monnieri with no potential cross targets was found to be the most potent and selective CST inhibitor followed by alpha-Amyrenyl acetate from Mucuna pruriens as the second-best performing inhibitor against CST. Our computational drug screening approach may contribute to the development of oral drugs against metachromatic leukodystrophy.
Collapse
Affiliation(s)
- Nivedita Singh
- Department of Dravyaguna, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Anil Kumar Singh
- Department of Dravyaguna, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
5
|
Gopikrishnan M, Doss GPC. Targeting PilA in Acinetobacter baumannii: A Computational Approach for Anti-Virulent Compound Discovery. Mol Biotechnol 2024:10.1007/s12033-024-01300-9. [PMID: 39414707 DOI: 10.1007/s12033-024-01300-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/30/2024] [Indexed: 10/18/2024]
Abstract
Acinetobacter baumannii (A. baumannii) has emerged as a critical global pathogen due to its ability to acquire resistance traits. This bacterium exhibits two distinct forms of motility: twitching, mediated by type IV pili (T4P), and surface-associated motility, independent of appendages. T4P is crucial in various bacterial species, facilitating twitching motility, biofilm formation, and host-cell adhesion. The synthesis of T4P is a common feature among Gram-negative pathogens, particularly A. baumannii, suggesting that PilA could be a viable target for biofilm-related treatments. This study aims to develop drug molecules to mitigate A. baumannii virulence by targeting PilA. Using Schrodinger software, we screened 60,766 compounds from the CMNPD, ChemDiv, and Enamine antibacterial databases through high-throughput virtual screening. The top two compounds from each database, identified through extra precision (XP) mode, were subjected to further studies. Among the six compounds identified (CMNPD18469, CMNPD20698, Z2377302405, Z2378175729, N039-0021, and N098-0051), docking scores ranged from - 5.0 to - 7.5 kcal/mol. Subsequently, we conducted 300 ns molecular dynamics simulations and Molecular Mechanics Poisson-Boltzmann Surface Area (MMPBSA) analysis of the PilA-ligand complexes. Analysis of the simulation trajectories indicated structural stability and consistent behavior of the PilA-ligand complexes in a dynamic environment. Notably, the PilA-N098-0051 complex exhibited enhanced stability and robust binding interactions, underscoring its potential as a therapeutic agent. These findings suggest that the identified compounds, particularly N098-0051, hold promise as potent molecules targeting PilA, necessitating further validation through in vitro and in vivo studies.
Collapse
Affiliation(s)
- Mohanraj Gopikrishnan
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - George Priya C Doss
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
6
|
Shahwan M, Prasad P, Yadav DK, Altwaijry N, Khan MS, Shamsi A. Identification of high-affinity Monoamine oxidase B inhibitors for depression and Parkinson's disease treatment: bioinformatic approach of drug repurposing. Front Pharmacol 2024; 15:1422080. [PMID: 39444620 PMCID: PMC11496130 DOI: 10.3389/fphar.2024.1422080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/12/2024] [Indexed: 10/25/2024] Open
Abstract
Depression and Parkinson's disease (PD) are devastating psychiatric and neurological disorders that require the development of novel therapeutic interventions. Drug repurposing targeting predefined pharmacological targets is a widely use approach in modern drug discovery. Monoamine oxidase B (MAO-B) is a critical protein implicated in Depression and PD. In this study, we undertook a systematic exploration of repurposed drugs as potential inhibitors of MAO-B. Exploring a library of 3,648 commercially available drug molecules, we conducted virtual screening using a molecular docking approach to target the MAO-B binding pocket. Two promising drug molecules, Brexpiprazole and Trifluperidol, were identified based on their exceptional binding potential and drug profiling. Subsequently, all-atom molecular dynamics (MD) simulations were performed on the MAO-B-ligand complexes for a trajectory of 300 nanoseconds (ns). Simulation results demonstrated that the binding of Brexpiprazole and Trifluperidol induced only minor structural alterations in MAO-B and showed significant stabilization throughout the simulation trajectory. Overall, the finding suggests that Brexpiprazole and Trifluperidol exhibit strong potential as repurposed inhibitors of MAO-B that might be explored further in experimental investigations for the development of targeted therapies for depression and PD.
Collapse
Affiliation(s)
- Moyad Shahwan
- Center for Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
| | - Pratibha Prasad
- Center for Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
- Basic Medical and Dental Sciences Department, College of Dentistry, Ajman University, Ajman, United Arab Emirates
| | - Dharmendra Kumar Yadav
- Gachon Institute of Pharmaceutical Science and Department of Pharmacy, College of Pharmacy, Gachon University, Seongnam, Republic of Korea
| | - Nojood Altwaijry
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohd Shahnawaz Khan
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Anas Shamsi
- Center for Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| |
Collapse
|
7
|
ElFessi R, Khamessi O, De Waard M, Srairi-Abid N, Ghedira K, Marrouchi R, Kharrat R. Structure-Function Relationship of a Novel MTX-like Peptide (MTX1) Isolated and Characterized from the Venom of the Scorpion Maurus palmatus. Int J Mol Sci 2024; 25:10472. [PMID: 39408804 PMCID: PMC11477167 DOI: 10.3390/ijms251910472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/06/2024] [Accepted: 07/09/2024] [Indexed: 10/20/2024] Open
Abstract
Maurotoxin (MTX) is a 34-residue peptide from Scorpio maurus venom. It is reticulated by four disulfide bridges with a unique arrangement compared to other scorpion toxins that target potassium (K+) channels. Structure-activity relationship studies have not been well performed for this toxin family. The screening of Scorpio maurus venom was performed by different steps of fractionation, followed by the ELISA test, using MTX antibodies, to isolate an MTX-like peptide. In vitro, in vivo and computational studies were performed to study the structure-activity relationship of the new isolated peptide. We isolated a new peptide designated MTX1, structurally related to MTX. It demonstrated toxicity on mice eight times more effectively than MTX. MTX1 blocks the Kv1.2 and Kv1.3 channels, expressed in Xenopus oocytes, with IC50 values of 0.26 and 180 nM, respectively. Moreover, MTX1 competitively interacts with both 125I-apamin (IC50 = 1.7 nM) and 125I-charybdotoxin (IC50 = 5 nM) for binding to rat brain synaptosomes. Despite its high sequence similarity (85%) to MTX, MTX1 exhibits a higher binding affinity towards the Kv1.2 and SKCa channels. Computational analysis highlights the significance of specific residues in the β-sheet region, particularly the R27, in enhancing the binding affinity of MTX1 towards the Kv1.2 and SKCa channels.
Collapse
Affiliation(s)
- Rym ElFessi
- Laboratory of Venoms and Therapeutic Biomolecules, Pasteur Institute of Tunis, University of Tunis El Manar, 13 Place Pasteur, BP74, Tunis 1002, Tunisia; (R.E.); (O.K.); (R.M.)
| | - Oussema Khamessi
- Laboratory of Venoms and Therapeutic Biomolecules, Pasteur Institute of Tunis, University of Tunis El Manar, 13 Place Pasteur, BP74, Tunis 1002, Tunisia; (R.E.); (O.K.); (R.M.)
- Laboratory of Bioinformatics, Biomathematics and Biostatistics (LR20IPT09), Pasteur Institute of Tunis, University of Tunis El Manar, Tunis 1002, Tunisia;
| | - Michel De Waard
- l’Institut du Thorax, Nantes Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé Et de la Recherche Médical (INSERM), F-44000 Nantes, France;
| | - Najet Srairi-Abid
- LR20IPT01 Biomolécules, Venins et Applications Théranostiques, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis 1002, Tunisia
| | - Kais Ghedira
- Laboratory of Bioinformatics, Biomathematics and Biostatistics (LR20IPT09), Pasteur Institute of Tunis, University of Tunis El Manar, Tunis 1002, Tunisia;
| | - Riadh Marrouchi
- Laboratory of Venoms and Therapeutic Biomolecules, Pasteur Institute of Tunis, University of Tunis El Manar, 13 Place Pasteur, BP74, Tunis 1002, Tunisia; (R.E.); (O.K.); (R.M.)
| | - Riadh Kharrat
- Laboratory of Venoms and Therapeutic Biomolecules, Pasteur Institute of Tunis, University of Tunis El Manar, 13 Place Pasteur, BP74, Tunis 1002, Tunisia; (R.E.); (O.K.); (R.M.)
| |
Collapse
|
8
|
Wu T, Du Z, Li H, Jiang Z, Zheng M, Li Z, Hong T, Du X, Ni H, Zhu Y. A disulfide bond mutant of Pseudoalteromonas porphyrae κ-carrageenase conferred improved thermostability and catalytic activity and facilitated its utilization in κ-carrageenan industrial waste residues recycling. Int J Biol Macromol 2024; 280:135573. [PMID: 39270888 DOI: 10.1016/j.ijbiomac.2024.135573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
In this study, Discovery Studio was employed to predict the potential disulfide bond mutants of the catalytic domain of Pseudoalteromonas porphyrae κ-carrageenase to improve the catalytic activity and thermal stability. The mutant N205C-G239C was identified with significantly increased catalytic activity toward κ-carrageenan substrate, with activity 4.28 times that of WT. The optimal temperature of N205C-G239C was 55 °C, 15 °C higher than that of WT. For N205C-G239C, the t1/2 value at 50 °C was 52 min, 1.41 times that of WT. The microstructural analysis revealed that the introduced disulfide bond N205C-G239C could create a unique catalytic environment by promoting favorable interactions with κ-neocarratetraose. This interaction impacted various aspects such as product release, water molecule network, thermodynamic equilibrium, and tunnel size. Molecular dynamics simulations demonstrated that the introduced disulfide bond enhanced the overall structure rigidity of N205C-G239C. The results of substrate tunnel analysis showed that the mutation led to the widening of the substrate tunnel. The above structure changes could be the possible reasons responsible for the simultaneous enhancement of the catalytic activity and thermal stability of mutant N205C-G239C. Finally, N205C-G239C exhibited the effective hydrolysis of the κ-carrageenan industrial waste residues, contributing to the recycling of the oligosaccharides and perlite.
Collapse
Affiliation(s)
- Ting Wu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Zeping Du
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Hebin Li
- Department of Pharmacy, Xiamen Medical College, Xiamen 361008, China
| | - Zedong Jiang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China
| | - Mingjing Zheng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China
| | - Zhipeng Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China
| | - Tao Hong
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China
| | - Xiping Du
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China
| | - Hui Ni
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China; Xiamen Ocean Vocational College, Xiamen 361102, China
| | - Yanbing Zhu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China.
| |
Collapse
|
9
|
Ibrahim MJ, Nangia A, Das S, Verma T, Rajeswari VD, Venkatraman G, Gnanasambandan R. Exploring Holy Basil's Bioactive Compounds for T2DM Treatment: Docking and Molecular Dynamics Simulations with Human Omentin-1. Cell Biochem Biophys 2024:10.1007/s12013-024-01511-6. [PMID: 39259407 DOI: 10.1007/s12013-024-01511-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2024] [Indexed: 09/13/2024]
Abstract
Type 2 Diabetes Mellitus (T2DM) presents a substantial health concern on a global scale, driving the search for innovative therapeutic strategies. Phytochemicals from medicinal plants, particularly Ocimum tenuiflorum (Holy Basil), have garnered attention for their potential in T2DM management. The increased focus on plant-based treatments stems from their perceived safety profile, lower risk of adverse effects, and the diverse range of bioactive molecules they offer, which can target multiple pathways involved in T2DM. Computational techniques explored the binding interactions between O. tenuiflorum phytochemicals and Human Omentin-1, a potential T2DM target. ADMET evaluation and targeted docking identified lead compounds: Luteolin (-4.84 kcal/mol), Madecassic acid (-4.12 kcal/mol), Ursolic acid (-5.91 kcal/mol), Stenocereol (-5.59 kcal/mol), and Apigenin (-4.64 kcal/mol), to have a better binding affinity to target protein compared to the control drug, Metformin (-2.01 kcal/mol). Subsequent molecular dynamics simulations evaluated the stability of Stenocereol, Luteolin, and Metformin complexes for 200 nanoseconds, analysing RMSD, RMSF, RG, SASA, PCA, FEL, and MM-PBSA parameters. Results indicated Stenocereol's strong binding affinity with Omentin-1, suggesting its potential as a potent therapeutic agent for T2DM management. These findings lay the groundwork for further experimental validation and drug discovery endeavours.
Collapse
Affiliation(s)
- Mohammad Jasim Ibrahim
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Aayushi Nangia
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Soumik Das
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Tanishque Verma
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - V Devi Rajeswari
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Ganesh Venkatraman
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - R Gnanasambandan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
10
|
Xu X, Zhong J, Su B, Xu L, Hong X, Lin J. Single-cell enzymatic cascade synthesis of testolactone enabled by engineering of polycyclic ketone monooxygenase and multi-gene expression fine-tuning. Int J Biol Macromol 2024; 275:133229. [PMID: 38897507 DOI: 10.1016/j.ijbiomac.2024.133229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/14/2024] [Accepted: 06/15/2024] [Indexed: 06/21/2024]
Abstract
The synthesis of steroids is challenging through multistep steroidal core modifications with high site-selectivity and productivity. In this work, a novel enzymatic cascade system was constructed for synthesis of testolactone by specific C17 lactonization/Δ1-dehydrogenation from inexpensive androstenedione using an engineered polycyclic ketone monooxygenase (PockeMO) and an appropriate 3-ketosteroid-Δ1-dehydrogenase (ReKstD). The focused saturation mutagenesis in the substrate binding pocket was implemented for evolution of PockeMO to eliminate the bottleneck effect. A best mutant MU3 (I225L/L226V/L532Y) was obtained with 20-fold higher specific activity compared to PockeMO. The catalytic efficiency (kcat/Km) of MU3 was 171-fold higher and the substrate scope shifted to polycyclic ketones. Molecular dynamic simulations suggested that the activity was improved by stabilization of the pre-lactonization state and generation of productive orientation of 4-AD mediated by distal L532Y mutation. Based on that, the three genes, MU3, ReKstD and a ketoreductase for NADPH regeneration, were rationally integrated in one cell via expression fine-tuning to form the efficient single cell catalyst E. coli S9. The single whole-cell biocatalytic process was scaled up and could generate 9.0 g/L testolactone with the high space time yield of 1 g/L/h without steroidal by-product, indicating the potential for site-specific and one-pot synthesis of steroid.
Collapse
Affiliation(s)
- Xinqi Xu
- Institute of Enzyme Catalysis and Synthetic Biotechnology, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Jinchang Zhong
- Institute of Enzyme Catalysis and Synthetic Biotechnology, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Bingmei Su
- Institute of Enzyme Catalysis and Synthetic Biotechnology, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Lian Xu
- Institute of Enzyme Catalysis and Synthetic Biotechnology, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Xiaokun Hong
- Institute of Enzyme Catalysis and Synthetic Biotechnology, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Juan Lin
- Institute of Enzyme Catalysis and Synthetic Biotechnology, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China.
| |
Collapse
|
11
|
Alrouji M, Yasmin S, Alhumaydhi FA, Sharaf SE, Shahwan M, Shamsi A. ROS1 kinase inhibition reimagined: identifying repurposed drug via virtual screening and molecular dynamics simulations for cancer therapeutics. Front Chem 2024; 12:1392650. [PMID: 39136033 PMCID: PMC11317403 DOI: 10.3389/fchem.2024.1392650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/01/2024] [Indexed: 08/15/2024] Open
Abstract
Precision medicine has revolutionized modern cancer therapeutic management by targeting specific molecular aberrations responsible for the onset and progression of tumorigenesis. ROS proto-oncogene 1 (ROS1) is a receptor tyrosine kinase (RTK) that can induce tumorigenesis through various signaling pathways, such as cell proliferation, survival, migration, and metastasis. It has emerged as a promising therapeutic target in various cancer types. However, there is very limited availability of specific ROS1 inhibitors for therapeutic purposes. Exploring repurposed drugs for rapid and effective treatment is a useful approach. In this study, we utilized an integrated approach of virtual screening and molecular dynamics (MD) simulations of repurposing existing drugs for ROS1 kinase inhibition. Using a curated library of 3648 FDA-approved drugs, virtual screening identified drugs capable of binding to ROS1 kinase domain. The results unveil two hits, Midostaurin and Alectinib with favorable binding profiles and stable interactions with the active site residues of ROS1. These hits were subjected to stability assessment through all-atom MD simulations for 200 ns. MD results showed that Midostaurin and Alectinib were stable with ROS1. Taken together, the study showed a rational framework for the selection of repurposed Midostaurin and Alectinib with ROS1 inhibitory potential for therapeutic management after further validation.
Collapse
Affiliation(s)
- Mohammed Alrouji
- Department of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, Shaqra, Saudi Arabia
| | - Sabina Yasmin
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Fahad A Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Sharaf E. Sharaf
- Pharmaceutical Sciences Department, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Moyad Shahwan
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
- Center of Medical and Bio-Allied Health Sciences Research (CMBHSR), Ajman University, Ajman, United Arab Emirates
| | - Anas Shamsi
- Center of Medical and Bio-Allied Health Sciences Research (CMBHSR), Ajman University, Ajman, United Arab Emirates
| |
Collapse
|
12
|
Im JK, Seo DH, Yu JS, Yoo SH. Efficient and novel biosynthesis of myricetin α-triglucoside with improved solubility using amylosucrase from Deinococcus deserti. Int J Biol Macromol 2024; 273:133205. [PMID: 38885871 DOI: 10.1016/j.ijbiomac.2024.133205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/02/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Although myricetin (3,3',4',5,5',7-hexahydroxyflavone, MYR) has a high antioxidant capacity and health functions, its use as a functional food material is limited owing to its low stability and water solubility. Amylosucrase (ASase) is capable of biosynthesizing flavonol α-glycoside using flavonols as acceptor molecules and sucrose as a donor molecule. Here, ASase from Deinococcus deserti (DdAS) efficiently biosynthesizes a novel MYR α-triglucoside (MYRαG3) using MYR as the acceptor molecule. Comparative homology analysis and computational simulation revealed that DdAS has a different active pocket for the transglycosylation reaction. DdAS produced MYRαG3 with a conversion efficiency of 67.4 % using 10 mM MYR and 50 mM sucrose as acceptor and donor molecules, respectively. The structure of MYRαG3 was identified as MYR 4'-O-4″,6″-tri-O-α-D-glucopyranoside using NMR and LC-MS. In silico analysis confirmed that DdAS has a distinct active pocket compared to other ASases. In addition, molecular docking simulations predicted the synthetic sequence of MYRαG3. Furthermore, MYRαG3 showed a similar DPPH radical scavenging activity of 49 %, comparable to MYR, but with significantly higher water solubility, which increased from 0.03 μg/mL to 511.5 mg/mL. In conclusion, this study demonstrated the efficient biosynthesis of a novel MYRαG3 using DdAS and highlighted the potential of MYRαG3 as a functional material.
Collapse
Affiliation(s)
- Joong-Ki Im
- Department of Food Science & Biotechnology, Carbohydrate Bioproduct Research Center, Sejong University, Seoul 05006, Republic of Korea
| | - Dong-Ho Seo
- Department of Food Science & Biotechnology, Carbohydrate Bioproduct Research Center, Sejong University, Seoul 05006, Republic of Korea
| | - Jae Sik Yu
- Department of Integrative Sciences and Industry, Sejong University, Seoul 05006, Republic of Korea
| | - Sang-Ho Yoo
- Department of Food Science & Biotechnology, Carbohydrate Bioproduct Research Center, Sejong University, Seoul 05006, Republic of Korea.
| |
Collapse
|
13
|
Maruyama Y, Yoshida N. RISMiCal: A software package to perform fast RISM/3D-RISM calculations. J Comput Chem 2024; 45:1470-1482. [PMID: 38472097 DOI: 10.1002/jcc.27340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/23/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024]
Abstract
Solvent plays an essential role in a variety of chemical, physical, and biological processes that occur in the solution phase. The reference interaction site model (RISM) and its three-dimensional extension (3D-RISM) serve as powerful computational tools for modeling solvation effects in chemical reactions, biological functions, and structure formations. We present the RISM integrated calculator (RISMiCal) program package, which is based on RISM and 3D-RISM theories with fast GPU code. RISMiCal has been developed as an integrated RISM/3D-RISM program that has interfaces with external programs such as Gaussian16, GAMESS, and Tinker. Fast 3D-RISM programs for single- and multi-GPU codes written in CUDA would enhance the availability of these hybrid methods because they require the performance of many computationally expensive 3D-RISM calculations. We expect that our package can be widely applied for chemical and biological processes in solvent. The RISMiCal package is available at https://rismical-dev.github.io.
Collapse
Affiliation(s)
- Yutaka Maruyama
- Data Science Center for Creative Design and Manufacturing, The Institute of Statistical Mathematics, Tachikawa, Tokyo, Japan
- Department of Physics, School of Science and Technology, Meiji University, Kawasaki-shi, Kanagawa, Japan
| | - Norio Yoshida
- Graduate School of Informatics, Nagoya University, Chikusa, Nagoya, Japan
| |
Collapse
|
14
|
Shamsi A, Khan MS, Yadav DK, Shahwan M. Structure-based screening of FDA-approved drugs identifies potential histone deacetylase 3 repurposed inhibitor: molecular docking and molecular dynamic simulation approaches. Front Pharmacol 2024; 15:1424175. [PMID: 39005934 PMCID: PMC11239971 DOI: 10.3389/fphar.2024.1424175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 06/05/2024] [Indexed: 07/16/2024] Open
Abstract
Histone deacetylase 3 (HDAC3) is a member of the histone deacetylase family that has emerged as a crucial target in the quest for novel therapeutic interventions against various complex diseases, including cancer. The repositioning of FDA-approved drugs presents a promising avenue for the rapid discovery of potential HDAC3 inhibitors. In this study, we performed a structure-based virtual screening of FDA-approved drugs obtained from DrugBank. Candidate hits were selected based on their binding affinities and interactions with HDAC3. These promising hits were then subjected to a comprehensive assessment of their biological properties and drug profiles. Our investigation identified two FDA-approved drugs, Imatinib and Carpipramine, characterized by their exceptional affinity and specificity for the binding pocket of HDAC3. These molecules demonstrated a strong preference for HDAC3 binding site and formed interactions with functionally significant residues within the active site pocket. To gain deeper insights into the binding dynamics, structural stability, and interaction mechanisms, we performed molecular dynamics (MD) simulations spanning 300 nanoseconds (ns). The results of MD simulations indicated that Imatinib and Carpipramine stabilized the structure of HDAC3 and induced fewer conformational changes. Taken together, the findings from this study suggest that Imatinib and Carpipramine may offer significant therapeutic potential for treating complex diseases, especially cancer.
Collapse
Affiliation(s)
- Anas Shamsi
- Center for Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Mohd Shahnawaz Khan
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Dharmendra Kumar Yadav
- Department of Pharmacy, College of Pharmacy, Gachon Institute of Pharmaceutical Science, Gachon University, Incheon, Republic of Korea
| | - Moyad Shahwan
- Center for Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
| |
Collapse
|
15
|
Chen HH, Pang XH, Dai JL, Jiang JG. Functional Characterization of a CruP-Like Isomerase in Dunaliella. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10005-10013. [PMID: 38626461 DOI: 10.1021/acs.jafc.4c01912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
Dunaliella bardawil is a marine unicellular green algal that produces large amounts of β-carotene and is a model organism for studying the carotenoid synthesis pathway. However, there are still many mysteries about the enzymes of the D. bardawil lycopene synthesis pathway that have not been revealed. Here, we have identified a CruP-like lycopene isomerase, named DbLyISO, and successfully cloned its gene from D. bardawil. DbLyISO showed a high homology with CruPs. We constructed a 3D model of DbLyISO and performed molecular docking with lycopene, as well as molecular dynamics testing, to identify the functional characteristics of DbLyISO. Functional activity of DbLyISO was also performed by overexpressing gene in both E. coli and D. bardawil. Results revealed that DbLyISO acted at the C-5 and C-13 positions of lycopene, catalyzing its cis-trans isomerization to produce a more stable trans structure. These results provide new ideas for the development of a carotenoid series from engineered bacteria, algae, and plants.
Collapse
Affiliation(s)
- Hao-Hong Chen
- College of Food Science and Bioengineering, South China University of Technology, Guangzhou 510640, China
- Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Xiao-Hui Pang
- College of Food Science and Bioengineering, South China University of Technology, Guangzhou 510640, China
| | - Ju-Liang Dai
- College of Food Science and Bioengineering, South China University of Technology, Guangzhou 510640, China
| | - Jian-Guo Jiang
- College of Food Science and Bioengineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
16
|
Alrouji M, Alhumaydhi FA, Venkatesan K, Sharaf SE, Shahwan M, Shamsi A. Evaluation of binding mechanism of dietary phytochemical, capsaicin, with human transferrin: targeting neurodegenerative diseases therapeutics. Front Pharmacol 2024; 15:1348128. [PMID: 38495092 PMCID: PMC10943693 DOI: 10.3389/fphar.2024.1348128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/16/2024] [Indexed: 03/19/2024] Open
Abstract
Human transferrin (htf) plays a crucial role in regulating the balance of iron within brain cells; any disruption directly contributes to the development of Neurodegenerative Diseases (NDs) and other related pathologies, especially Alzheimer's Disease (AD). In recent times, a transition towards natural compounds is evident to treat diseases and this shift is mainly attributed to their broad therapeutic potential along with minimal side effects. Capsaicin, a natural compound abundantly found in red and chili peppers, possess neuroprotective potential. The current work targets to decipher the interaction mechanism of capsaicin with htf using experimental and computational approaches. Molecular docking analysis revealed that capsaicin occupies the iron binding pocket of htf, with good binding affinity. Further, the binding mechanism was investigated atomistically using Molecular dynamic (MD) simulation approach. The results revealed no significant alterations in the structure of htf implying the stability of the complex. In silico observations were validated by fluorescence binding assay. Capsaicin binds to htf with a binding constant (K) of 3.99 × 106 M-1, implying the stability of the htf-capsaicin complex. This study lays a platform for potential applications of capsaicin in treatment of NDs in terms of iron homeostasis.
Collapse
Affiliation(s)
- Mohammed Alrouji
- Department of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, Shaqra, Saudi Arabia
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Kumar Venkatesan
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Sharaf E. Sharaf
- Pharmaceutical Sciences Department, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Moyad Shahwan
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Anas Shamsi
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| |
Collapse
|
17
|
Williams OHL, Rusli O, Ezzedinloo L, Dodgen TM, Clegg JK, Rijs NJ. Automated Structural Activity Screening of β-Diketonate Assemblies with High-Throughput Ion Mobility-Mass Spectrometry. Angew Chem Int Ed Engl 2024; 63:e202313892. [PMID: 38012094 DOI: 10.1002/anie.202313892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/08/2023] [Accepted: 11/27/2023] [Indexed: 11/29/2023]
Abstract
Embracing complexity in design, metallo-supramolecular self-assembly presents an opportunity for fabricating materials of economic significance. The array of accessible supramolecules is alluring, along with favourable energy requirements. Implementation is hampered by an inability to efficiently characterise complex mixtures. The stoichiometry, size, shape, guest binding properties and reactivity of individual components and combinations thereof are inherently challenging to resolve. A large combinatorial library of four transition metals (Fe, Cu, Ni and Zn), and six β-diketonate ligands at different molar ratios and pH was robotically prepared and directly analysed over multiple timepoints with electrospray ionisation travelling wave ion mobility-mass spectrometry. The dataset was parsed for self-assembling activity without first attempting to structurally assign individual species. Self-assembling systems were readily categorised without manual data-handling, allowing efficient screening of self-assembly activity. This workflow clarifies solution phase supramolecular assembly processes without manual, bottom-up processing. The complex behaviour of the self-assembling systems was reduced to simpler qualities, which could be automatically processed.
Collapse
Affiliation(s)
| | - Olivia Rusli
- School of Chemistry, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Lida Ezzedinloo
- School of Chemistry, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Tyren M Dodgen
- Waters Corporation Australia, Rydalmere, NSW, 2116, Australia
| | - Jack K Clegg
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Nicole J Rijs
- School of Chemistry, UNSW Sydney, Sydney, NSW, 2052, Australia
| |
Collapse
|
18
|
Khatua S, Roy A, Sen P, Ray S. Elucidation of the structural dynamics of mutations in PHB2 protein associated with growth suppression and cancer progression. Gene 2024; 890:147820. [PMID: 37739195 DOI: 10.1016/j.gene.2023.147820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/03/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023]
Abstract
Prohibitin is a multifunctional protein that plays an important role in numerous cellular processes. Membrane-associated mitochondrial prohibitin complex is made up of two subunits, PHB1 and PHB2 which are ubiquitously expressed and analogous to each other. High levels of prohibitin expression have consequently been found in esophageal cancer, endometrial adenocarcinoma, gastric cancer, hepatocellular carcinoma, breast cancer and bladder cancer. The aim of this study is to analyse two-point mutation PHB2_MT1(I → A) and PHB2_MT2(I → P), their effect on PHB2 protein and its effect on formation of mitochondrial complex. It is a residual level study, based on current experimental validation. To establish the effects of the two-point mutations, computational approaches such as molecular modelling, molecular docking, normal mode simulation, molecular dynamics simulations and MM/GBSA were used. An analysis of the energy dynamics of both unbound and complex proteins was conducted to elucidate how mutations impact the energy distribution of PHB2. Our study confirmed that the two mutations decreased the overall stability of PHB2. This was evidenced by heightened atomic fluctuations within the mutated region, accompanied by elevated deviations observed in RMSD and Rg values. Furthermore, these mutations were correlated with a decline in the organization of secondary structural elements. The mutations in PHB2_MT1 and PHB2_MT2 resulted in formation a less stable prohibitin complex. Thus, PHB1 and PHB2 may act as molecular target or novel biomarkers for therapeutic intervention in numerous forms of malignancies.
Collapse
Affiliation(s)
- Susmita Khatua
- Amity Institute of Biotechnology, Amity University, Kolkata, India
| | - Alankar Roy
- Amity Institute of Biotechnology, Amity University, Kolkata, India
| | - Pritha Sen
- Amity Institute of Biotechnology, Amity University, Kolkata, India
| | - Sujay Ray
- Amity Institute of Biotechnology, Amity University, Kolkata, India.
| |
Collapse
|
19
|
Alharbi B, Alnajjar LI, Alhassan HH, Khan S, Jawaid T, Abdullaev BS, Alshammari N, Yadav DK, Adnan M, Shamsi A. Identification of mitogen-activated protein kinase 7 inhibitors from natural products: Combined virtual screening and dynamic simulation studies. J Mol Recognit 2024; 37:e3067. [PMID: 37956676 DOI: 10.1002/jmr.3067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/22/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023]
Abstract
Mitogen-activated protein kinase 7 (MAPK7) is a serine/threonine protein kinase that belongs to the MAPK family and plays a vital role in various cellular processes such as cell proliferation, differentiation, gene transcription, apoptosis, metabolism, and cell survival. The elevated expression of MAPK7 has been associated with the onset and progression of multiple aggressive tumors in humans, underscoring the potential of targeting MAPK7 pathways in therapeutic research. This pursuit holds promise for the advancement of anticancer drug development by developing potential MAPK7 inhibitors. To look for potential MAPK7 inhibitors, we exploited structure-based virtual screening of natural products from the ZINC database. First, the Lipinski rule of five criteria was used to filter a large library of ~90,000 natural compounds, followed by ADMET and pan-assay interference compounds (PAINS) filters. Then, top hits were chosen based on their strong binding affinity as determined by molecular docking. Further, interaction analysis was performed to find effective and specific compounds that can precisely bind to the binding pocket of MAPK7. Consequently, two compounds, ZINC12296700 and ZINC02123081, exhibited significant binding affinity and demonstrated excellent drug-like properties. All-atom molecular dynamics simulations for 200 ns confirmed the stability of MAPK7-ZINC12296700 and MAPK7-ZINC02123081 docked complexes. According to the molecular mechanics Poisson-Boltzmann surface area investigation, the binding affinities of both complexes were considerable. Overall, the result suggests that ZINC12296700 and ZINC02123081 might be used as promising leads to develop novel MAPK7 inhibitors. Since these compounds would interfere with the kinase activity of MAPK7, therefore, may be implemented to control cell growth and proliferation in cancer after required validations.
Collapse
Affiliation(s)
- Bandar Alharbi
- Department of Medical Laboratory Science, College of Applied Medical Sciences, University of Hail, Hail, Saudi Arabia
| | - Lina I Alnajjar
- Department of Pharmacy Practice, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Hassan H Alhassan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | - Shama Khan
- South African Medical Research Council, Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Science, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Talha Jawaid
- Department of Pharmacology, College of Medicine, Al Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Bekhzod S Abdullaev
- Department of Strategic Development, Innovation and Research, New Uzbekistan University, Tashkent, Uzbekistan
- Department of Oncology, School of Medicine, Central Asian University, Tashkent, Uzbekistan
| | - Nawaf Alshammari
- Department of Biology, College of Science, University of Ha'il, Ha'il, Saudi Arabia
| | - Dharmendra Kumar Yadav
- College of Pharmacy, Gachon University of Medicine and Science, Incheon, South Korea
- Arontier Co., Seoul, Republic of Korea
| | - Mohd Adnan
- Department of Biology, College of Science, University of Ha'il, Ha'il, Saudi Arabia
| | - Anas Shamsi
- Center for Medical and Bio-Allied Health Sciences Research Research, Ajman University, Ajman, United Arab Emirates
| |
Collapse
|
20
|
Kushwaha R, Singh V, Peters S, Yadav AK, Dolui D, Saha S, Sarkar S, Dutta A, Koch B, Sadhukhan T, Banerjee S. Density Functional Theory-Guided Photo-Triggered Anticancer Activity of Curcumin-Based Zinc(II) Complexes. J Phys Chem B 2023; 127:10266-10278. [PMID: 37988143 DOI: 10.1021/acs.jpcb.3c02382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Photodynamic therapy (PDT) has evolved as a new therapeutic modality for cancer treatment with fewer side effects and drug resistance. Curcumin exhibits PDT activity, but its low bioavailability restricts its clinical application. Here, the bioavailability of curcumin was increased by its complex formation with the Zn(II) center. For a structure-activity relationship study, Zn(II)-based complexes (1-3) comprising N^N-based ligands (2,2'-bipyridine in 1 and 2 or 1,10-phenanthroline in 3) and O^O-based ligands (acetylacetone in 1, monoanionic curcumin in 2 and 3) were synthesized and thoroughly characterized. The X-ray structure of the control complex, 1, indicated a square pyramidal shape of the molecules. Photophysical and TD-DFT studies indicated the potential of 2 and 3 as good visible light type-II photosensitizers for PDT. Guided by the TD-DFT studies, the low-energy visible light-triggered singlet oxygen (1O2) generation efficacy of 2 and 3 was explored in solution and in cancer cells. As predicted by the TD-DFT calculations, these complexes produced 1O2 efficiently in the cytosol of MCF-7 cancer cells and ultimately displayed excellent apoptotic anticancer activity in the presence of light. Moreover, the molecular docking investigation showed that complexes 2 and 3 have very good binding affinities with caspase-9 and p-53 proteins and could activate them for cellular apoptosis. Further molecular dynamics simulations confirmed the stability of 3 in the caspase-9 protein binding site.
Collapse
Affiliation(s)
- Rajesh Kushwaha
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Virendra Singh
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Silda Peters
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Ashish K Yadav
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Dependu Dolui
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Maharashtra 400076, India
| | - Sukanta Saha
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Maharashtra 400076, India
| | - Sujit Sarkar
- Prescience Insilico Pvt. Ltd., Bengaluru, Karnataka 560066, India
| | - Arnab Dutta
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Maharashtra 400076, India
| | - Biplob Koch
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Tumpa Sadhukhan
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Samya Banerjee
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
21
|
Maruyama Y, Mitsutake A. Effect of Main and Side Chains on the Folding Mechanism of the Trp-Cage Miniprotein. ACS OMEGA 2023; 8:43827-43835. [PMID: 38027385 PMCID: PMC10666239 DOI: 10.1021/acsomega.3c05809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/19/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023]
Abstract
Proteins that do not fold into their functional native state have been linked to diseases. In this study, the influence of the main and side chains of individual amino acids on the folding of the tryptophan cage (Trp-cage), a designed 20-residue miniprotein, was analyzed. For this purpose, we calculated the solvation free energy (SFE) contributions of individual atoms by using the 3D-reference interaction site model with the atomic decomposition method. The mechanism by which the Trp-cage is stabilized during the folding process was examined by calculating the total energy, which is the sum of the conformational energy and SFE. The folding process of the Trp-cage resulted in a stable native state, with a total energy that was 62.4 kcal/mol lower than that of the unfolded state. The solvation entropy, which is considered to be responsible for the hydrophobic effect, contributed 31.3 kcal/mol to structural stabilization. In other words, the contribution of the solvation entropy accounted for approximately half of the total contribution to Trp-cage folding. The hydrophobic core centered on Trp6 contributed 15.6 kcal/mol to the total energy, whereas the solvation entropy contribution was 6.3 kcal/mol. The salt bridge formed by the hydrophilic side chains of Asp9 and Arg16 contributed 10.9 and 5.0 kcal/mol, respectively. This indicates that not only the hydrophobic core but also the salt bridge of the hydrophilic side chains gain solvation entropy and contribute to stabilizing the native structure of the Trp-cage.
Collapse
Affiliation(s)
- Yutaka Maruyama
- Data
Science Center for Creative Design and Manufacturing, The Institute of Statistical Mathematics, 10-3 Midori-cho, Tachikawa, Tokyo 190-8562, Japan
- Department
of Physics, School of Science and Technology, Meiji University, 1-1-1
Higashi-Mita, Tama-ku, Kawasaki-shi, Kanagawa 214-8571, Japan
| | - Ayori Mitsutake
- Department
of Physics, School of Science and Technology, Meiji University, 1-1-1
Higashi-Mita, Tama-ku, Kawasaki-shi, Kanagawa 214-8571, Japan
| |
Collapse
|
22
|
da Costa RA, da Costa ADSS, da Rocha JAP, Lima MRDC, da Rocha ECM, Nascimento FCDA, Gomes AJB, do Rego JDAR, Brasil DDSB. Exploring Natural Alkaloids from Brazilian Biodiversity as Potential Inhibitors of the Aedes aegypti Juvenile Hormone Enzyme: A Computational Approach for Vector Mosquito Control. Molecules 2023; 28:6871. [PMID: 37836714 PMCID: PMC10574778 DOI: 10.3390/molecules28196871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/26/2023] [Accepted: 09/02/2023] [Indexed: 10/15/2023] Open
Abstract
This study explores the potential inhibitory activity of alkaloids, a class of natural compounds isolated from Brazilian biodiversity, against the mJHBP enzyme of the Aedes aegypti mosquito. This mosquito is a significant vector of diseases such as dengue, zika, and chikungunya. The interactions between the ligands and the enzyme at the molecular level were evaluated using computational techniques such as molecular docking, molecular dynamics (MD), and molecular mechanics with generalized Born surface area (MMGBSA) free energy calculation. The findings suggest that these compounds exhibit a high binding affinity with the enzyme, as confirmed by the binding free energies obtained in the simulation. Furthermore, the specific enzyme residues that contribute the most to the stability of the complex with the compounds were identified: specifically, Tyr33, Trp53, Tyr64, and Tyr129. Notably, Tyr129 residues were previously identified as crucial in the enzyme inhibition process. This observation underscores the significance of the research findings and the potential of the evaluated compounds as natural insecticides against Aedes aegypti mosquitoes. These results could stimulate the development of new vector control agents that are more efficient and environmentally friendly.
Collapse
Affiliation(s)
- Renato Araújo da Costa
- Laboratory of Biosolutions and Bioplastics of the Amazon, Graduate Program in Science and Environment, Institute of Exact and Natural Sciences, Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil; (A.d.S.S.d.C.); (F.C.d.A.N.); (J.d.A.R.d.R.); (D.d.S.B.B.)
- Laboratory of Molecular Biology, Evolution and Microbiology, Federal Institute of Education, Science and Technology of Pará (IFPA) Campus Abaetetuba, Abaetetuba 68440-000, PA, Brazil; (M.R.d.C.L.); (A.J.B.G.)
| | - Andréia do Socorro Silva da Costa
- Laboratory of Biosolutions and Bioplastics of the Amazon, Graduate Program in Science and Environment, Institute of Exact and Natural Sciences, Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil; (A.d.S.S.d.C.); (F.C.d.A.N.); (J.d.A.R.d.R.); (D.d.S.B.B.)
| | - João Augusto Pereira da Rocha
- Graduate Program in Chemistry, Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil; (J.A.P.d.R.); (E.C.M.d.R.)
| | - Marlon Ramires da Costa Lima
- Laboratory of Molecular Biology, Evolution and Microbiology, Federal Institute of Education, Science and Technology of Pará (IFPA) Campus Abaetetuba, Abaetetuba 68440-000, PA, Brazil; (M.R.d.C.L.); (A.J.B.G.)
| | | | - Fabiana Cristina de Araújo Nascimento
- Laboratory of Biosolutions and Bioplastics of the Amazon, Graduate Program in Science and Environment, Institute of Exact and Natural Sciences, Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil; (A.d.S.S.d.C.); (F.C.d.A.N.); (J.d.A.R.d.R.); (D.d.S.B.B.)
| | - Anderson José Baia Gomes
- Laboratory of Molecular Biology, Evolution and Microbiology, Federal Institute of Education, Science and Technology of Pará (IFPA) Campus Abaetetuba, Abaetetuba 68440-000, PA, Brazil; (M.R.d.C.L.); (A.J.B.G.)
| | - José de Arimatéia Rodrigues do Rego
- Laboratory of Biosolutions and Bioplastics of the Amazon, Graduate Program in Science and Environment, Institute of Exact and Natural Sciences, Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil; (A.d.S.S.d.C.); (F.C.d.A.N.); (J.d.A.R.d.R.); (D.d.S.B.B.)
| | - Davi do Socorro Barros Brasil
- Laboratory of Biosolutions and Bioplastics of the Amazon, Graduate Program in Science and Environment, Institute of Exact and Natural Sciences, Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil; (A.d.S.S.d.C.); (F.C.d.A.N.); (J.d.A.R.d.R.); (D.d.S.B.B.)
| |
Collapse
|