1
|
Yi B, Zhang W, Yi ZQ, Chen F, Zeng Q, Yi N, Lv L, Zhang F, Xie Y, Tan JP. Photoinduced Radical Annulations of Tetrahydroisoquinoline Derivatives with 2-Benzothiazolimines: Highly Diastereoselective Synthesis of Fused Hexahydroimidazo[2,1- a]isoquinolines. J Org Chem 2024; 89:13491-13500. [PMID: 39241227 DOI: 10.1021/acs.joc.4c01691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2024]
Abstract
We report herein a photoinduced radical 1,3-dipolar cycloaddition between the 2-benzothiazolimines and tetrahydroisoquinoline derivatives with an organo-photocatalyst. A variety of benzothiazole-based hexahydroimidazo[2,1-a]isoquinoline architectures with great synthetic value were conveniently and efficiently constructed in moderate to good yields and excellent diastereoselectivities with highly tolerant functional groups. Moreover, the practicality and utility of this protocol were demonstrated by scale-up synthesis and facile elaboration. Preliminary mechanistic investigations indicated that the reaction proceeded via a visible-light-induced radical 1,3-dipolar cycloaddition pathway. This finding is expected to stimulate a more extensive exploration of the green and concise synthesis of structurally diverse heterocyclic molecules in the synthetic community.
Collapse
Affiliation(s)
- Bing Yi
- Hunan Province Key Laboratory of Environmental Catalysis and Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, P. R. China
| | - Wenhui Zhang
- Hunan Province Key Laboratory of Environmental Catalysis and Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, P. R. China
| | - Zi-Qi Yi
- CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Fei Chen
- CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Qianqian Zeng
- Hunan Province Key Laboratory of Environmental Catalysis and Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, P. R. China
| | - Niannian Yi
- Hunan Province Key Laboratory of Environmental Catalysis and Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, P. R. China
| | - Li Lv
- Hunan Province Key Laboratory of Environmental Catalysis and Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, P. R. China
| | - Fan Zhang
- Hunan Province Key Laboratory of Environmental Catalysis and Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, P. R. China
| | - Yanjun Xie
- Hunan Province Key Laboratory of Environmental Catalysis and Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, P. R. China
| | - Jian-Ping Tan
- Hunan Province Key Laboratory of Environmental Catalysis and Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, P. R. China
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| |
Collapse
|
2
|
Sun W, Sheng X, Li P, Li R, Guo Z, Lin H, Gong Y. Identification of vilazodone as a novel plasminogen activator inhibitor to overcome Alzheimer's disease through virtual screening, molecular dynamics simulation, and biological evaluation. Arch Pharm (Weinheim) 2024; 357:e2400263. [PMID: 38816779 DOI: 10.1002/ardp.202400263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 06/01/2024]
Abstract
Urokinase-type plasminogen activator (PLAU), a member of the S1 serine peptidase family in Clan PA, plays a crucial role in the conversion of plasminogen into active plasmin. However, the precise role of PLAU in the central nervous system remains incompletely elucidated, particularly, in relation to Alzheimer's disease (AD). In this study, we successfully identified that PLAU could promote cell senescence in neurons, indicating it as a potential target for AD treatment through a systematic approach, which included both bioinformatics analysis and experimental verification. Subsequently, a structure-based virtual screening approach was employed to identify a potential PLAU inhibitor from the Food and Drug Administration-approved drug database. After analyzing docking scores and thoroughly examining the receptor-ligand complex interaction modes, vilazodone emerges as a highly promising PLAU inhibitor. Additionally, molecular docking and molecular dynamics simulations were performed to generate a complex structure between the relatively stable inhibitor vilazodone and PLAU. Of note, vilazodone exhibited superior cytotoxicity against senescent cells, showing a senolytic activity through targeting PLAU and ultimately producing an anti-AD effect. These findings suggest that targeting PLAU could represent a promising therapeutic strategy for AD. Furthermore, investigating the inhibitory potential and structural modifications based on vilazodone may provide valuable insights for future drug development targeting PLAU in AD disorders.
Collapse
Affiliation(s)
- Wenxiu Sun
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Department of Biopharmaceutics and Food Science, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xuan Sheng
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Department of Biopharmaceutics and Food Science, Nanjing University of Chinese Medicine, Nanjing, China
| | - Peiru Li
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Department of Biopharmaceutics and Food Science, Nanjing University of Chinese Medicine, Nanjing, China
| | - Runwu Li
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Department of Biopharmaceutics and Food Science, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zihe Guo
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Department of Biopharmaceutics and Food Science, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hao Lin
- The State Key Lab of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, China
| | - Yuesong Gong
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Department of Biopharmaceutics and Food Science, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
3
|
Sharma M, Sharma A, Thakur S, Nuthakki VK, Jamwal A, Nandi U, Jadhav HR, Bharate SB. Discovery of blood-brain barrier permeable and orally bioavailable caffeine-based amide derivatives as acetylcholinesterase inhibitors. Bioorg Chem 2023; 139:106719. [PMID: 37473478 DOI: 10.1016/j.bioorg.2023.106719] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/10/2023] [Accepted: 07/06/2023] [Indexed: 07/22/2023]
Abstract
Caffeine is one of the privileged natural products that shows numerous effects on the central nervous system. Herein, thirty-one caffeine-based amide derivatives were synthesized and evaluated in vitro for their anticholinesterase activity. The introduction of the amide group to the caffeine core augmented its anticholinesterase activity from an IC50 value of 128 to 1.32 µM (derivative, 6i). The SAR study revealed that N7 substitution on caffeine core is favorable over N1, and the presence of amide 'carbonyl' as a part of the linker contributes to the biological activity. The caffeine core of 6i exhibits interactions with the peripheral anionic site, whereas the N-benzyl ring fits nicely inside the catalytic anionic site. Analog 6i inhibits AChE in a mixed-type mode (Ki 4.58 µM) and crosses the BBB in an in-vitro PAMPA assay. Compound 6i has a descent metabolic stability in MLM (>70% remaining after 30 min) and favorable oral pharmacokinetics in Swiss albino mice.
Collapse
Affiliation(s)
- Mohit Sharma
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India; Academy of Scientific & Innovative Research, Ghaziabad 201002, India
| | - Ankita Sharma
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India; Academy of Scientific & Innovative Research, Ghaziabad 201002, India
| | - Shikha Thakur
- Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Pilani Campus, Vidya Vihar, Pilani 333031, Rajasthan, India
| | - Vijay K Nuthakki
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India; Academy of Scientific & Innovative Research, Ghaziabad 201002, India
| | - Ashiya Jamwal
- Academy of Scientific & Innovative Research, Ghaziabad 201002, India; Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Utpal Nandi
- Academy of Scientific & Innovative Research, Ghaziabad 201002, India; Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Hemant R Jadhav
- Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Pilani Campus, Vidya Vihar, Pilani 333031, Rajasthan, India
| | - Sandip B Bharate
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India; Academy of Scientific & Innovative Research, Ghaziabad 201002, India; Department of Natural Products and Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, India.
| |
Collapse
|
4
|
Bhurta D, Hossain MM, Bhardwaj M, Showket F, Nandi U, Dar MJ, Bharate SB. Orally bioavailable styryl derivative of rohitukine-N-oxide inhibits CDK9/T1 and the growth of pancreatic cancer cells. Eur J Med Chem 2023; 258:115533. [PMID: 37302342 DOI: 10.1016/j.ejmech.2023.115533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/14/2023] [Accepted: 05/28/2023] [Indexed: 06/13/2023]
Abstract
The chromone alkaloid is one of the classical pharmacophores for cyclin-dependent kinases (CDKs) and represents the first CDK inhibitor to reach clinical trials. Rohitukine (1), a chromone alkaloid isolated from Dysoxylum binectariferum inspired the discovery of several clinical candidates. The N-oxide derivative of rohitukine occurs naturally, with no reports on its biological activity. Herein, we report isolation, biological evaluation, and synthetic modification of rohitukine N-oxide for CDK9/T1 inhibition and antiproliferative activity in cancer cells. Rohitukine N-oxide (2) inhibits CDK9/T1 (IC50 7.6 μM) and shows antiproliferative activity in the colon and pancreatic cancer cells. The chloro-substituted styryl derivatives, 2b, and 2l, inhibit CDK9/T1 with IC50 values of 0.17 and 0.15 μM, respectively. These derivatives display cellular antiproliferative activity in HCT 116 (colon) and MIA PaCa-2 (pancreatic) cancer cells with GI50 values of 2.5-9.7 μM with excellent selectivity over HEK293 (embryonic kidney) cells. Both analogs induce cell death in MIA PaCa-2 cells via inducing intracellular ROS production, reducing mitochondrial membrane potential, and inducing apoptosis. These analogs are metabolically stable in liver microsomes and have a decent oral pharmacokinetics in BALB/c mice. The molecular modeling studies indicated their strong binding at the ATP-binding site of CDK7/H and CDK9/T1.
Collapse
Affiliation(s)
- Deendyal Bhurta
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India; Academy of Scientific & Innovative Research, Ghaziabad, 201002, India
| | - Md Mehedi Hossain
- Academy of Scientific & Innovative Research, Ghaziabad, 201002, India; Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Mahir Bhardwaj
- Academy of Scientific & Innovative Research, Ghaziabad, 201002, India; Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Farheen Showket
- Academy of Scientific & Innovative Research, Ghaziabad, 201002, India; Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Utpal Nandi
- Academy of Scientific & Innovative Research, Ghaziabad, 201002, India; Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Mohd Jamal Dar
- Academy of Scientific & Innovative Research, Ghaziabad, 201002, India; Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Sandip B Bharate
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India; Academy of Scientific & Innovative Research, Ghaziabad, 201002, India; Department of Natural Products & Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, 500007, India.
| |
Collapse
|
5
|
Abdullaha M, Banoo R, Nuthakki VK, Sharma M, Kaur S, Thakur S, Kumar A, Jadhav HR, Bharate SB. Methoxy-naphthyl-Linked N-Benzyl Pyridinium Styryls as Dual Cholinesterase Inhibitors: Design, Synthesis, Biological Evaluation, and Structure-Activity Relationship. ACS OMEGA 2023; 8:17591-17608. [PMID: 37251153 PMCID: PMC10210183 DOI: 10.1021/acsomega.2c08167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 04/25/2023] [Indexed: 05/31/2023]
Abstract
The multifaceted nature of Alzheimer's disease (AD) indicates the need for multitargeted agents as potential therapeutics. Both cholinesterases (ChEs), acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), play a vital role in disease progression. Thus, inhibiting both ChEs is more beneficial than only one for effectively managing AD. The present study provides a detailed lead optimization of the e-pharmacophore-generated pyridinium styryl scaffold to discover a dual ChE inhibitor. A structure-activity relationship analysis indicated the importance of three structural fragments, methoxy-naphthyl, vinyl-pyridinium, and substituted-benzyl, in a dual ChE inhibitor pharmacophore. The optimized 6-methoxy-naphthyl derivative, 7av (SB-1436), inhibits EeAChE and eqBChE with IC50 values of 176 and 370 nM, respectively. The kinetic study has shown that 7av inhibits AChE and BChE in a non-competitive manner with ki values of 46 and 115 nM, respectively. The docking and molecular dynamics simulation demonstrated that 7av binds with the catalytic and peripheral anionic sites of AChE and BChE. Compound 7av also significantly stops the self-aggregation of Aβ. The data presented herein indicate the potential of 7av for further investigation in preclinical models of AD.
Collapse
Affiliation(s)
- Mohd Abdullaha
- Natural
Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
- Academy
of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Razia Banoo
- Natural
Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
- Academy
of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vijay K. Nuthakki
- Natural
Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
- Academy
of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mohit Sharma
- Natural
Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
- Academy
of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sukhleen Kaur
- Academy
of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine, Jammu 180001, India
| | - Shikha Thakur
- Department
of Pharmacy, Birla Institute of Technology
and Sciences Pilani, Pilani 333031, Rajasthan, India
| | - Ajay Kumar
- Academy
of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine, Jammu 180001, India
| | - Hemant R. Jadhav
- Department
of Pharmacy, Birla Institute of Technology
and Sciences Pilani, Pilani 333031, Rajasthan, India
| | - Sandip B. Bharate
- Natural
Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
- Academy
of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
6
|
Nuthakki VK, Choudhary S, Reddy CN, Bhatt S, Jamwal A, Jotshi A, Raghuvanshi R, Sharma A, Thakur S, Jadhav HR, Bharate SS, Nandi U, Kumar A, Bharate SB. Design, Synthesis, and Pharmacological Evaluation of Embelin-Aryl/alkyl Amine Hybrids as Orally Bioavailable Blood-Brain Barrier Permeable Multitargeted Agents with Therapeutic Potential in Alzheimer's Disease: Discovery of SB-1448. ACS Chem Neurosci 2023; 14:1193-1219. [PMID: 36812360 DOI: 10.1021/acschemneuro.3c00030] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
The complex and multifaceted nature of Alzheimer's disease has brought about a pressing demand to develop ligands targeting multiple pathways to combat its outrageous prevalence. Embelin is a major secondary metabolite of Embelia ribes Burm f., one of the oldest herbs in Indian traditional medicine. It is a micromolar inhibitor of cholinesterases (ChEs) and β-site amyloid precursor protein cleaving enzyme 1 (BACE-1) with poor absorption, distribution, metabolism, and excretion (ADME) properties. Herein, we synthesize a series of embelin-aryl/alkyl amine hybrids to improve its physicochemical properties and therapeutic potency against targeted enzymes. The most active derivative, 9j (SB-1448), inhibits human acetylcholinesterase (hAChE), human butyrylcholinesterase (hBChE), and human BACE-1 (hBACE-1) with IC50 values of 0.15, 1.6, and 0.6 μM, respectively. It inhibits both ChEs noncompetitively with ki values of 0.21 and 1.3 μM, respectively. It is orally bioavailable, crosses blood-brain barrier (BBB), inhibits Aβ self-aggregation, possesses good ADME properties, and protects neuronal cells from scopolamine-induced cell death. The oral administration of 9j at 30 mg/kg attenuates the scopolamine-induced cognitive impairments in C57BL/6J mice.
Collapse
Affiliation(s)
- Vijay K Nuthakki
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sushil Choudhary
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Chilakala N Reddy
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shipra Bhatt
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ashiya Jamwal
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anshika Jotshi
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Rinky Raghuvanshi
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ankita Sharma
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shikha Thakur
- Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Pilani Campus, Vidya Vihar, Pilani 333031, Rajasthan, India
| | - Hemant R Jadhav
- Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Pilani Campus, Vidya Vihar, Pilani 333031, Rajasthan, India
| | - Sonali S Bharate
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, India
| | - Utpal Nandi
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ajay Kumar
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sandip B Bharate
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
7
|
Raghuvanshi R, Jamwal A, Nandi U, Bharate SB. Multitargeted C9-substituted ester and ether derivatives of berberrubine for Alzheimer's disease: Design, synthesis, biological evaluation, metabolic stability, and pharmacokinetics. Drug Dev Res 2023; 84:121-140. [PMID: 36461610 DOI: 10.1002/ddr.22017] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/20/2022] [Accepted: 11/08/2022] [Indexed: 12/04/2022]
Abstract
Berberrubine is a naturally occurring isoquinoline alkaloid and a bioactive metabolite of berberine. Berberine exhibits a wide range of pharmacological activities, including cholinesterase inhibition. The cholinesterase inhibitors provide symptomatic treatment for Alzheimer's disease; however, multitarget-directed ligands have the potential as disease-modifying therapeutics. Herein, we prepared a series of C9-substituted berberrubine derivatives intending to discover dual cholinesterase and beta-site amyloid-precursor protein cleaving enzyme 1 (BACE-1) inhibitors. Most synthesized derivatives possessed balanced dual inhibition (AChE and BChE) activity in the submicromolar range and a moderate inhibition against BACE-1. Two most active ester derivatives, 12a and 11d, display inhibition of AChE, BChE, and BACE-1. The 3-methoxybenzoyl ester derivative, 12a, inhibits electric eel acetylcholinesterase (EeAChE), equine serum butyrylcholinesterase (eqBChE), and human hBACE-1 with IC50 values of 0.5, 4.3, and 11.9 μM, respectively and excellent BBB permeability (Pe = 8 × 10-6 cm/s). The ester derivative 12a is metabolically unstable; however, its ether analog 13 is stable in HLM and exhibits inhibition of AChE, BChE, and BACE-1 with IC50 values of 0.44, 3.8, and 17.9 μM, respectively. The ether analog also inhibits self-aggregation of Aβ and crosses BBB (Pe = 7.3 × 10-6 cm/s). Administration of 13 at 5 mg/kg (iv) in Wistar rats showed excellent plasma exposure with AUC0-∞ of 28,834 ng min/ml. In conclusion, the multitargeted berberrubine ether derivative 13 is CNS permeable and has good ADME properties.
Collapse
Affiliation(s)
- Rinky Raghuvanshi
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India.,Academy of Scientific & Innovative Research, Ghaziabad, India
| | - Ashiya Jamwal
- Academy of Scientific & Innovative Research, Ghaziabad, India.,Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Utpal Nandi
- Academy of Scientific & Innovative Research, Ghaziabad, India.,Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Sandip B Bharate
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India.,Academy of Scientific & Innovative Research, Ghaziabad, India
| |
Collapse
|
8
|
Investigation of 2-phenylimidazo[1,2- a]quinolines as potential antiproliferative agents. Future Med Chem 2023; 15:229-239. [PMID: 36892071 DOI: 10.4155/fmc-2022-0152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023] Open
Abstract
Background: It has been demonstrated that the lead compound 2-phenylimidazo[1,2-a]quinoline 1a selectively inhibits CYP1 enzymes. Additionally, CYP1 inhibition has been linked to inducing antiproliferative effects in various breast cancer cell lines as well as relieving drug resistance caused by CYP1 upregulation. Materials & methods: Herein, 54 novel analogs of 2-phenylimidazo[1,2-a]quinoline 1a have been synthesized with varied substitution on the phenyl and imidazole rings. Antiproliferative testing was conducted using 3H thymidine uptake assays. Results: 2-Phenylimidazo[1,2-a]quinoline 1a and phenyl-substituted analogs 1c (3-OMe), 1n (2,3-napthalene) displayed excellent anti-proliferative activities, demonstrating their potency against cancer cell lines for the first time. Molecular modeling suggested that 1c and 1n bind similarly to 1a in the CYP1 binding site.
Collapse
|
9
|
Bhurta D, Bharate SB. Discovery of Pongol, the Furanoflavonoid, as an Inhibitor of CDK7/Cyclin H/MAT1 and Its Preliminary Structure-Activity Relationship. ACS OMEGA 2023; 8:1291-1300. [PMID: 36643464 PMCID: PMC9835647 DOI: 10.1021/acsomega.2c06733] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/01/2022] [Indexed: 06/13/2023]
Abstract
Natural products have been a great source of leads for cancer drug discovery. The cyclin-dependent kinases (CDKs) play a vital role in the initiation and progression of cancer. The CDK-activating kinase, CDK7/cyclin H/MAT1, has recently gained tremendous attention in targeted cancer drug discovery. Herein, we screened a small library of pure natural products in an ADP-Glo CDK7/H kinase assay that yielded a series of furano- and naphthoflavonoids among actives. Pongol (SBN-88), the hydroxy-substituted furanoflavonoid, inhibits CDK7/H as well as CDK9/T1 with IC50 values of 0.93 and 0.83 μM, respectively, and >20-fold selectivity over CDK2/E1 (IC50 > 20 μM). The molecular docking and molecular dynamics simulation revealed that the presence of phenolic -OH in pongol is vital for kinase inhibition, as its absence resulted in a significant loss in activity (e.g., lanceolatin B). The prime MM-GBSA calculations revealed the presence of strong lipophilic and H-bonding interactions of pongol with CDKs.
Collapse
Affiliation(s)
- Deendyal Bhurta
- Natural
Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
- Academy
of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sandip B. Bharate
- Natural
Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
- Academy
of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
10
|
Potent and Selective Inhibition of CYP1A2 Enzyme by Obtusifolin and Its Chemopreventive Effects. Pharmaceutics 2022; 14:pharmaceutics14122683. [PMID: 36559174 PMCID: PMC9786103 DOI: 10.3390/pharmaceutics14122683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022] Open
Abstract
Obtusifolin, a major anthraquinone component present in the seeds of Cassia tora, exhibits several biological activities, including the amelioration of memory impairment, prevention of breast cancer metastasis, and reduction of cartilage damage in osteoarthritis. We aimed to evaluate the inhibitory effects of obtusifolin and its analogs on CYP1A enzymes, which are responsible for activating procarcinogens, and investigate its inhibitory mechanism and chemopreventive effects. P450-selective substrates were incubated with human liver microsomes (HLMs) or recombinant CYP1A1 and CYP1A2 in the presence of obtusifolin and its four analogs. After incubation, the samples were analyzed using liquid chromatography-tandem mass spectrometry. Molecular docking simulations were performed using the crystal structure of CYP1A2 to identify the critical interactions between anthraquinones and human CYP1A2. Obtusifolin potently and selectively inhibited CYP1A2-mediated phenacetin O-deethylation (POD) with a Ki value of 0.031 µM in a competitive inhibitory manner in HLMs, whereas it exhibited negligible inhibitory effect against other P450s (IC50 > 28.6 µM). Obtusifolin also inhibited CYP1A1- and CYP1A2-mediated POD and ethoxyresorufin O-deethylation with IC50 values of <0.57 µM when using recombinant enzymes. Our molecular docking models suggested that the high CYP1A2 inhibitory activity of obtusifolin may be attributed to the combination of hydrophobic interactions and hydrogen bonding. This is the first report of selective and potent inhibitory effects of obtusifolin against CYP1A, indicating their potential chemopreventive effects.
Collapse
|
11
|
Fassio AV, Shub L, Ponzoni L, McKinley J, O’Meara MJ, Ferreira RS, Keiser MJ, de Melo Minardi RC. Prioritizing Virtual Screening with Interpretable Interaction Fingerprints. J Chem Inf Model 2022; 62:4300-4318. [DOI: 10.1021/acs.jcim.2c00695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Alexandre V. Fassio
- São Carlos Institute of Physics, University of São Paulo, São Carlos, São Paulo 13563-120, Brazil
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Laura Shub
- Department of Pharmaceutical Chemistry, Department of Bioengineering & Therapeutic Sciences, Institute for Neurodegenerative Diseases, Kavli Institute for Fundamental Neuroscience, Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, California 94143, United States
| | - Luca Ponzoni
- Department of Pharmaceutical Chemistry, Department of Bioengineering & Therapeutic Sciences, Institute for Neurodegenerative Diseases, Kavli Institute for Fundamental Neuroscience, Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, California 94143, United States
| | - Jessica McKinley
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Matthew J. O’Meara
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Rafaela S. Ferreira
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Michael J. Keiser
- Department of Pharmaceutical Chemistry, Department of Bioengineering & Therapeutic Sciences, Institute for Neurodegenerative Diseases, Kavli Institute for Fundamental Neuroscience, Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, California 94143, United States
| | - Raquel C. de Melo Minardi
- Department of Computer Science, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| |
Collapse
|
12
|
Guttman Y, Kerem Z. Computer-Aided (In Silico) Modeling of Cytochrome P450-Mediated Food–Drug Interactions (FDI). Int J Mol Sci 2022; 23:ijms23158498. [PMID: 35955630 PMCID: PMC9369352 DOI: 10.3390/ijms23158498] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 02/01/2023] Open
Abstract
Modifications of the activity of Cytochrome 450 (CYP) enzymes by compounds in food might impair medical treatments. These CYP-mediated food–drug interactions (FDI) play a major role in drug clearance in the intestine and liver. Inter-individual variation in both CYP expression and structure is an important determinant of FDI. Traditional targeted approaches have highlighted a limited number of dietary inhibitors and single-nucleotide variations (SNVs), each determining personal CYP activity and inhibition. These approaches are costly in time, money and labor. Here, we review computational tools and databases that are already available and are relevant to predicting CYP-mediated FDIs. Computer-aided approaches such as protein–ligand interaction modeling and the virtual screening of big data narrow down hundreds of thousands of items in databanks to a few putative targets, to which the research resources could be further directed. Structure-based methods are used to explore the structural nature of the interaction between compounds and CYP enzymes. However, while collections of chemical, biochemical and genetic data are available today and call for the implementation of big-data approaches, ligand-based machine-learning approaches for virtual screening are still scarcely used for FDI studies. This review of CYP-mediated FDIs promises to attract scientists and the general public.
Collapse
|
13
|
Wang LS, Zhou Y, Lei SG, Yu XX, Huang C, Wu YD, Wu AX. Iodine-Mediated Multicomponent Cascade Cyclization and Sulfenylation/Selenation: Synthesis of Imidazo[2,1- a]isoquinoline Derivatives. Org Lett 2022; 24:4449-4453. [PMID: 35696662 DOI: 10.1021/acs.orglett.2c01681] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel multicomponent cascade cyclization and sulfenylation/selenation using aryl methyl ketones, isoquinolin-1-amine, and sodium arylsulfinates/1,2-diphenyldiselane to synthesize imidazo[2,1-a]isoquinoline derivatives in one-pot via the construction of two C-N bonds and one C-S/C-Se bond has been reported. This multicomponent reaction realizes simultaneous C(sp3)-H amination and sulfenylation/selenation, avoiding complicated prior substrate preparation. This process has simple operating conditions and good substrate compatibility.
Collapse
Affiliation(s)
- Li-Sheng Wang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - You Zhou
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Shuang-Gui Lei
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Xiao-Xiao Yu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Chun Huang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Yan-Dong Wu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - An-Xin Wu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
14
|
Llorach-Pares L, Nonell-Canals A, Avila C, Sanchez-Martinez M. Computer-Aided Drug Design (CADD) to De-Orphanize Marine Molecules: Finding Potential Therapeutic Agents for Neurodegenerative and Cardiovascular Diseases. Mar Drugs 2022; 20:53. [PMID: 35049908 PMCID: PMC8781171 DOI: 10.3390/md20010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 11/30/2022] Open
Abstract
Computer-aided drug design (CADD) techniques allow the identification of compounds capable of modulating protein functions in pathogenesis-related pathways, which is a promising line on drug discovery. Marine natural products (MNPs) are considered a rich source of bioactive compounds, as the oceans are home to much of the planet's biodiversity. Biodiversity is directly related to chemodiversity, which can inspire new drug discoveries. Therefore, natural products (NPs) in general, and MNPs in particular, have been used for decades as a source of inspiration for the design of new drugs. However, NPs present both opportunities and challenges. These difficulties can be technical, such as the need to dive or trawl to collect the organisms possessing the compounds, or biological, due to their particular marine habitats and the fact that they can be uncultivable in the laboratory. For all these difficulties, the contributions of CADD can play a very relevant role in simplifying their study, since, for example, no biological sample is needed to carry out an in-silico analysis. Therefore, the amount of natural product that needs to be used in the entire preclinical and clinical study is significantly reduced. Here, we exemplify how this combination between CADD and MNPs can help unlock their therapeutic potential. In this study, using a set of marine invertebrate molecules, we elucidate their possible molecular targets and associated therapeutic potential, establishing a pipeline that can be replicated in future studies.
Collapse
Affiliation(s)
- Laura Llorach-Pares
- Mind the Byte S.L., 08028 Barcelona, Catalonia, Spain; (L.L.-P.); (A.N.-C.)
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology and Biodiversity Research Institute (IRBio), University of Barcelona, 08028 Barcelona, Catalonia, Spain;
| | | | - Conxita Avila
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology and Biodiversity Research Institute (IRBio), University of Barcelona, 08028 Barcelona, Catalonia, Spain;
| | | |
Collapse
|
15
|
Goldwaser E, Laurent C, Lagarde N, Fabrega S, Nay L, Villoutreix BO, Jelsch C, Nicot AB, Loriot MA, Miteva MA. Machine learning-driven identification of drugs inhibiting cytochrome P450 2C9. PLoS Comput Biol 2022; 18:e1009820. [PMID: 35081108 PMCID: PMC8820617 DOI: 10.1371/journal.pcbi.1009820] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 02/07/2022] [Accepted: 01/10/2022] [Indexed: 11/19/2022] Open
Abstract
Cytochrome P450 2C9 (CYP2C9) is a major drug-metabolizing enzyme that represents 20% of the hepatic CYPs and is responsible for the metabolism of 15% of drugs. A general concern in drug discovery is to avoid the inhibition of CYP leading to toxic drug accumulation and adverse drug-drug interactions. However, the prediction of CYP inhibition remains challenging due to its complexity. We developed an original machine learning approach for the prediction of drug-like molecules inhibiting CYP2C9. We created new predictive models by integrating CYP2C9 protein structure and dynamics knowledge, an original selection of physicochemical properties of CYP2C9 inhibitors, and machine learning modeling. We tested the machine learning models on publicly available data and demonstrated that our models successfully predicted CYP2C9 inhibitors with an accuracy, sensitivity and specificity of approximately 80%. We experimentally validated the developed approach and provided the first identification of the drugs vatalanib, piriqualone, ticagrelor and cloperidone as strong inhibitors of CYP2C9 with IC values <18 μM and sertindole, asapiprant, duvelisib and dasatinib as moderate inhibitors with IC50 values between 40 and 85 μM. Vatalanib was identified as the strongest inhibitor with an IC50 value of 0.067 μM. Metabolism assays allowed the characterization of specific metabolites of abemaciclib, cloperidone, vatalanib and tarafenacin produced by CYP2C9. The obtained results demonstrate that such a strategy could improve the prediction of drug-drug interactions in clinical practice and could be utilized to prioritize drug candidates in drug discovery pipelines.
Collapse
Affiliation(s)
- Elodie Goldwaser
- INSERM U1268 « Medicinal Chemistry and Translational Research », UMR 8038 CiTCoM, CNRS—University of Paris, Paris, France
| | | | - Nathalie Lagarde
- Laboratoire GBCM, EA7528, Conservatoire National des Arts et Métiers, 2 Rue Conté, Hésam Université, Paris, France
| | - Sylvie Fabrega
- Viral Vector for Gene Transfer core facility, Université de Paris—Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Paris, France
| | - Laure Nay
- Viral Vector for Gene Transfer core facility, Université de Paris—Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Paris, France
| | | | | | - Arnaud B. Nicot
- INSERM, Nantes Université, Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN, Nantes, France
| | - Marie-Anne Loriot
- University of Paris, INSERM U1138, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Biochimie, Paris, France
| | - Maria A. Miteva
- INSERM U1268 « Medicinal Chemistry and Translational Research », UMR 8038 CiTCoM, CNRS—University of Paris, Paris, France
| |
Collapse
|
16
|
Coelho NR, Pimpão AB, Correia MJ, Rodrigues TC, Monteiro EC, Morello J, Pereira SA. Pharmacological blockage of the AHR-CYP1A1 axis: a call for in vivo evidence. J Mol Med (Berl) 2021; 100:215-243. [PMID: 34800164 PMCID: PMC8605459 DOI: 10.1007/s00109-021-02163-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/27/2021] [Accepted: 11/03/2021] [Indexed: 01/21/2023]
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that can be activated by structurally diverse compounds arising from the environment and the microbiota and host metabolism. Expanding evidence has been shown that the modulation of the canonical pathway of AHR occurs during several chronic diseases and that its abrogation might be of clinical interest for metabolic and inflammatory pathological processes. However, most of the evidence on the pharmacological abrogation of the AHR-CYP1A1 axis has been reported in vitro, and therefore, guidance for in vivo studies is needed. In this review, we cover the state-of-the-art of the pharmacodynamic and pharmacokinetic properties of AHR antagonists and CYP1A1 inhibitors in different in vivo rodent (mouse or rat) models of disease. This review will serve as a road map for those researchers embracing this emerging therapeutic area targeting the AHR. Moreover, it is a timely opportunity as the first AHR antagonists have recently entered the clinical stage of drug development.
Collapse
Affiliation(s)
- N R Coelho
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056, Lisboa, Portugal
| | - A B Pimpão
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056, Lisboa, Portugal
| | - M J Correia
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056, Lisboa, Portugal
| | - T C Rodrigues
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056, Lisboa, Portugal
| | - E C Monteiro
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056, Lisboa, Portugal
| | - J Morello
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056, Lisboa, Portugal
| | - S A Pereira
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056, Lisboa, Portugal.
| |
Collapse
|
17
|
Structure-based virtual screening of CYP1A1 inhibitors: towards rapid tier-one assessment of potential developmental toxicants. Arch Toxicol 2021; 95:3031-3048. [PMID: 34181028 PMCID: PMC8380238 DOI: 10.1007/s00204-021-03111-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 06/17/2021] [Indexed: 10/26/2022]
Abstract
Cytochrome P450 1A1 (CYP1A1) metabolizes estrogens, melatonin, and other key endogenous signaling molecules critical for embryonic/fetal development. The enzyme has increasing expression during pregnancy, and its inhibition or knockout increases embryonic/fetal lethality and/or developmental problems. Here, we present a virtual screening model for CYP1A1 inhibitors based on the orthosteric and predicted allosteric sites of the enzyme. Using 1001 reference compounds with CYP1A1 activity data, we optimized the decision thresholds of our model and classified the training compounds with 68.3% balanced accuracy (91.0% sensitivity and 45.7% specificity). We applied our final model to 11 known CYP1A1 orthosteric binders and related compounds, and found that our ranking of the known orthosteric binders generally agrees with the relative activity of CYP1A1 in metabolizing these compounds. We also applied the model to 22 new test compounds with unknown/unclear CYP1A1 inhibitory activity, and predicted 16 of them are CYP1A1 inhibitors. The CYP1A1 potency and modes of inhibition of these 22 compounds were experimentally determined. We confirmed that most predicted inhibitors, including drugs contraindicated during pregnancy (amiodarone, bicalutamide, cyproterone acetate, ketoconazole, and tamoxifen) and environmental agents suspected to be endocrine disruptors (bisphenol A, diethyl and dibutyl phthalates, and zearalenone), are indeed potent inhibitors of CYP1A1. Our results suggest that virtual screening may be used as a rapid tier-one method to screen for potential CYP1A1 inhibitors, and flag them out for further experimental evaluations.
Collapse
|
18
|
Raju B, Choudhary S, Narendra G, Verma H, Silakari O. Molecular modeling approaches to address drug-metabolizing enzymes (DMEs) mediated chemoresistance: a review. Drug Metab Rev 2021; 53:45-75. [PMID: 33535824 DOI: 10.1080/03602532.2021.1874406] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Resistance against clinically approved anticancer drugs is the main roadblock in cancer treatment. Drug metabolizing enzymes (DMEs) that are capable of metabolizing a variety of xenobiotic get overexpressed in malignant cells, therefore, catalyzing drug inactivation. As evident from the literature reports, the levels of DMEs increase in cancer cells that ultimately lead to drug inactivation followed by drug resistance. To puzzle out this issue, several strategies inclusive of analog designing, prodrug designing, and inhibitor designing have been forged. On that front, the implementation of computational tools can be considered a fascinating approach to address the problem of chemoresistance. Various research groups have adopted different molecular modeling tools for the investigation of DMEs mediated toxicity problems. However, the utilization of these in-silico tools in maneuvering the DME mediated chemoresistance is least considered and yet to be explored. These tools can be employed in the designing of such chemotherapeutic agents that are devoid of the resistance problem. The current review canvasses various molecular modeling approaches that can be implemented to address this issue. Special focus was laid on the development of specific inhibitors of DMEs. Additionally, the strategies to bypass the DMEs mediated drug metabolism were also contemplated in this report that includes analogs and pro-drugs designing. Different strategies discussed in the review will be beneficial in designing novel chemotherapeutic agents that depreciate the resistance problem.
Collapse
Affiliation(s)
- Baddipadige Raju
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | - Shalki Choudhary
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | - Gera Narendra
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | - Himanshu Verma
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | - Om Silakari
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| |
Collapse
|
19
|
Discovery of methoxy-naphthyl linked N-(1-benzylpiperidine) benzamide as a blood-brain permeable dual inhibitor of acetylcholinesterase and butyrylcholinesterase. Eur J Med Chem 2020; 207:112761. [DOI: 10.1016/j.ejmech.2020.112761] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 08/15/2020] [Accepted: 08/15/2020] [Indexed: 02/06/2023]
|
20
|
Akintade DD, Chaudhuri B. Sensing the Generation of Intracellular Free Electrons Using the Inactive Catalytic Subunit of Cytochrome P450s as a Sink. SENSORS 2020; 20:s20144050. [PMID: 32708163 PMCID: PMC7411652 DOI: 10.3390/s20144050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 11/16/2022]
Abstract
Cytochrome P450 reductase (CPR) abstracts electrons from Nicotinamide adenine dinucleotide phosphate H (NADPH), transferring them to an active Cytochrome P450 (CYP) site to provide a functional CYP. In the present study, a yeast strain was genetically engineered to delete the endogenous CPR gene. A human CYP expressed in a CPR-null (yRD−) strain was inactive. It was queried if Bax—which induces apoptosis in yeast and human cells by generating reactive oxygen species (ROS)—substituted for the absence of CPR. Since Bax-generated ROS stems from an initial release of electrons, is it possible for these released electrons to be captured by an inactive CYP to make it active once again? In this study, yeast cells that did not contain any CPR activity (i.e., because the yeasts’ CPR gene was completely deleted) were used to show that (a) human CYPs produced within CPR-null (yRD-) yeast cells were inactive and (b) low levels of the pro-apoptotic human Bax protein could activate inactive human CYPs within this yeast cells. Surprisingly, Bax activated three inactive CYP proteins, confirming that it could compensate for CPR’s absence within yeast cells. These findings could be useful in research, development of bioassays, bioreactors, biosensors, and disease diagnosis, among others.
Collapse
Affiliation(s)
- Damilare D. Akintade
- School of Life Sciences, Medical School, University of Nottingham, Nottingham NG7 2UH, UK
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK;
- Correspondence: ; Tel.: +44-07712452922
| | - Bhabatosh Chaudhuri
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK;
| |
Collapse
|
21
|
Carvedilol serves as a novel CYP1B1 inhibitor, a systematic drug repurposing approach through structure-based virtual screening and experimental verification. Eur J Med Chem 2020; 193:112235. [DOI: 10.1016/j.ejmech.2020.112235] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/22/2020] [Accepted: 03/11/2020] [Indexed: 01/07/2023]
|
22
|
Yamazoe Y, Yoshinari K. Prediction of regioselectivity and preferred order of CYP1A1-mediated metabolism: Solving the interaction of human and rat CYP1A1 forms with ligands on the template system. Drug Metab Pharmacokinet 2020; 35:165-185. [DOI: 10.1016/j.dmpk.2019.10.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 07/28/2019] [Accepted: 10/28/2019] [Indexed: 10/25/2022]
|
23
|
Abdullaha M, Ali M, Kour D, Kumar A, Bharate SB. Discovery of benzo[cd]indol-2-one and benzylidene-thiazolidine-2,4-dione as new classes of NLRP3 inflammasome inhibitors via ER-β structure based virtual screening. Bioorg Chem 2019; 95:103500. [PMID: 31869665 DOI: 10.1016/j.bioorg.2019.103500] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/18/2019] [Accepted: 12/06/2019] [Indexed: 01/08/2023]
Abstract
The structure-guided virtual screening (VS) has proved to be successful strategy in identification of new scaffolds for biological targets. The overactivity of NLRP3 inflammasome has been implicated in variety of inflammatory diseases including Alzheimer's disease. The up-regulation of estrogen-receptor β (ER-β) activity has been directly linked with inhibition of NLRP3 inflammasome activity. In the present study, we report discovery of new NLRP3 inflammasome inhibitors via ER-β crystal structure (PDB: 5TOA) guided virtual screening of 20,000 compound library. For experimental validation, top 10 ligands were selected based on structure novelty, docking score, prime MMGB/SA binding affinity and interaction pattern analysis. Amongst the tested compounds, three thiazolidin-4-ones IIIM-1268, IIIM-1269 and IIIM-1270 and benzo[cd]indol-2-one IIIM-1266 have shown 73, 69, 75 and 77% suppression of IL-1β release in mouse macrophages (J774A.1 cells) at 10 µM. Benzylidene-thiazolidine-2,4-diones IIIM-1268 and IIIM-1270 inhibited IL-1β release with IC50 of 2.3 and 3.5 µM and also significantly decreased the protein expression level of mature form of IL-1β in western-blot analysis. IIIM-1266 and IIIM-1270 displayed bidentate H-bonding with Arg 346 and Glu 305 residues in the active site of ER-β; and they also strongly occupied the ADP-binding site of NLRP3 protein. The results presented herein, indicate that ER-β guided VS can be successfully used to identify new NLRP3 inflammasome inhibitors, which may have potential in the development of novel anti-Alzheimer agents.
Collapse
Affiliation(s)
- Mohd Abdullaha
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India; Academy of Scientific & Innovative Research, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Mehboob Ali
- Academy of Scientific & Innovative Research, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India; PKPD Toxicology & Formulation Division, CSIR - Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Dilpreet Kour
- Academy of Scientific & Innovative Research, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India; PKPD Toxicology & Formulation Division, CSIR - Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Ajay Kumar
- Academy of Scientific & Innovative Research, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India; PKPD Toxicology & Formulation Division, CSIR - Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Sandip B Bharate
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India; Academy of Scientific & Innovative Research, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India.
| |
Collapse
|
24
|
Huang YMM, Munguia J, Miao Y, Nizet V, McCammon JA. Docking simulation and antibiotic discovery targeting the MlaC protein in Gram-negative bacteria. Chem Biol Drug Des 2019; 93:647-652. [PMID: 30570806 PMCID: PMC6737922 DOI: 10.1111/cbdd.13462] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/16/2018] [Accepted: 12/07/2018] [Indexed: 11/28/2022]
Abstract
To maintain the lipid asymmetry of the cell envelope in Gram-negative bacteria, the MlaC protein serves as a lipid transfer factor and delivers phospholipids from the outer to the inner membrane. A strategy of antibiotic discovery is to design a proper compound that can tightly bind to the MlaC protein and inhibit the MlaC function. In this study, we performed virtual screening on multiple MlaC structures obtained from molecular dynamics simulations to identify potential MlaC binders. Our results suggested that clorobiocin is a compound that could bind to the MlaC protein. Through the comparison of the bound geometry between clorobiocin and novobiocin, we pointed out that the methyl-pyrrole group of the noviose sugar in clorobiocin forms hydrophobic interactions with amino acids in the phospholipid binding pocket, which allows the compound to bind deep in the active site. This also explains why clorobiocin shows a tighter binding affinity than novobiocin. Our study highlights a practical path of antibiotic development against Gram-negative bacteria.
Collapse
Affiliation(s)
- Yu-ming M. Huang
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093
| | - Jason Munguia
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093
| | - Yinglong Miao
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093
| | - Victor Nizet
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093
| | - J. Andrew McCammon
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093
| |
Collapse
|
25
|
Sonawane VR, Siddique MUM, Gatchie L, Williams IS, Bharate SB, Jayaprakash V, Sinha BN, Chaudhuri B. CYP enzymes, expressed within live human suspension cells, are superior to widely-used microsomal enzymes in identifying potent CYP1A1/CYP1B1 inhibitors: Identification of quinazolinones as CYP1A1/CYP1B1 inhibitors that efficiently reverse B[a]P toxicity and cisplatin resistance. Eur J Pharm Sci 2019; 131:177-194. [PMID: 30776468 DOI: 10.1016/j.ejps.2019.02.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/26/2018] [Accepted: 02/12/2019] [Indexed: 12/12/2022]
Abstract
Microsomal cytochrome P450 (CYP) enzymes, isolated from recombinant bacterial/insect/yeast cells, are extensively used for drug metabolism studies. However, they may not always portray how a developmental drug would behave in human cells with intact intracellular transport mechanisms. This study emphasizes the usefulness of human HEK293 kidney cells, grown in 'suspension' for expression of CYPs, in finding potent CYP1A1/CYP1B1 inhibitors, as possible anticancer agents. With live cell-based assays, quinazolinones 9i/9b were found to be selective CYP1A1/CYP1B1 inhibitors with IC50 values of 30/21 nM, and > 150-fold selectivity over CYP2/3 enzymes, whereas they were far less active using commercially-available CYP1A1/CYP1B1 microsomal enzymes (IC50, >10/1.3-1.7 μM). Compound 9i prevented CYP1A1-mediated benzo[a]pyrene-toxicity in normal fibroblasts whereas 9b completely reversed cisplatin resistance in PC-3/prostate, COR-L23/lung, MIAPaCa-2/pancreatic and LS174T/colon cancer cells, underlining the human-cell-assays' potential. Our results indicate that the most potent CYP1A1/CYP1B1 inhibitors would not have been identified if one had relied merely on microsomal enzymes.
Collapse
Affiliation(s)
- Vinay R Sonawane
- CYP Design Ltd, The Innovation Centre, 49 Oxford Street, Leicester LE1 5XY, UK
| | - Mohd Usman Mohd Siddique
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi 835215, India
| | - Linda Gatchie
- CYP Design Ltd, The Innovation Centre, 49 Oxford Street, Leicester LE1 5XY, UK
| | - Ibidapo S Williams
- CYP Design Ltd, The Innovation Centre, 49 Oxford Street, Leicester LE1 5XY, UK
| | - Sandip B Bharate
- Medicinal Chemistry Division, CSIR - Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Venkatesan Jayaprakash
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi 835215, India
| | - Barij N Sinha
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi 835215, India
| | - Bhabatosh Chaudhuri
- CYP Design Ltd, The Innovation Centre, 49 Oxford Street, Leicester LE1 5XY, UK.
| |
Collapse
|
26
|
Sharma R, Williams IS, Gatchie L, Sonawane VR, Chaudhuri B, Bharate SB. Furanoflavones pongapin and lanceolatin B blocks the cell cycle and induce senescence in CYP1A1-overexpressing breast cancer cells. Bioorg Med Chem 2018; 26:6076-6086. [PMID: 30448188 DOI: 10.1016/j.bmc.2018.11.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/31/2018] [Accepted: 11/09/2018] [Indexed: 11/19/2022]
Abstract
Expression of cytochrome P450-1A1 (CYP1A1) is suppressed under physiologic conditions but is induced (a) by polycyclic aromatic hydrocarbons (PAHs) which can be metabolized by CYP1A1 to carcinogens, and (b) in majority of breast cancers. Hence, phytochemicals or dietary flavonoids, if identified as CYP1A1 inhibitors, may help in preventing PAH-mediated carcinogenesis and breast cancer. Herein, we have investigated the cancer chemopreventive potential of a flavonoid-rich Indian medicinal plant, Pongamia pinnata (L.) Pierre. Methanolic extract of its seeds inhibits CYP1A1 in CYP1A1-overexpressing normal human HEK293 cells, with IC50 of 0.6 µg/mL. Its secondary metabolites, the furanoflavonoids pongapin/lanceolatin B, inhibit CYP1A1 with IC50 of 20 nM. Although the furanochalcone pongamol inhibits CYP1A1 with IC50 of only 4.4 µM, a semisynthetic pyrazole-derivative P5b, has ∼10-fold improved potency (IC50, 0.49 μM). Pongapin/lanceolatin B and the methanolic extract of P. pinnata seeds protect CYP1A1-overexpressing HEK293 cells from B[a]P-mediated toxicity. Remarkably, they also block the cell cycle of CYP1A1-overexpressing MCF-7 breast cancer cells, at the G0-G1 phase, repress cyclin D1 levels and induce cellular-senescence. Molecular modeling studies demonstrate the interaction pattern of pongapin/lanceolatin B with CYP1A1. The results strongly indicate the potential of methanolic seed-extract and pongapin/lanceolatin B for further development as cancer chemopreventive agents.
Collapse
Affiliation(s)
- Rajni Sharma
- Natural Products Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Ibidapo S Williams
- CYP Design Ltd, The Innovation Centre, 49 Oxford Street, Leicester LE1 5XY, UK
| | - Linda Gatchie
- CYP Design Ltd, The Innovation Centre, 49 Oxford Street, Leicester LE1 5XY, UK
| | - Vinay R Sonawane
- CYP Design Ltd, The Innovation Centre, 49 Oxford Street, Leicester LE1 5XY, UK
| | - Bhabatosh Chaudhuri
- CYP Design Ltd, The Innovation Centre, 49 Oxford Street, Leicester LE1 5XY, UK; Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK.
| | - Sandip B Bharate
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India.
| |
Collapse
|
27
|
Williams I, Gatchie L, Bharate SB, Chaudhuri B. Biotransformation, Using Recombinant CYP450-Expressing Baker's Yeast Cells, Identifies a Novel CYP2D6.10 A122V Variant Which Is a Superior Metabolizer of Codeine to Morphine Than the Wild-Type Enzyme. ACS OMEGA 2018; 3:8903-8912. [PMID: 31459022 PMCID: PMC6644518 DOI: 10.1021/acsomega.8b00809] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 07/30/2018] [Indexed: 05/29/2023]
Abstract
CYP2D6, a cytochrome P450 (CYP) enzyme, metabolizes codeine to morphine. Within the human body, 0-15% of codeine undergoes O-demethylation by CYP2D6 to form morphine, a far stronger analgesic than codeine. Genetic polymorphisms in wild-type CYP2D6 (CYP2D6-wt) are known to cause poor-to-extensive metabolism of codeine and other CYP2D6 substrates. We have established a platform technology that allows stable expression of human CYP genes from chromosomal loci of baker's yeast cells. Four CYP2D6 alleles, (i) chemically synthesized CYP2D6.1, (ii) chemically synthesized CYP2D6-wt, (iii) chemically synthesized CYP2D6.10, and (iv) a novel CYP2D6.10 variant CYP2D6-C (i.e., CYP2D6.10A122V) isolated from a liver cDNA library, were cloned for chromosomal integration in yeast cells. When expressed in yeast, CYP2D6.10 enzyme shows weak activity compared with CYP2D6-wt and CYP2D6.1 which have moderate activity, as reported earlier. Surprisingly, however, the CYP2D6-C enzyme is far more active than CYP2D6.10. More surprisingly, although CYP2D6.10 is a known low metabolizer of codeine, yeast cells expressing CYP2D6-C transform >70% of codeine to morphine, which is more than twice that of cells expressing the extensive metabolizers, CYP2D6.1, and CYP2D6-wt. The latter two enzymes predominantly catalyze formation of codeine's N-demethylation product, norcodeine, with >55% yield. Molecular modeling studies explain the specificity of CYP2D6-C for O-demethylation, validating observed experimental results. The yeast-based CYP2D6 expression systems, described here, could find generic use in CYP2D6-mediated drug metabolism and also in high-yield chemical reactions that allow the formation of regio-specific dealkylation products.
Collapse
Affiliation(s)
- Ibidapo
S. Williams
- CYP
Design Ltd, The Innovation Centre, 49 Oxford Street, Leicester LE1 5XY, U.K.
| | - Linda Gatchie
- CYP
Design Ltd, The Innovation Centre, 49 Oxford Street, Leicester LE1 5XY, U.K.
| | - Sandip B. Bharate
- Medicinal
Chemistry Division, CSIR-Indian Institute
of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Bhabatosh Chaudhuri
- CYP
Design Ltd, The Innovation Centre, 49 Oxford Street, Leicester LE1 5XY, U.K.
| |
Collapse
|
28
|
Sharma R, Williams IS, Gatchie L, Sonawane VR, Chaudhuri B, Bharate SB. Khellinoflavanone, a Semisynthetic Derivative of Khellin, Overcomes Benzo[ a]pyrene Toxicity in Human Normal and Cancer Cells That Express CYP1A1. ACS OMEGA 2018; 3:8553-8566. [PMID: 31458985 PMCID: PMC6645225 DOI: 10.1021/acsomega.8b01088] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/19/2018] [Indexed: 05/08/2023]
Abstract
Cytochrome P450 family 1 (CYP1) enzymes catalyze the metabolic activation of environmental procarcinogens such as benzo[a]pyrene, B[a]P, into carcinogens, which initiates the process of carcinogenesis. Thus, stopping the metabolic activation of procarcinogens can possibly prevent the onset of cancer. Several natural products have been reported to show unique ability in inhibiting CYP1 enzymes. We found that khellin, a naturally occurring furanochromone from Ammi visnaga, inhibits CYP1A1 enzyme with an IC50 value of 4.02 μM in CYP1A1-overexpressing human HEK293 suspension cells. To further explore this natural product for discovery of more potent and selective CYP1A1 inhibitors, two sets of semisynthetic derivatives were prepared. Treatment of khellin with alkali results in opening of a pyrone ring, yielding khellinone (2). Claisen-Schmidt condensation of khellinone (2) with various aldehydes in presence of potassium hydroxide, at room temperature, provides a series of furanochalcones 3a-v (khellinochalcones). Treatment of khellinone (2) with aryl aldehydes in the presence of piperidine, under reflux, affords the flavanone series of compounds 4a-p (khellinoflavanones). The khellinoflavanone 4l potently inhibited CYP1A1 with an IC50 value of 140 nM in live cells, with 170-fold selectivity over CYP1B1 (IC50 for CYP1B1 = 23.8 μM). Compound 4l at 3× IC50 concentration for inhibition of CYP1A1 completely protected HEK293 cells from CYP1A1-mediated B[a]P toxicity. Lung cancer cells, A549 (p53+) and Calu-1 (p53-null), blocked in growth at the S-phase by B[a]P were restored into the cell cycle by compound 4l. The results presented herein strongly indicate the potential of these khellin derivatives for further development as cancer chemopreventive agents.
Collapse
Affiliation(s)
- Rajni Sharma
- Natural
Products Chemistry Division, Academy of Scientific & Innovative
Research, and Medicinal Chemistry Division, CSIR-Indian
Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Ibidapo S. Williams
- CYP
Design Ltd, Innovation Centre, 49 Oxford Street, Leicester LE1 5XY, U.K.
| | - Linda Gatchie
- CYP
Design Ltd, Innovation Centre, 49 Oxford Street, Leicester LE1 5XY, U.K.
| | - Vinay R. Sonawane
- CYP
Design Ltd, Innovation Centre, 49 Oxford Street, Leicester LE1 5XY, U.K.
| | - Bhabatosh Chaudhuri
- Natural
Products Chemistry Division, Academy of Scientific & Innovative
Research, and Medicinal Chemistry Division, CSIR-Indian
Institute of Integrative Medicine, Canal Road, Jammu 180001, India
- CYP
Design Ltd, Innovation Centre, 49 Oxford Street, Leicester LE1 5XY, U.K.
| | - Sandip B. Bharate
- Natural
Products Chemistry Division, Academy of Scientific & Innovative
Research, and Medicinal Chemistry Division, CSIR-Indian
Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| |
Collapse
|
29
|
Zhang J, Liu T, Chen M, Liu F, Liu X, Zhang J, Lin J, Jin Y. Synthesis and Biological Evaluation of Indole-2-carbohydrazide Derivatives as Anticancer Agents with Anti-angiogenic and Antiproliferative Activities. ChemMedChem 2018; 13:1181-1192. [DOI: 10.1002/cmdc.201800033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 04/02/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Jianqiang Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resources; Ministry of Education and Yunnan Province; School of Chemical Science and Technology; Yunnan University; No. 2 Cuihu North Road Kunming 650091 P.R. China
- Key Laboratory of Subtropical Medicinal Edible Resources Development and Utilization in Yunnan Province; College of Biology and Chemistry; Puer University; No. 6 Xueyuan's Road Puer 665000 P.R. China
| | - Tongyang Liu
- Laboratory of Molecular Genetics of Aging and Tumors; Medical School; Kunming University of Science and Technology; No. 68 Wenchang Road, 121 Avenue Kunming 650500 P.R. China
| | - Mei Chen
- Key Laboratory of Subtropical Medicinal Edible Resources Development and Utilization in Yunnan Province; College of Biology and Chemistry; Puer University; No. 6 Xueyuan's Road Puer 665000 P.R. China
| | - Feifei Liu
- Laboratory of Molecular Genetics of Aging and Tumors; Medical School; Kunming University of Science and Technology; No. 68 Wenchang Road, 121 Avenue Kunming 650500 P.R. China
| | - Xingyuan Liu
- Key Laboratory of Subtropical Medicinal Edible Resources Development and Utilization in Yunnan Province; College of Biology and Chemistry; Puer University; No. 6 Xueyuan's Road Puer 665000 P.R. China
| | - Jihong Zhang
- Laboratory of Molecular Genetics of Aging and Tumors; Medical School; Kunming University of Science and Technology; No. 68 Wenchang Road, 121 Avenue Kunming 650500 P.R. China
| | - Jun Lin
- Key Laboratory of Medicinal Chemistry for Natural Resources; Ministry of Education and Yunnan Province; School of Chemical Science and Technology; Yunnan University; No. 2 Cuihu North Road Kunming 650091 P.R. China
| | - Yi Jin
- Key Laboratory of Medicinal Chemistry for Natural Resources; Ministry of Education and Yunnan Province; School of Chemical Science and Technology; Yunnan University; No. 2 Cuihu North Road Kunming 650091 P.R. China
| |
Collapse
|
30
|
New fluorescence-based high-throughput screening assay for small molecule inhibitors of tyrosyl-DNA phosphodiesterase 2 (TDP2). Eur J Pharm Sci 2018; 118:67-79. [PMID: 29574079 DOI: 10.1016/j.ejps.2018.03.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 03/16/2018] [Accepted: 03/20/2018] [Indexed: 01/03/2023]
Abstract
Tyrosyl-DNA phosphodiesterase 2 (TDP2) repairs topoisomerase II (TOP2) mediated DNA damages and causes resistance to TOP2-targeted cancer therapy. Inhibiting TDP2 could sensitize cancer cells toward TOP2 inhibitors. However, potent TDP2 inhibitors with favorable physicochemical properties are not yet reported. Therefore, there is a need to search for novel molecular scaffolds capable of inhibiting TDP2. We report herein a new simple, robust, homogenous mix-and-read fluorescence biochemical assay based using humanized zebrafish TDP2 (14M_zTDP2), which provides biochemical and molecular structure basis for TDP2 inhibitor discovery. The assay was validated by screening a preselected library of 1600 compounds (Z' ≥ 0.72) in a 384-well format, and by running in parallel gel-based assays with fluorescent DNA substrates. This library was curated via virtual high throughput screening (vHTS) of 460,000 compounds from Chembridge Library, using the crystal structure of the novel surrogate protein 14M_zTDP2. From this primary screening, we selected the best 32 compounds (2% of the library) to further assess their TDP2 inhibition potential, leading to the IC50 determination of 10 compounds. Based on the dose-response curve profile, pan-assay interference compounds (PAINS) structure identification, physicochemical properties and efficiency parameters, two hit compounds, 11a and 19a, were tested using a novel secondary fluorescence gel-based assay. Preliminary structure-activity relationship (SAR) studies identified guanidine derivative 12a as an improved hit with a 6.4-fold increase in potency over the original HTS hit 11a. This study highlights the importance of the development of combination approaches (biochemistry, crystallography and high throughput screening) for the discovery of TDP2 inhibitors.
Collapse
|
31
|
Acevedo CH, Scotti L, Scotti MT. In Silico Studies Designed to Select Sesquiterpene Lactones with Potential Antichagasic Activity from an In-House Asteraceae Database. ChemMedChem 2018; 13:634-645. [PMID: 29323468 DOI: 10.1002/cmdc.201700743] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 12/29/2017] [Indexed: 01/04/2023]
Abstract
Chagas disease is an endemic disease caused by Trypanosoma cruzi, which affects more than eight million people, mostly in the Americas. A search for new treatments is necessary to control and eliminate this disease. Sesquiterpene lactones (SLs) are an interesting group of secondary metabolites characteristic of the Asteraceae family that have presented a wide range of biological activities. From the ChEMBL database, we selected a diverse set of 4452, 1635, and 1322 structures with tested activity against the three T. cruzi parasitic forms: amastigote, trypomastigote, and epimastigote, respectively, to create random forest (RF) models with an accuracy of greater than 74 % for cross-validation and test sets. Afterward, a ligand-based virtual screen of the entire SLs of the Asteraceae database stored in SistematX (1306 structures) was performed. In addition, a structure-based virtual screen was also performed for the same set of SLs using molecular docking. Finally, using an approach combining ligand-based and structure-based virtual screening along with the equations proposed in this study to normalize the probability scores, we verified potentially active compounds and established a possible mechanism of action.
Collapse
Affiliation(s)
- Chonny Herrera Acevedo
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, Cidade Universitária - Castelo Branco III, João Pessoa, PB, Brazil
| | - Luciana Scotti
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, Cidade Universitária - Castelo Branco III, João Pessoa, PB, Brazil
| | - Marcus Tullius Scotti
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, Cidade Universitária - Castelo Branco III, João Pessoa, PB, Brazil
| |
Collapse
|
32
|
Joshi P, Sonawane VR, Williams IS, McCann GJP, Gatchie L, Sharma R, Satti N, Chaudhuri B, Bharate SB. Identification of karanjin isolated from the Indian beech tree as a potent CYP1 enzyme inhibitor with cellular efficacy via screening of a natural product repository. MEDCHEMCOMM 2018; 9:371-382. [PMID: 30108931 PMCID: PMC6083783 DOI: 10.1039/c7md00388a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 01/05/2018] [Indexed: 12/16/2022]
Abstract
CYP1A1 is thought to mediate carcinogenesis in oral, lung and epithelial cancers. In order to identify a CYP1A1 inhibitor from an edible plant, 394 natural products in the IIIM's natural product repository were screened, at 10 μM concentration, using CYP1A1-Sacchrosomes™ (i.e. microsomal enzyme isolated from recombinant baker's yeast). Twenty-seven natural products were identified that inhibited 40-97% of CYP1A1's 7-ethoxyresorufin-O-deethylase activity. The IC50 values of the 'hits', belonging to different chemical scaffolds, were determined. Their selectivity was studied against a panel of 8 CYP-Sacchrosomes™. In order to assess cellular efficacy, the 'hits' were screened for their capability to inhibit CYP enzymes expressed within live recombinant human embryonic kidney (HEK293) cells from plasmids encoding specific CYP genes (1A2, 1B1, 2C9, 2C19, 2D6, 3A4). Isopimpinellin (IN-475; IC50, 20 nM) and karanjin (IN-195; IC50, 30 nM) showed the most potent inhibition of CYP1A1 in human cells. Isopimpinellin is found in celery, parsnip, fruits and in the rind and pulp of limes whereas different parts of the Indian beech tree, which contain karanjin, have been used in traditional medicine. Both isopimpinellin and karanjin negate the cellular toxicity of CYP1A1-mediated benzo[a]pyrene. Molecular docking and molecular dynamic simulations with CYP isoforms rationalize the observed trends in the potency and selectivity of isopimpinellin and karanjin.
Collapse
Affiliation(s)
- Prashant Joshi
- Medicinal Chemistry Division , CSIR-Indian Institute of Integrative Medicine , Canal Road , Jammu-180001 , India . ; ; Tel: +91 191 2569111
- Academy of Scientific & Innovative Research (AcSIR) , CSIR-Indian Institute of Integrative Medicine , Canal Road , Jammu-180001 , India
| | - Vinay R Sonawane
- Leicester School of Pharmacy , De Montfort University , Leicester , LE1 9BH , UK .
| | - Ibidapo S Williams
- Leicester School of Pharmacy , De Montfort University , Leicester , LE1 9BH , UK .
- CYP Design Limited, Innovation Centre , 49 Oxford Street , Leicester , LE1 5XY , UK
| | - Glen J P McCann
- Leicester School of Pharmacy , De Montfort University , Leicester , LE1 9BH , UK .
| | - Linda Gatchie
- Leicester School of Pharmacy , De Montfort University , Leicester , LE1 9BH , UK .
- CYP Design Limited, Innovation Centre , 49 Oxford Street , Leicester , LE1 5XY , UK
| | - Rajni Sharma
- Academy of Scientific & Innovative Research (AcSIR) , CSIR-Indian Institute of Integrative Medicine , Canal Road , Jammu-180001 , India
- Natural Product Chemistry Division , CSIR-Indian Institute of Integrative Medicine , Canal Road , Jammu-180001 , India
| | - Naresh Satti
- Natural Product Chemistry Division , CSIR-Indian Institute of Integrative Medicine , Canal Road , Jammu-180001 , India
| | - Bhabatosh Chaudhuri
- Leicester School of Pharmacy , De Montfort University , Leicester , LE1 9BH , UK .
| | - Sandip B Bharate
- Medicinal Chemistry Division , CSIR-Indian Institute of Integrative Medicine , Canal Road , Jammu-180001 , India . ; ; Tel: +91 191 2569111
- Academy of Scientific & Innovative Research (AcSIR) , CSIR-Indian Institute of Integrative Medicine , Canal Road , Jammu-180001 , India
| |
Collapse
|
33
|
Horley NJ, Beresford KJ, Kaduskar S, Joshi P, McCann GJ, Ruparelia KC, Williams IS, Gatchie L, Sonawane VR, Bharate SB, Chaudhuri B. ( E )-3-(3,4,5-Trimethoxyphenyl)-1-(pyridin-4-yl)prop-2-en-1-one, a heterocyclic chalcone is a potent and selective CYP1A1 inhibitor and cancer chemopreventive agent. Bioorg Med Chem Lett 2017; 27:5409-5414. [DOI: 10.1016/j.bmcl.2017.11.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 11/03/2017] [Accepted: 11/05/2017] [Indexed: 12/13/2022]
|
34
|
Williams IS, Chib S, Nuthakki VK, Gatchie L, Joshi P, Narkhede NA, Vishwakarma RA, Bharate SB, Saran S, Chaudhuri B. Biotransformation of Chrysin to Baicalein: Selective C6-Hydroxylation of 5,7-Dihydroxyflavone Using Whole Yeast Cells Stably Expressing Human CYP1A1 Enzyme. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:7440-7446. [PMID: 28782952 DOI: 10.1021/acs.jafc.7b02690] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Naturally occurring polyphenolic compounds are of medicinal importance because of their unique antioxidant, anticancer, and chemopreventive properties. Baicalein, a naturally occurring polyhydroxy flavonoid possessing a diverse range of pharmacological activities, has been used in traditional medicines for treatment of various ailments. Apart from its isolation from natural sources, its synthesis has been reported via multistep chemical approaches. Here, we report a preparative-scale biotransformation, using whole yeast cells stably expressing human cytochrome P450 1A1 (CYP1A1) enzyme that allows regioselective C6-hydroxylation of 5,7-dihydroxyflavone (chrysin) to form 5,6,7-trihydroxyflavone (baicalein). Molecular modeling reveals why chrysin undergoes such specific hydroxylation mediated by CYP1A1. More than 92% reaction completion was obtained using a shake-flask based process that mimics fed-batch fermentation. Such highly efficient selective hydroxylation, using recombinant yeast cells, has not been reported earlier. Similar CYP-expressing yeast cell based systems are likely to have wider applications in the syntheses of medicinally important polyphenolic compounds.
Collapse
Affiliation(s)
- Ibidapo S Williams
- Leicester School of Pharmacy, De Montfort University , Leicester, LE1 9BH, United Kingdom
- CYP Design Limited, Innovation Centre , 49 Oxford Street, Leicester, LE1 5XY, United Kingdom
| | - Shifali Chib
- Fermentation Technology Division, CSIR-Indian Institute of Integrative Medicine , Canal Road, Jammu-180001, India
| | - Vijay K Nuthakki
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine , Canal Road, Jammu-180001, India
| | - Linda Gatchie
- Leicester School of Pharmacy, De Montfort University , Leicester, LE1 9BH, United Kingdom
- CYP Design Limited, Innovation Centre , 49 Oxford Street, Leicester, LE1 5XY, United Kingdom
| | - Prashant Joshi
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine , Canal Road, Jammu-180001, India
| | - Niteen A Narkhede
- Instrumentation Division, CSIR-Indian Institute of Integrative Medicine , Canal Road, Jammu-180001, India
| | - Ram A Vishwakarma
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine , Canal Road, Jammu-180001, India
| | - Sandip B Bharate
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine , Canal Road, Jammu-180001, India
- Academy of Scientific & Innovative Research (AcSIR), CSIR-Indian Institute of Integrative Medicine , Canal Road, Jammu-180001, India
| | - Saurabh Saran
- Fermentation Technology Division, CSIR-Indian Institute of Integrative Medicine , Canal Road, Jammu-180001, India
| | - Bhabatosh Chaudhuri
- Leicester School of Pharmacy, De Montfort University , Leicester, LE1 9BH, United Kingdom
- CYP Design Limited, Innovation Centre , 49 Oxford Street, Leicester, LE1 5XY, United Kingdom
| |
Collapse
|