1
|
Wang Q, Wei Z, Hu X, Wang Z, Dong Y, Liu H. Molecular generation strategy and optimization based on A2C reinforcement learning in de novo drug design. Bioinformatics 2023; 39:btad693. [PMID: 37971970 PMCID: PMC10689670 DOI: 10.1093/bioinformatics/btad693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/08/2023] [Accepted: 11/15/2023] [Indexed: 11/19/2023] Open
Abstract
MOTIVATION In the field of pharmacochemistry, it is a time-consuming and expensive process for the new drug development. The existing drug design methods face a significant challenge in terms of generation efficiency and quality. RESULTS In this paper, we proposed a novel molecular generation strategy and optimization based on A2C reinforcement learning. In molecular generation strategy, we adopted transformer-DNN to retain the scaffolds advantages, while accounting for the generated molecules' similarity and internal diversity by dynamic parameter adjustment, further improving the overall quality of molecule generation. In molecular optimization, we introduced heterogeneous parallel supercomputing for large-scale molecular docking based on message passing interface communication technology to rapidly obtain bioactive information, thereby enhancing the efficiency of drug design. Experiments show that our model can generate high-quality molecules with multi-objective properties at a high generation efficiency, with effectiveness and novelty close to 100%. Moreover, we used our method to assist shandong university school of pharmacy to find several candidate drugs molecules of anti-PEDV. AVAILABILITY AND IMPLEMENTATION The datasets involved in this method and the source code are freely available to academic users at https://github.com/wq-sunshine/MomdTDSRL.git.
Collapse
Affiliation(s)
- Qian Wang
- College of Computer Science and Technology, Ocean University of China, Qingdao, Shandong 266100, China
| | - Zhiqiang Wei
- College of Computer Science and Technology, Ocean University of China, Qingdao, Shandong 266100, China
| | - Xiaotong Hu
- College of Computer Science and Technology, Ocean University of China, Qingdao, Shandong 266100, China
| | - Zhuoya Wang
- Center for High Performance Computing and System Simulation, National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China
| | - Yujie Dong
- Marine Big Data Center of Institute for Advanced Ocean Study, Ocean University of China, Qingdao, Shandong 266100, China
| | - Hao Liu
- College of Computer Science and Technology, Ocean University of China, Qingdao, Shandong 266100, China
| |
Collapse
|
2
|
Hassan HHA, Ismail MI, Abourehab MAS, Boeckler FM, Ibrahim TM, Arafa RK. In Silico Targeting of Fascin Protein for Cancer Therapy: Benchmarking, Virtual Screening and Molecular Dynamics Approaches. Molecules 2023; 28:molecules28031296. [PMID: 36770963 PMCID: PMC9921211 DOI: 10.3390/molecules28031296] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/12/2023] [Accepted: 01/15/2023] [Indexed: 01/31/2023] Open
Abstract
Fascin is an actin-bundling protein overexpressed in various invasive metastatic carcinomas through promoting cell migration and invasion. Therefore, blocking Fascin binding sites is considered a vital target for antimetastatic drugs. This inspired us to find new Fascin binding site blockers. First, we built an active compound set by collecting reported small molecules binding to Fascin's binding site 2. Consequently, a high-quality decoys set was generated employing DEKOIS 2.0 protocol to be applied in conducting the benchmarking analysis against the selected Fascin structures. Four docking programs, MOE, AutoDock Vina, VinaXB, and PLANTS were evaluated in the benchmarking study. All tools indicated better-than-random performance reflected by their pROC-AUC values against the Fascin crystal structure (PDB: ID 6I18). Interestingly, PLANTS exhibited the best screening performance and recognized potent actives at early enrichment. Accordingly, PLANTS was utilized in the prospective virtual screening effort for repurposing FDA-approved drugs (DrugBank database) and natural products (NANPDB). Further assessment via molecular dynamics simulations for 100 ns endorsed Remdesivir (DrugBank) and NANPDB3 (NANPDB) as potential binders to Fascin binding site 2. In conclusion, this study delivers a model for implementing a customized DEKOIS 2.0 benchmark set to enhance the VS success rate against new potential targets for cancer therapies.
Collapse
Affiliation(s)
- Heba H. A. Hassan
- Drug Design and Discovery Laboratory, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza 12578, Egypt
| | - Muhammad I. Ismail
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The British University in Egypt, Al-Sherouk City, Cairo-Suez Desert Road, Cairo 11837, Egypt
| | - Mohammed A. S. Abourehab
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Frank M. Boeckler
- Lab for Molecular Design and Pharmaceutical Biophysics, Department of Pharmacy and Biochemistry, Institute of Pharmaceutical Sciences, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Tamer M. Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
- Correspondence: or (T.M.I.); (R.K.A.)
| | - Reem K. Arafa
- Drug Design and Discovery Laboratory, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza 12578, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza 12578, Egypt
- Correspondence: or (T.M.I.); (R.K.A.)
| |
Collapse
|
3
|
Zhang W, Huang J. EViS: An Enhanced Virtual Screening Approach Based on Pocket-Ligand Similarity. J Chem Inf Model 2022; 62:498-510. [PMID: 35084171 DOI: 10.1021/acs.jcim.1c00944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Virtual screening (VS) is a popular technology in drug discovery to identify a new scaffold of actives for a specific drug target, which can be classified into ligand-based and structure-based approaches. As the number of protein-ligand complex structures available in public databases increases, it would be possible to develop a template searching-based VS approach that utilizes such information. In this work, we proposed an enhanced VS approach, which is termed EViS, to integrate ligand docking, protein pocket template searching, and ligand template shape similarity calculation. A novel and simple PL-score to characterize local pocket-ligand template similarity was used to evaluate the screening compounds. Benchmark tests were performed on three datasets including DUDE, LIT-PCBA, and DEKOIS. EViS achieved the average enrichment factors (EFs) of 27.8 and 23.4 at a 1% cutoff for experimental and predicted structures on the widely used DUDE dataset, respectively. Detailed data analysis shows that EViS benefits from obtaining favorable ligand poses from docking and using such ligand geometric information to perform three-dimensional (3D) ligand similarity calculations, and the PL-score is efficient to screen compounds based on template searching in the protein-ligand structure database.
Collapse
Affiliation(s)
- Wenyi Zhang
- Westlake AI Therapeutics Lab, Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou, Zhejiang 310024, China.,Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang 310024, China.,Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang 310024, China
| | - Jing Huang
- Westlake AI Therapeutics Lab, Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou, Zhejiang 310024, China.,Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang 310024, China.,Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang 310024, China
| |
Collapse
|
4
|
Aviz-Amador A, Contreras-Puentes N, Mercado-Camargo J. Virtual screening using docking and molecular dynamics of cannabinoid analogs against CB 1 and CB 2 receptors. Comput Biol Chem 2021; 95:107590. [PMID: 34700256 DOI: 10.1016/j.compbiolchem.2021.107590] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 09/09/2021] [Accepted: 10/07/2021] [Indexed: 01/02/2023]
Abstract
BACKGROUND Cannabis sativa has been attributed to different pharmacological properties. A number of secondary metabolites such as tetrahydrocannabinol (THC), cannabinol (CBD), and different analogs, with highly promising biological activity on CB1 and CB2 receptors, have been identified. METHODS Thus, this study aimed was to evaluate the activity of THC, CBD, and their analogs using molecular docking and molecular dynamics simulations (MD) methods. Initially, the molecules (ligands) were selected by bioinformatics searches in databases. Subsequently, CB1 and CB2 receptors were retrieved from the protein data bank database. Afterward, each receptor and its ligands were optimized to perform molecular docking. Then, MD Simulation was performed with the most stable ligand-receptor complexes. Finally, the Molecular Mechanics-Generalized Born Surface Area (MM-PBSA) method was applied to analyze the binding free energy between ligands and cannabinoid receptors. RESULTS The results obtained showed that ligand LS-61176 presented the best affinity in the molecular docking analysis. Also, this analog could be a CB1 negative allosteric modulator like CBD and probably an agonist in CB2 like THC and CBD according to their dynamic behavior in silico. The possibility of having a THC and a CBD analog (LS-61176) as a promising molecule for experimental evaluation since it could have no central side-effects on CB1 and have effects of CB2 useful in pain, inflammation, and some immunological disorders. Docking results were validate using ROC curve for both cannabinoids receptor where AUC for CB1 receptor was 0.894±0.024, and for CB2 receptor AUC was 0.832±0032, indicating good affinity prediction.
Collapse
Affiliation(s)
- Antistio Aviz-Amador
- Pharmacology and Therapeutic Group, Faculty of Pharmaceutical Sciences, University of Cartagena, Cartagena, Colombia
| | - Neyder Contreras-Puentes
- Pharmacology and Therapeutic Group, Faculty of Pharmaceutical Sciences, University of Cartagena, Cartagena, Colombia; GINUMED, Faculty of Medicine, Rafael Nuñez University Corporation, Cartagena, Colombia.
| | | |
Collapse
|
5
|
Elghoneimy LK, Ismail MI, Boeckler FM, Azzazy HME, Ibrahim TM. Facilitating SARS CoV-2 RNA-Dependent RNA polymerase (RdRp) drug discovery by the aid of HCV NS5B palm subdomain binders: In silico approaches and benchmarking. Comput Biol Med 2021; 134:104468. [PMID: 34015671 PMCID: PMC8111889 DOI: 10.1016/j.compbiomed.2021.104468] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/25/2021] [Accepted: 04/30/2021] [Indexed: 01/18/2023]
Abstract
Corona Virus 2019 Disease (COVID-19) is a rapidly emerging pandemic caused by a newly discovered beta coronavirus, called Sever Acute Respiratory Syndrome Coronavirus 2 (SARS CoV-2). SARS CoV-2 is an enveloped, single stranded RNA virus that depends on RNA-dependent RNA polymerase (RdRp) to replicate. Therefore, SARS CoV-2 RdRp is considered as a promising target to cease virus replication. SARS CoV-2 polymerase shows high structural similarity to Hepatitis C Virus-1b genotype (HCV-1b) polymerase. Arising from the high similarity between SARS CoV-2 RdRp and HCV NS5B, we utilized the reported small-molecule binders to the palm subdomain of HCV NS5B (genotype 1b) to generate a high-quality DEKOIS 2.0 benchmark set and conducted a benchmarking analysis against HCV NS5B. The three highly cited and publicly available docking tools AutoDock Vina, FRED and PLANTS were benchmarked. Based on the benchmarking results and analysis via pROC-Chemotype plot, PLANTS showed the best screening performance and can recognize potent binders at the early enrichment. Accordingly, we used PLANTS in a prospective virtual screening to repurpose both the FDA-approved drugs (DrugBank) and the HCV-NS5B palm subdomain binders (BindingDB) for SARS CoV-2 RdRp palm subdomain. Further assessment by molecular dynamics simulations for 50 ns recommended diosmin (from DrugBank) and compound 3 (from BindingDB) to be the best potential binders to SARS CoV-2 RdRp palm subdomain. The best predicted compounds are recommended to be biologically investigated against COVID-19. In conclusion, this work provides in-silico analysis to propose possible SARS CoV-2 RdRp palm subdomain binders recommended as a remedy for COVID-19. Up-to-our knowledge, this study is the first to propose binders at the palm subdomain of SARS CoV2 RdRp. Furthermore, this study delivers an example of how to make use of a high quality custom-made DEKOIS 2.0 benchmark set as a procedure to elevate the virtual screening success rate against a vital target of the rapidly emerging pandemic.
Collapse
Affiliation(s)
- Laila K Elghoneimy
- Department of Chemistry, School of Sciences and Engineering, American University in Cairo, AUC Avenue, SSE # 1184, P.O. Box 74, New Cairo, 11835, Egypt
| | - Muhammad I Ismail
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The British University in Egypt, Al-Sherouk City, Cairo-Suez Desert Road, 11837, Cairo, Egypt
| | - Frank M Boeckler
- Department of Pharmacy, Eberhard-Karls University, Auf der Morgenstelle 8, 72076, Tuebingen, Germany
| | - Hassan M E Azzazy
- Department of Chemistry, School of Sciences and Engineering, American University in Cairo, AUC Avenue, SSE # 1184, P.O. Box 74, New Cairo, 11835, Egypt
| | - Tamer M Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt.
| |
Collapse
|
6
|
Ibrahim TM, Ismail MI, Bauer MR, Bekhit AA, Boeckler FM. Supporting SARS-CoV-2 Papain-Like Protease Drug Discovery: In silico Methods and Benchmarking. Front Chem 2020; 8:592289. [PMID: 33251185 PMCID: PMC7674952 DOI: 10.3389/fchem.2020.592289] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/29/2020] [Indexed: 12/17/2022] Open
Abstract
The coronavirus disease 19 (COVID-19) is a rapidly growing pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Its papain-like protease (SARS-CoV-2 PLpro) is a crucial target to halt virus replication. SARS-CoV PLpro and SARS-CoV-2 PLpro share an 82.9% sequence identity and a 100% sequence identity for the binding site reported to accommodate small molecules in SARS-CoV. The flexible key binding site residues Tyr269 and Gln270 for small-molecule recognition in SARS-CoV PLpro exist also in SARS-CoV-2 PLpro. This inspired us to use the reported small-molecule binders to SARS-CoV PLpro to generate a high-quality DEKOIS 2.0 benchmark set. Accordingly, we used them in a cross-benchmarking study against SARS-CoV-2 PLpro. As there is no SARS-CoV-2 PLpro structure complexed with a small-molecule ligand publicly available at the time of manuscript submission, we built a homology model based on the ligand-bound SARS-CoV structure for benchmarking and docking purposes. Three publicly available docking tools FRED, AutoDock Vina, and PLANTS were benchmarked. All showed better-than-random performances, with FRED performing best against the built model. Detailed performance analysis via pROC-Chemotype plots showed a strong enrichment of the most potent bioactives in the early docking ranks. Cross-benchmarking against the X-ray structure complexed with a peptide-like inhibitor confirmed that FRED is the best-performing tool. Furthermore, we performed cross-benchmarking against the newly introduced X-ray structure complexed with a small-molecule ligand. Interestingly, its benchmarking profile and chemotype enrichment were comparable to the built model. Accordingly, we used FRED in a prospective virtual screen of the DrugBank database. In conclusion, this study provides an example of how to harness a custom-made DEKOIS 2.0 benchmark set as an approach to enhance the virtual screening success rate against a vital target of the rapidly emerging pandemic.
Collapse
Affiliation(s)
- Tamer M. Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Muhammad I. Ismail
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Matthias R. Bauer
- Structure, Biophysics and Fragment-Based Lead Generation, Discovery Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
- Department of Pharmacy, Eberhard-Karls University, Tuebingen, Germany
| | - Adnan A. Bekhit
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
- Pharmacy Program, Allied Health Department, College of Health and Sport Sciences, University of Bahrain, Zallaq, Bahrain
| | - Frank M. Boeckler
- Department of Pharmacy, Eberhard-Karls University, Tuebingen, Germany
| |
Collapse
|
7
|
New acrylamide-sulfisoxazole conjugates as dihydropteroate synthase inhibitors. Bioorg Med Chem 2020; 28:115444. [DOI: 10.1016/j.bmc.2020.115444] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 12/12/2022]
|
8
|
Ibrahim TM, Ernst C, Lange A, Hennig S, Boeckler FM. Small-Molecule Intervention At The Dimerization Interface Of Survivin By Novel Rigidized Scaffolds. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:4247-4263. [PMID: 31908412 PMCID: PMC6927794 DOI: 10.2147/dddt.s224561] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/12/2019] [Indexed: 11/24/2022]
Abstract
Introduction Survivin is a nodal protein involved in several cellular pathways. It is a member of the IAP family and an integral component of the chromosomal passenger complex, where it binds to borealin and INCENP through its dimerization interface. By targeting survivin with a small molecule at its dimerization interface, inhibition of the proliferation of cancer cells has been suggested. With Abbott 8, a small-molecule dimerization inhibitor has been recently reported. The structure–activity relationship of this series of inhibitors implied that the middle pyridin-2(1H)-one ring did not tolerate modifications of any kind. Methods Based on the synthetic strategy of Abbott 8 using multicomponent reactions, we synthesized a series of small molecules bearing a novel rigidized core scaffold. This rigidization strategy was accomplished by integrating the pyridin-2(1H)-one and its 6-phenyl substituent into a tricyclic structure, linking position 5 of pyridin-2(1H)-one to the phenyl substituent by rings of different sizes. The new scaffolds were designed based on in silico molecular dynamics of survivin. Results Binding of these rigidized scaffolds to the recombinant L54M mutant of survivin was evaluated, revealing affinities in the low micromolar range. Conclusion This easily accessible, new class of survivin-dimerization modulators is an interesting starting point for further lead optimization.
Collapse
Affiliation(s)
- Tamer M Ibrahim
- Laboratory for Molecular Design and Pharmaceutical Biophysics, Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Eberhard Karls University Tübingen, Tübingen, Germany.,Pharmaceutical Chemistry Department, Faculty of Pharmacy, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Christoph Ernst
- Laboratory for Molecular Design and Pharmaceutical Biophysics, Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Andreas Lange
- Laboratory for Molecular Design and Pharmaceutical Biophysics, Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Susanne Hennig
- Laboratory for Molecular Design and Pharmaceutical Biophysics, Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Frank M Boeckler
- Laboratory for Molecular Design and Pharmaceutical Biophysics, Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Eberhard Karls University Tübingen, Tübingen, Germany
| |
Collapse
|
9
|
Synthesis, modeling and biological evaluation of some pyrazolo[3,4-d]pyrimidinones and pyrazolo[4,3-e][1,2,4]triazolo[4,3-a]pyrimidinones as anti-inflammatory agents. Bioorg Chem 2019; 90:102844. [DOI: 10.1016/j.bioorg.2019.03.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 03/03/2019] [Accepted: 03/09/2019] [Indexed: 12/11/2022]
|
10
|
Eldehna WM, Almahli H, Ibrahim TM, Fares M, Al-Warhi T, Boeckler FM, Bekhit AA, Abdel-Aziz HA. Synthesis, in vitro biological evaluation and in silico studies of certain arylnicotinic acids conjugated with aryl (thio)semicarbazides as a novel class of anti-leishmanial agents. Eur J Med Chem 2019; 179:335-346. [PMID: 31260888 DOI: 10.1016/j.ejmech.2019.06.051] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/14/2019] [Accepted: 06/18/2019] [Indexed: 11/29/2022]
Abstract
Herein we introduce new compounds as conjugates of arylnicotinic acids with aryl (thio)semicarbazide derivatives. Based on a structure-guided approach, they were designed to possess anti-leishmanial activity through anti-folate mechanism, via targeting Leishmania major pteridine reductase 1 (Lm-PTR1). The in vitro anti-promastigote and anti-amastigote activity were promising for many thiosemicarbazide derivatives and superior to the reference miltefosine. The most active compounds 8i and 8j exhibited their anti-amastigote activity with IC50 values of 4.2 and 3.3 μM, respectively, compared to reference miltefosine (IC50 value of 7.3). Their anti-folate mechanism was confirmed via the ability of folic and folinic acids to reverse the anti-leishmanial activity of these compounds, comparably to Lm-PTR1 inhibitor trimethoprim. Interestingly, the in vitro cytotoxicity test of the most active compounds displayed higher selectivity indices than that of miltefosine emphasizing their safety on mammalian cells. Furthermore, the docking experiments on Lm-PTR1 as a putative target rationalized the in vitro anti-leishmanial activity. The in silico predictions exhibited promising pharmacokinetics and drug-likeness profiles of the most active compounds. Generally, this work introduces a fruitful matrix for new anti-leishmanial chemotype which would extend the chemical space for the anti-leishmanial activity.
Collapse
Affiliation(s)
- Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt.
| | - Hadia Almahli
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo, 11829, Egypt
| | - Tamer M Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt; Molecular Design and Pharmaceutical Biophysics, Institute of Pharmaceutical Sciences, Eberhard Karls University Tuebingen, Auf der Morgenstelle 8, 72076, Tuebingen, Germany.
| | - Mohamed Fares
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo, 11829, Egypt; School of Chemistry, University of Wollongong, Wollongong, 2522, New South Wales, Australia
| | - Tarfah Al-Warhi
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Frank M Boeckler
- Molecular Design and Pharmaceutical Biophysics, Institute of Pharmaceutical Sciences, Eberhard Karls University Tuebingen, Auf der Morgenstelle 8, 72076, Tuebingen, Germany
| | - Adnan A Bekhit
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt; Pharmacy Program, Allied Health Department, College of Health Sciences, University of Bahrain, P.O. Box 32038, Kingdom of Bahrain
| | - Hatem A Abdel-Aziz
- Department of Applied Organic Chemistry, National Research Center, Dokki, Cairo, 12622, Egypt
| |
Collapse
|
11
|
Elzahhar PA, Alaaeddine R, Ibrahim TM, Nassra R, Ismail A, Chua BS, Frkic RL, Bruning JB, Wallner N, Knape T, von Knethen A, Labib H, El-Yazbi AF, Belal AS. Shooting three inflammatory targets with a single bullet: Novel multi-targeting anti-inflammatory glitazones. Eur J Med Chem 2019; 167:562-582. [PMID: 30818268 DOI: 10.1016/j.ejmech.2019.02.034] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 02/04/2019] [Accepted: 02/10/2019] [Indexed: 12/29/2022]
|
12
|
Synthesis, in silico experiments and biological evaluation of 1,3,4-trisubstituted pyrazole derivatives as antimalarial agents. Eur J Med Chem 2019; 163:353-366. [DOI: 10.1016/j.ejmech.2018.11.067] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/05/2018] [Accepted: 11/28/2018] [Indexed: 11/20/2022]
|
13
|
Green synthesis, antileishmanial activity evaluation, and in silico studies of new amino acid-coupled 1,2,4-triazoles. Med Chem Res 2018. [DOI: 10.1007/s00044-018-2274-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
14
|
Chaaban I, Rizk OH, Ibrahim TM, Henen SS, El-Khawass ESM, Bayad AE, El-Ashmawy IM, Nematalla HA. Synthesis, anti-inflammatory screening, molecular docking, and COX-1,2/-5-LOX inhibition profile of some novel quinoline derivatives. Bioorg Chem 2018; 78:220-235. [PMID: 29602046 DOI: 10.1016/j.bioorg.2018.03.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 03/16/2018] [Accepted: 03/18/2018] [Indexed: 12/11/2022]
Abstract
New quinoline compounds comprising pyrazole scaffold through different amide linkages were synthesized. The synthesized compounds were evaluated for their anti-inflammatory activity. Eight compounds (5c, 11b,c, 12c, 14a,b, 20a and 21a) were found to exhibit promising anti-inflammatory profiles in acute and sub-acute inflammatory models. They were screened for their ulcerogenic activity and none of them showed significant ulcerogenic activity comparable to the reference drug celecoxib and are well tolerated by experimental animals with high safety margin (ALD50 > 0.3 g/kg). Compounds 5c, 11b,c, 12c, 14a,b, 20a and 21a showed significant in vitro LOX inhibitory activity higher than that of zileuton. In vitro COX-1/COX-2 inhibition study revealed that compounds 12c, 14a,b and 20a showed higher selectivity towards COX-2 than COX-1. Among the tested compounds, 12c, 14a and 14b showed the highest inhibitory activity against COX-2 with an IC50 values of 0.1, 0.11 and 0.11 μM respectively. The docking experiments attempted to postulate the binding mode for the most active compounds in the binding site of COX-2 enzymes and confirmed the high selectivity binding towards COX-2 enzyme over COX-1.
Collapse
Affiliation(s)
- Ibrahim Chaaban
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Ola H Rizk
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Pharos University in Alexandria, 21311, Egypt.
| | - Tamer M Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Shery S Henen
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - El-Sayeda M El-Khawass
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Aida E Bayad
- Pharmacology Department, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Ibrahim M El-Ashmawy
- Pharmacology Department, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt; Department of Veterinary Medicine, Faculty of Agricultural and Veterinary Medicine, Qassim University, P.O. Box 1482, Buraydah, Al-Qassim, Saudi Arabia
| | - Hisham A Nematalla
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Pharos University in Alexandria, 21311, Egypt
| |
Collapse
|
15
|
Synthesis, biological evaluation and molecular modeling of novel thienopyrimidinone and triazolothienopyrimidinone derivatives as dual anti-inflammatory antimicrobial agents. Bioorg Chem 2018; 77:38-46. [DOI: 10.1016/j.bioorg.2017.12.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 12/28/2017] [Accepted: 12/29/2017] [Indexed: 11/19/2022]
|
16
|
Réau M, Langenfeld F, Zagury JF, Lagarde N, Montes M. Decoys Selection in Benchmarking Datasets: Overview and Perspectives. Front Pharmacol 2018; 9:11. [PMID: 29416509 PMCID: PMC5787549 DOI: 10.3389/fphar.2018.00011] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 01/05/2018] [Indexed: 11/24/2022] Open
Abstract
Virtual Screening (VS) is designed to prospectively help identifying potential hits, i.e., compounds capable of interacting with a given target and potentially modulate its activity, out of large compound collections. Among the variety of methodologies, it is crucial to select the protocol that is the most adapted to the query/target system under study and that yields the most reliable output. To this aim, the performance of VS methods is commonly evaluated and compared by computing their ability to retrieve active compounds in benchmarking datasets. The benchmarking datasets contain a subset of known active compounds together with a subset of decoys, i.e., assumed non-active molecules. The composition of both the active and the decoy compounds subsets is critical to limit the biases in the evaluation of the VS methods. In this review, we focus on the selection of decoy compounds that has considerably changed over the years, from randomly selected compounds to highly customized or experimentally validated negative compounds. We first outline the evolution of decoys selection in benchmarking databases as well as current benchmarking databases that tend to minimize the introduction of biases, and secondly, we propose recommendations for the selection and the design of benchmarking datasets.
Collapse
Affiliation(s)
- Manon Réau
- Laboratoire GBA, EA4627, Conservatoire National des Arts et Métiers, Paris, France
| | - Florent Langenfeld
- Laboratoire GBA, EA4627, Conservatoire National des Arts et Métiers, Paris, France
| | - Jean-François Zagury
- Laboratoire GBA, EA4627, Conservatoire National des Arts et Métiers, Paris, France
| | - Nathalie Lagarde
- Laboratoire GBA, EA4627, Conservatoire National des Arts et Métiers, Paris, France
| | - Matthieu Montes
- Laboratoire GBA, EA4627, Conservatoire National des Arts et Métiers, Paris, France
| |
Collapse
|
17
|
Synthesis, modeling and biological evaluation of hybrids from pyrazolo[1,5c]pyrimidine as antileishmanial agents. Future Med Chem 2017; 9:1913-1929. [DOI: 10.4155/fmc-2017-0120] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim: A new series of pyrazolo[1,5-c]pyrimidines were synthesized by different hybridization strategies. Methodology: All structures were confirmed by IR, 1H, 13C, 1H-13C heteronuclear multiple-quantum correlation (HMQC) spectra and microanalysis. They were evaluated for their in vitro antileishmanial activity against miltefosine and amphotericin B deoxycholate as reference drugs. Results: The most active compounds 2a and 9a demonstrated superior potencies to miltefosine by ten- and six-fold, respectively, for the promastigote form, and by 5.5-fold for the amastigote form. Their binding scenario to Leishmania major pteridine reductase was rationalized by docking experiments. In addition, all compounds were safe for the experimental animals orally up to 150 mg/kg and parenterally up to 75 mg/kg. Conclusion: This study provides novel chemotype class for antileishmanial activity. [Formula: see text]
Collapse
|
18
|
Synthesis, evaluation and modeling of some triazolothienopyrimidinones as anti-inflammatory and antimicrobial agents. Future Med Chem 2017. [PMID: 28635307 DOI: 10.4155/fmc-2016-0242] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
AIM New triazolotetrahydrobenzothienopyrimidinone derivatives were synthesized. EXPERIMENTAL Their structures were confirmed, and their anti-inflammatory, antimicrobial activities and ulcerogenic potentials were evaluated. RESULTS Compounds 7a, 10a and 11a showed minimal ulcerogenic effect and high selectivity toward human recombinant COX-2 over COX-1 enzyme with IC50 values of 1.39, 1.22 and 0.56 μM, respectively. Their docking outcome correlated with their biological activity and confirmed the high selectivity binding toward COX-2. Compound 12b displayed antimicrobial activity comparable to that of ampicillin against Escherichia coli while compounds 6 and 11c were similar to ampicillin against Staphylococcus aureus. In addition, compounds 7a, 9a, 10b and 11c showed dual anti-inflammatory/antimicrobial activities. CONCLUSION This work represents a promising matrix for developing new potential anti-inflammatory, antimicrobial and dual antimicrobial/anti-inflammatory candidates. [Formula: see text].
Collapse
|