1
|
Hönig SMN, Flachsenberg F, Ehrt C, Neumann A, Schmidt R, Lemmen C, Rarey M. SpaceGrow: efficient shape-based virtual screening of billion-sized combinatorial fragment spaces. J Comput Aided Mol Des 2024; 38:13. [PMID: 38493240 PMCID: PMC10944417 DOI: 10.1007/s10822-024-00551-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/13/2024] [Indexed: 03/18/2024]
Abstract
The growing size of make-on-demand chemical libraries is posing new challenges to cheminformatics. These ultra-large chemical libraries became too large for exhaustive enumeration. Using a combinatorial approach instead, the resource requirement scales approximately with the number of synthons instead of the number of molecules. This gives access to billions or trillions of compounds as so-called chemical spaces with moderate hardware and in a reasonable time frame. While extremely performant ligand-based 2D methods exist in this context, 3D methods still largely rely on exhaustive enumeration and therefore fail to apply. Here, we present SpaceGrow: a novel shape-based 3D approach for ligand-based virtual screening of billions of compounds within hours on a single CPU. Compared to a conventional superposition tool, SpaceGrow shows comparable pose reproduction capacity based on RMSD and superior ranking performance while being orders of magnitude faster. Result assessment of two differently sized subsets of the eXplore space reveals a higher probability of finding superior results in larger spaces highlighting the potential of searching in ultra-large spaces. Furthermore, the application of SpaceGrow in a drug discovery workflow was investigated in four examples involving G protein-coupled receptors (GPCRs) with the aim to identify compounds with similar binding capabilities and molecular novelty.
Collapse
Affiliation(s)
- Sophia M N Hönig
- BioSolveIT, An der Ziegelei 79, 53757, Sankt Augustin, Germany
- Universität Hamburg, ZBH - Center for Bioinformatics, Albert-Einstein-Ring 8-10, 22761, Hamburg, Germany
| | | | - Christiane Ehrt
- Universität Hamburg, ZBH - Center for Bioinformatics, Albert-Einstein-Ring 8-10, 22761, Hamburg, Germany
| | | | - Robert Schmidt
- BioSolveIT, An der Ziegelei 79, 53757, Sankt Augustin, Germany
| | | | - Matthias Rarey
- Universität Hamburg, ZBH - Center for Bioinformatics, Albert-Einstein-Ring 8-10, 22761, Hamburg, Germany.
| |
Collapse
|
2
|
Green biomanufacturing promoted by automatic retrobiosynthesis planning and computational enzyme design. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2021.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
3
|
Design and Manufacture of a Low-Cost Microfluidic System for the Synthesis of Giant Liposomes for the Encapsulation of Yeast Homologues: Applications in the Screening of Membrane-Active Peptide Libraries. MICROMACHINES 2021; 12:mi12111377. [PMID: 34832789 PMCID: PMC8619280 DOI: 10.3390/mi12111377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/02/2021] [Accepted: 11/06/2021] [Indexed: 11/24/2022]
Abstract
The discovery of new membrane-active peptides (MAPs) is an area of considerable interest in modern biotechnology considering their ample applicability in several fields ranging from the development of novel delivery vehicles (via cell-penetrating peptides) to responding to the latent threat of antibiotic resistance (via antimicrobial peptides). Different strategies have been devised for such discovery process, however, most of them involve costly, tedious, and low-efficiency methods. We have recently proposed an alternative route based on constructing a non-rationally designed library recombinantly expressed on the yeasts’ surfaces. However, a major challenge is to conduct a robust and high-throughput screening of possible candidates with membrane activity. Here, we addressed this issue by putting forward low-cost microfluidic platforms for both the synthesis of Giant Unilamellar Vesicles (GUVs) as mimicking entities of cell membranes and for providing intimate contact between GUVs and homologues of yeasts expressing MAPs. The homologues were chitosan microparticles functionalized with the membrane translocating peptide Buforin II, while intimate contact was through passive micromixers with different channel geometries. Both microfluidic platforms were evaluated both in silico (via Multiphysics simulations) and in vitro with a high agreement between the two approaches. Large and stable GUVs (5–100 µm) were synthesized effectively, and the mixing processes were comprehensively studied leading to finding the best operating parameters. A serpentine micromixer equipped with circular features showed the highest average encapsulation efficiencies, which was explained by the unique mixing patterns achieved within the device. The microfluidic devices developed here demonstrate high potential as platforms for the discovery of novel MAPs as well as for other applications in the biomedical field such as the encapsulation and controlled delivery of bioactive compounds.
Collapse
|
4
|
Patel H, Ihlenfeldt WD, Judson PN, Moroz YS, Pevzner Y, Peach ML, Delannée V, Tarasova NI, Nicklaus MC. SAVI, in silico generation of billions of easily synthesizable compounds through expert-system type rules. Sci Data 2020; 7:384. [PMID: 33177514 PMCID: PMC7658252 DOI: 10.1038/s41597-020-00727-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/16/2020] [Indexed: 01/08/2023] Open
Abstract
We have made available a database of over 1 billion compounds predicted to be easily synthesizable, called Synthetically Accessible Virtual Inventory (SAVI). They have been created by a set of transforms based on an adaptation and extension of the CHMTRN/PATRAN programming languages describing chemical synthesis expert knowledge, which originally stem from the LHASA project. The chemoinformatics toolkit CACTVS was used to apply a total of 53 transforms to about 150,000 readily available building blocks (enamine.net). Only single-step, two-reactant syntheses were calculated for this database even though the technology can execute multi-step reactions. The possibility to incorporate scoring systems in CHMTRN allowed us to subdivide the database of 1.75 billion compounds in sets according to their predicted synthesizability, with the most-synthesizable class comprising 1.09 billion synthetic products. Properties calculated for all SAVI products show that the database should be well-suited for drug discovery. It is being made publicly available for free download from https://doi.org/10.35115/37n9-5738.
Collapse
Affiliation(s)
- Hitesh Patel
- Computer-Aided Drug Design Group, Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | | | - Philip N Judson
- Heather Lea, Bland Hill, Norwood, Harrogate, HG3 1TE, England
| | - Yurii S Moroz
- Enamine Ltd, 78 Chervonotkatska Street, Suite 1, Kyiv, 02094, Ukraine and Chemspace LLC, 85 Chervonotkatska Street, Suite 1, Kyiv, 02094, Ukraine
| | - Yuri Pevzner
- Computer-Aided Drug Design Group, Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
- AbbVie, Inc., North Chicago, IL, 60064, USA
| | - Megan L Peach
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Victorien Delannée
- Computer-Aided Drug Design Group, Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Nadya I Tarasova
- Synthetic Biologics and Drug Discovery Group, Laboratory of Cancer Immunometabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Marc C Nicklaus
- Computer-Aided Drug Design Group, Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA.
| |
Collapse
|
5
|
Tripolitsiotis NP, Thomaidi M, Neochoritis CG. The Ugi Three‐Component Reaction; a Valuable Tool in Modern Organic Synthesis. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001157] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
| | - Maria Thomaidi
- Chemistry Department School of Science and Engineering University of Crete 70013 Heraklion Greece
| | | |
Collapse
|
6
|
Vázquez J, López M, Gibert E, Herrero E, Luque FJ. Merging Ligand-Based and Structure-Based Methods in Drug Discovery: An Overview of Combined Virtual Screening Approaches. Molecules 2020; 25:E4723. [PMID: 33076254 PMCID: PMC7587536 DOI: 10.3390/molecules25204723] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/06/2020] [Accepted: 10/11/2020] [Indexed: 12/20/2022] Open
Abstract
Virtual screening (VS) is an outstanding cornerstone in the drug discovery pipeline. A variety of computational approaches, which are generally classified as ligand-based (LB) and structure-based (SB) techniques, exploit key structural and physicochemical properties of ligands and targets to enable the screening of virtual libraries in the search of active compounds. Though LB and SB methods have found widespread application in the discovery of novel drug-like candidates, their complementary natures have stimulated continued efforts toward the development of hybrid strategies that combine LB and SB techniques, integrating them in a holistic computational framework that exploits the available information of both ligand and target to enhance the success of drug discovery projects. In this review, we analyze the main strategies and concepts that have emerged in the last years for defining hybrid LB + SB computational schemes in VS studies. Particularly, attention is focused on the combination of molecular similarity and docking, illustrating them with selected applications taken from the literature.
Collapse
Affiliation(s)
- Javier Vázquez
- Pharmacelera, Plaça Pau Vila, 1, Sector C 2a, Edificio Palau de Mar, 08039 Barcelona, Spain;
- Department of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy and Food Sciences, Institute of Biomedicine (IBUB), and Institute of Theoretical and Computational Chemistry (IQTC-UB), University of Barcelona, Av. Prat de la Riba 171, E-08921 Santa Coloma de Gramanet, Spain
| | - Manel López
- AB Science, Parc Scientifique de Luminy, Zone Luminy Enterprise, Case 922, 163 Av. de Luminy, 13288 Marseille, France;
| | - Enric Gibert
- Pharmacelera, Plaça Pau Vila, 1, Sector C 2a, Edificio Palau de Mar, 08039 Barcelona, Spain;
| | - Enric Herrero
- Pharmacelera, Plaça Pau Vila, 1, Sector C 2a, Edificio Palau de Mar, 08039 Barcelona, Spain;
| | - F. Javier Luque
- Department of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy and Food Sciences, Institute of Biomedicine (IBUB), and Institute of Theoretical and Computational Chemistry (IQTC-UB), University of Barcelona, Av. Prat de la Riba 171, E-08921 Santa Coloma de Gramanet, Spain
| |
Collapse
|
7
|
Burai Patrascu M, Pottel J, Pinus S, Bezanson M, Norrby PO, Moitessier N. From desktop to benchtop with automated computational workflows for computer-aided design in asymmetric catalysis. Nat Catal 2020. [DOI: 10.1038/s41929-020-0468-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
8
|
Affiliation(s)
- Marco Foscato
- Department of Chemistry, University of Bergen, Allégaten 41, N-5007 Bergen, Norway
| | - Vidar R. Jensen
- Department of Chemistry, University of Bergen, Allégaten 41, N-5007 Bergen, Norway
| |
Collapse
|
9
|
Sommer K, Flachsenberg F, Rarey M. NAOMInext – Synthetically feasible fragment growing in a structure-based design context. Eur J Med Chem 2019; 163:747-762. [DOI: 10.1016/j.ejmech.2018.11.075] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/27/2018] [Accepted: 11/30/2018] [Indexed: 12/31/2022]
|
10
|
van Hilten N, Chevillard F, Kolb P. Virtual Compound Libraries in Computer-Assisted Drug Discovery. J Chem Inf Model 2019; 59:644-651. [PMID: 30624918 DOI: 10.1021/acs.jcim.8b00737] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The use of virtual compound libraries in computer-assisted drug discovery has gained in popularity and has already lead to numerous successes. Here, we examine key static and dynamic virtual library concepts that have been developed over the past decade. To facilitate the search for new drugs in the vastness of chemical space, there are still several hurdles to overcome, including the current difficulties in screening and parsing efficiency and the need for more reliable vendors and accurate synthesis prediction tools. These challenges should be tackled by both the developers of virtual libraries and by their users, in order for the exploration of chemical space to live up to its potential.
Collapse
Affiliation(s)
- Niek van Hilten
- Department of Pharmaceutical Chemistry , Philipps-University Marburg , Marbacher Weg 6 , 35032 Marburg , Germany
| | - Florent Chevillard
- Department of Pharmaceutical Chemistry , Philipps-University Marburg , Marbacher Weg 6 , 35032 Marburg , Germany
| | - Peter Kolb
- Department of Pharmaceutical Chemistry , Philipps-University Marburg , Marbacher Weg 6 , 35032 Marburg , Germany
| |
Collapse
|
11
|
Chevillard F, Rimmer H, Betti C, Pardon E, Ballet S, van Hilten N, Steyaert J, Diederich WE, Kolb P. Binding-Site Compatible Fragment Growing Applied to the Design of β 2-Adrenergic Receptor Ligands. J Med Chem 2018; 61:1118-1129. [PMID: 29364664 DOI: 10.1021/acs.jmedchem.7b01558] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Fragment-based drug discovery is intimately linked to fragment extension approaches that can be accelerated using software for de novo design. Although computers allow for the facile generation of millions of suggestions, synthetic feasibility is however often neglected. In this study we computationally extended, chemically synthesized, and experimentally assayed new ligands for the β2-adrenergic receptor (β2AR) by growing fragment-sized ligands. In order to address the synthetic tractability issue, our in silico workflow aims at derivatized products based on robust organic reactions. The study started from the predicted binding modes of five fragments. We suggested a total of eight diverse extensions that were easily synthesized, and further assays showed that four products had an improved affinity (up to 40-fold) compared to their respective initial fragment. The described workflow, which we call "growing via merging" and for which the key tools are available online, can improve early fragment-based drug discovery projects, making it a useful creative tool for medicinal chemists during structure-activity relationship (SAR) studies.
Collapse
Affiliation(s)
- Florent Chevillard
- Department of Pharmaceutical Chemistry, Philipps-University Marburg , Marbacher Weg 6, 35032 Marburg, Germany
| | - Helena Rimmer
- Department of Pharmaceutical Chemistry and Center for Tumor Biology and Immunology, Philipps-University Marburg , Hans-Meerwein-Straße 3, 35032 Marburg, Germany
| | - Cecilia Betti
- Research Group of Organic Chemistry, Departments of Chemistry and Bio-Engineering Sciences, Vrije Universiteit Brussel , Pleinlaan 2, 1050 Brussels, Belgium
| | - Els Pardon
- VIB-VUB Center for Structural Biology, VIB , 1050 Brussels, Belgium.,Structural Biology Brussels, Vrije Universiteit Brussel , 1050 Brussels, Belgium
| | - Steven Ballet
- Research Group of Organic Chemistry, Departments of Chemistry and Bio-Engineering Sciences, Vrije Universiteit Brussel , Pleinlaan 2, 1050 Brussels, Belgium
| | - Niek van Hilten
- Department of Pharmaceutical Chemistry, Philipps-University Marburg , Marbacher Weg 6, 35032 Marburg, Germany
| | - Jan Steyaert
- VIB-VUB Center for Structural Biology, VIB , 1050 Brussels, Belgium.,Structural Biology Brussels, Vrije Universiteit Brussel , 1050 Brussels, Belgium
| | - Wibke E Diederich
- Department of Pharmaceutical Chemistry and Center for Tumor Biology and Immunology, Philipps-University Marburg , Hans-Meerwein-Straße 3, 35032 Marburg, Germany
| | - Peter Kolb
- Department of Pharmaceutical Chemistry, Philipps-University Marburg , Marbacher Weg 6, 35032 Marburg, Germany
| |
Collapse
|