1
|
Long C, Wang J, Gan W, Qin X, Yang R, Chen X. Therapeutic potential of exosomes from adipose-derived stem cells in chronic wound healing. Front Surg 2022; 9:1030288. [PMID: 36248361 PMCID: PMC9561814 DOI: 10.3389/fsurg.2022.1030288] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Chronic wound healing remains a challenging medical problem affecting society, which urgently requires anatomical and functional solutions. Adipose-derived stem cells (ADSCs), mesenchymal stem cells with self-renewal and multiple differentiation ability, play essential roles in wound healing and tissue regeneration. The exosomes from ADSCs (ADSC-EXOs) are extracellular vesicles that are essential for communication between cells. ADSC-EXOs release various bioactive molecules and subsequently restore tissue homeostasis and accelerate wound healing, by promoting various stages of wound repair, including regulating the inflammatory response, promoting wound angiogenesis, accelerating cell proliferation, and modulating wound remodeling. Compared with ADSCs, ADSC-EXOs have the advantages of avoiding ethical issues, being easily stored, and having high stability. In this review, a literature search of PubMed, Medline, and Google Scholar was performed for articles before August 1, 2022 focusing on exosomes from ADSCs, chronic wound repair, and therapeutic potential. This review aimed to provide new therapeutic strategies to help investigators explore how ADSC-EXOs regulate intercellular communication in chronic wounds.
Collapse
Affiliation(s)
- Chengmin Long
- Guangdong Medical University, Zhanjiang, China
- Department of Burn Surgery and Skin Regeneration, the First People’s Hospital of Foshan, Foshan, China
| | - Jingru Wang
- Department of Burn Surgery and Skin Regeneration, the First People’s Hospital of Foshan, Foshan, China
- Key Laboratory of Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China
| | - Wenjun Gan
- Guangdong Medical University, Zhanjiang, China
- Department of Burn Surgery and Skin Regeneration, the First People’s Hospital of Foshan, Foshan, China
| | - Xinchi Qin
- Department of Burn Surgery and Skin Regeneration, the First People’s Hospital of Foshan, Foshan, China
- Zunyi Medical University, Zhuhai, China
| | - Ronghua Yang
- Guangdong Medical University, Zhanjiang, China
- Department of Burn and Plastic Surgery, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China
- Correspondence: Xiaodong Chen Ronghua Yang a_hwa991316 @163.com
| | - Xiaodong Chen
- Guangdong Medical University, Zhanjiang, China
- Department of Burn Surgery and Skin Regeneration, the First People’s Hospital of Foshan, Foshan, China
- Correspondence: Xiaodong Chen Ronghua Yang a_hwa991316 @163.com
| |
Collapse
|
2
|
Discovery of novel MIF inhibitors that attenuate microglial inflammatory activation by structures-based virtual screening and in vitro bioassays. Acta Pharmacol Sin 2022; 43:1508-1520. [PMID: 34429524 PMCID: PMC9160002 DOI: 10.1038/s41401-021-00753-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/27/2021] [Indexed: 02/07/2023] Open
Abstract
Macrophage migration inhibitory factor (MIF) is a pluripotent pro-inflammatory cytokine and is related to acute and chronic inflammatory responses, immune disorders, tumors, and other diseases. In this study, an integrated virtual screening strategy and bioassays were used to search for potent MIF inhibitors. Twelve compounds with better bioactivity than the prototypical MIF-inhibitor ISO-1 (IC50 = 14.41 μM) were identified by an in vitro enzymatic activity assay. Structural analysis revealed that these inhibitors have novel structural scaffolds. Compound 11 was then chosen for further characterization in vitro, and it exhibited marked anti-inflammatory efficacy in LPS-activated BV-2 microglial cells by suppressing the activation of nuclear factor kappa B (NF-κB) and mitogen-activated protein kinases (MAPKs). Our findings suggest that MIF may be involved in the regulation of microglial inflammatory activation and that small-molecule MIF inhibitors may serve as promising therapeutic agents for neuroinflammatory diseases.
Collapse
|
3
|
Garai J, Krekó M, Őrfi L, Jakus PB, Rumbus Z, Kéringer P, Garami A, Vámos E, Kovács D, Bagóné Vántus V, Radnai B, Lóránd T. Tetralone derivatives are MIF tautomerase inhibitors and attenuate macrophage activation and amplify the hypothermic response in endotoxemic mice. J Enzyme Inhib Med Chem 2021; 36:1357-1369. [PMID: 34225560 PMCID: PMC8266241 DOI: 10.1080/14756366.2021.1916010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/30/2021] [Accepted: 04/06/2021] [Indexed: 10/30/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF) is a pro-inflammatory cytokine playing crucial role in immunity. MIF exerts a unique tautomerase enzymatic activity that has relevance concerning its multiple functions and its small molecule inhibitors have been proven to block its pro-inflammatory effects. Here we demonstrate that some of the E-2-arylmethylene-1-tetralones and their heteroanalogues efficiently bind to MIF's active site and inhibit MIF tautomeric (enolase, ketolase activity) functions. A small set of the synthesised derivatives, namely compounds (4), (23), (24), (26) and (32), reduced inflammatory macrophage activation. Two of the selected compounds (24) and (26), however, markedly inhibited ROS and nitrite production, NF-κB activation, TNF-α, IL-6 and CCL-2 cytokine expression. Pre-treatment of mice with compound (24) exaggerated the hypothermic response to high dose of bacterial endotoxin. Our experiments suggest that tetralones and their derivatives inhibit MIF's tautomeric functions and regulate macrophage activation and thermal changes in severe forms of systemic inflammation.
Collapse
Affiliation(s)
- János Garai
- Department of Pathophysiology, Institute for Translational Medicine, University of Pécs, Medical School, Pécs, Hungary
| | - Marcell Krekó
- Department of Pharmaceutical Chemistry, Semmelweis University, Budapest, Hungary
| | - László Őrfi
- Department of Pharmaceutical Chemistry, Semmelweis University, Budapest, Hungary
| | - Péter Balázs Jakus
- Department of Biochemistry and Medical Chemistry, University of Pécs, Medical School, Pécs, Hungary
| | - Zoltán Rumbus
- Department of Thermophysiology, Institute for Translational Medicine, University of Pécs, Medical School, Pécs, Hungary
| | - Patrik Kéringer
- Department of Thermophysiology, Institute for Translational Medicine, University of Pécs, Medical School, Pécs, Hungary
| | - András Garami
- Department of Thermophysiology, Institute for Translational Medicine, University of Pécs, Medical School, Pécs, Hungary
| | - Eszter Vámos
- Department of Biochemistry and Medical Chemistry, University of Pécs, Medical School, Pécs, Hungary
| | - Dominika Kovács
- Department of Biochemistry and Medical Chemistry, University of Pécs, Medical School, Pécs, Hungary
| | - Viola Bagóné Vántus
- Department of Biochemistry and Medical Chemistry, University of Pécs, Medical School, Pécs, Hungary
| | - Balázs Radnai
- Department of Biochemistry and Medical Chemistry, University of Pécs, Medical School, Pécs, Hungary
| | - Tamás Lóránd
- Department of Biochemistry and Medical Chemistry, University of Pécs, Medical School, Pécs, Hungary
| |
Collapse
|
4
|
Peng X, Sun Z, Kuang P, Li L, Chen J, Chen J. Copper-Catalyzed Selective Arylation of Nitriles with Cyclic Diaryl Iodonium Salts: Direct Access to Structurally Diversified Diarylmethane Amides with Potential Neuroprotective and Anticancer Activities. Org Lett 2020; 22:5789-5795. [PMID: 32677838 DOI: 10.1021/acs.orglett.0c01829] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A novel, simple, and high-yielding approach for the preparation of diarylmethane amide derivatives has been developed by reacting cyclic diaryl iodonium salts with nitriles using CuCl as a catalyst. The procedure is efficient with high atom economy and a wide substrate range. Importantly, selective arylation of nitriles was obtained without affecting the phenyl amino/hydroxyl groups. Furthermore, two of the diarylmethane amides (3k, 3s) displayed excellent neuroprotective and anticancer activities.
Collapse
Affiliation(s)
- Xiaopeng Peng
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510060, P.R. China
| | - Zhiqiang Sun
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510060, P.R. China
| | - Peihua Kuang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510060, P.R. China
| | - Ling Li
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510060, P.R. China
| | - Jingxuan Chen
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510060, P.R. China
| | - Jianjun Chen
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510060, P.R. China
| |
Collapse
|
5
|
Xiao Z, Fokkens M, Chen D, Kok T, Proietti G, van Merkerk R, Poelarends GJ, Dekker FJ. Structure-activity relationships for binding of 4-substituted triazole-phenols to macrophage migration inhibitory factor (MIF). Eur J Med Chem 2020; 186:111849. [DOI: 10.1016/j.ejmech.2019.111849] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/18/2019] [Accepted: 11/03/2019] [Indexed: 01/13/2023]
|
6
|
Zhang Y, Gu R, Jia J, Hou T, Zheng LT, Zhen X. Inhibition of macrophage migration inhibitory factor (MIF) tautomerase activity suppresses microglia-mediated inflammatory responses. Clin Exp Pharmacol Physiol 2016; 43:1134-1144. [DOI: 10.1111/1440-1681.12647] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 08/03/2016] [Accepted: 08/17/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Yu Zhang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psychiatric Diseases and the Collaborative Innovation Centre for Brain Science; College of Pharmaceutical Sciences; Soochow University; Suzhou Jiangsu China
- Department of Pharmacy; Xiangyang Hospital Affiliated to Hubei University of Medicine; Xiangyang Hubei China
| | - Ruinan Gu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psychiatric Diseases and the Collaborative Innovation Centre for Brain Science; College of Pharmaceutical Sciences; Soochow University; Suzhou Jiangsu China
| | - Jia Jia
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psychiatric Diseases and the Collaborative Innovation Centre for Brain Science; College of Pharmaceutical Sciences; Soochow University; Suzhou Jiangsu China
| | - Tingjun Hou
- College of Pharmaceutical Sciences; Zhejiang University; Hangzhou Zhejiang China
| | - Long Tai Zheng
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psychiatric Diseases and the Collaborative Innovation Centre for Brain Science; College of Pharmaceutical Sciences; Soochow University; Suzhou Jiangsu China
| | - Xuechu Zhen
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psychiatric Diseases and the Collaborative Innovation Centre for Brain Science; College of Pharmaceutical Sciences; Soochow University; Suzhou Jiangsu China
| |
Collapse
|