• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4660665)   Today's Articles (281)   Subscriber (51481)
For: Trisciuzzi D, Alberga D, Mansouri K, Judson R, Novellino E, Mangiatordi GF, Nicolotti O. Predictive Structure-Based Toxicology Approaches To Assess the Androgenic Potential of Chemicals. J Chem Inf Model 2017;57:2874-2884. [PMID: 29022712 DOI: 10.1021/acs.jcim.7b00420] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Number Cited by Other Article(s)
1
Scheufen Tieghi R, Moreira-Filho JT, Martin HJ, Wellnitz J, Otoch MC, Rath M, Tropsha A, Muratov EN, Kleinstreuer N. A Novel Machine Learning Model and a Web Portal for Predicting the Human Skin Sensitization Effects of Chemical Agents. TOXICS 2024;12:803. [PMID: 39590983 PMCID: PMC11598222 DOI: 10.3390/toxics12110803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024]
2
Vittoria Togo M, Mastrolorito F, Orfino A, Graps EA, Tondo AR, Altomare CD, Ciriaco F, Trisciuzzi D, Nicolotti O, Amoroso N. Where developmental toxicity meets explainable artificial intelligence: state-of-the-art and perspectives. Expert Opin Drug Metab Toxicol 2024;20:561-577. [PMID: 38141160 DOI: 10.1080/17425255.2023.2298827] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/20/2023] [Indexed: 12/24/2023]
3
Mastrolorito F, Togo MV, Gambacorta N, Trisciuzzi D, Giannuzzi V, Bonifazi F, Liantonio A, Imbrici P, De Luca A, Altomare CD, Ciriaco F, Amoroso N, Nicolotti O. TISBE: A Public Web Platform for the Consensus-Based Explainable Prediction of Developmental Toxicity. Chem Res Toxicol 2024;37:323-339. [PMID: 38200616 DOI: 10.1021/acs.chemrestox.3c00310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
4
Vittorio S, Lunghini F, Pedretti A, Vistoli G, Beccari AR. Ensemble of structure and ligand-based classification models for hERG liability profiling. Front Pharmacol 2023;14:1148670. [PMID: 37033661 PMCID: PMC10076575 DOI: 10.3389/fphar.2023.1148670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/13/2023] [Indexed: 04/11/2023]  Open
5
Togo MV, Mastrolorito F, Ciriaco F, Trisciuzzi D, Tondo AR, Gambacorta N, Bellantuono L, Monaco A, Leonetti F, Bellotti R, Altomare CD, Amoroso N, Nicolotti O. TIRESIA: An eXplainable Artificial Intelligence Platform for Predicting Developmental Toxicity. J Chem Inf Model 2023;63:56-66. [PMID: 36520016 DOI: 10.1021/acs.jcim.2c01126] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
6
Ramaprasad ASE, Smith MT, McCoy D, Hubbard AE, La Merrill MA, Durkin KA. Predicting the binding of small molecules to nuclear receptors using machine learning. Brief Bioinform 2022;23:6563938. [PMID: 35383362 PMCID: PMC9116378 DOI: 10.1093/bib/bbac114] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 12/14/2022]  Open
7
Zhang C, Wu J, Chen Q, Tan H, Huang F, Guo J, Zhang X, Yu H, Shi W. Allosteric binding on nuclear receptors: Insights on screening of non-competitive endocrine-disrupting chemicals. ENVIRONMENT INTERNATIONAL 2022;159:107009. [PMID: 34883459 DOI: 10.1016/j.envint.2021.107009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 06/13/2023]
8
Sellami A, Réau M, Montes M, Lagarde N. Review of in silico studies dedicated to the nuclear receptor family: Therapeutic prospects and toxicological concerns. Front Endocrinol (Lausanne) 2022;13:986016. [PMID: 36176461 PMCID: PMC9513233 DOI: 10.3389/fendo.2022.986016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022]  Open
9
Combined Naïve Bayesian, Chemical Fingerprints and Molecular Docking Classifiers to Model and Predict Androgen Receptor Binding Data for Environmentally- and Health-Sensitive Substances. Int J Mol Sci 2021;22:ijms22136695. [PMID: 34206613 PMCID: PMC8267747 DOI: 10.3390/ijms22136695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 06/18/2021] [Accepted: 06/20/2021] [Indexed: 12/15/2022]  Open
10
García-Sosa AT. Androgen Receptor Binding Category Prediction with Deep Neural Networks and Structure-, Ligand-, and Statistically Based Features. Molecules 2021;26:1285. [PMID: 33652992 PMCID: PMC7956632 DOI: 10.3390/molecules26051285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 01/10/2023]  Open
11
Piir G, Sild S, Maran U. Binary and multi-class classification for androgen receptor agonists, antagonists and binders. CHEMOSPHERE 2021;262:128313. [PMID: 33182081 DOI: 10.1016/j.chemosphere.2020.128313] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/24/2020] [Accepted: 09/10/2020] [Indexed: 06/11/2023]
12
Jaladanki CK, He Y, Zhao LN, Maurer-Stroh S, Loo LH, Song H, Fan H. Virtual screening of potentially endocrine-disrupting chemicals against nuclear receptors and its application to identify PPARγ-bound fatty acids. Arch Toxicol 2020;95:355-374. [PMID: 32909075 PMCID: PMC7811525 DOI: 10.1007/s00204-020-02897-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 08/27/2020] [Indexed: 12/17/2022]
13
Valsecchi C, Grisoni F, Consonni V, Ballabio D. Consensus versus Individual QSARs in Classification: Comparison on a Large-Scale Case Study. J Chem Inf Model 2020;60:1215-1223. [PMID: 32073844 PMCID: PMC7997107 DOI: 10.1021/acs.jcim.9b01057] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
14
Mansouri K, Kleinstreuer N, Abdelaziz AM, Alberga D, Alves VM, Andersson PL, Andrade CH, Bai F, Balabin I, Ballabio D, Benfenati E, Bhhatarai B, Boyer S, Chen J, Consonni V, Farag S, Fourches D, García-Sosa AT, Gramatica P, Grisoni F, Grulke CM, Hong H, Horvath D, Hu X, Huang R, Jeliazkova N, Li J, Li X, Liu H, Manganelli S, Mangiatordi GF, Maran U, Marcou G, Martin T, Muratov E, Nguyen DT, Nicolotti O, Nikolov NG, Norinder U, Papa E, Petitjean M, Piir G, Pogodin P, Poroikov V, Qiao X, Richard AM, Roncaglioni A, Ruiz P, Rupakheti C, Sakkiah S, Sangion A, Schramm KW, Selvaraj C, Shah I, Sild S, Sun L, Taboureau O, Tang Y, Tetko IV, Todeschini R, Tong W, Trisciuzzi D, Tropsha A, Van Den Driessche G, Varnek A, Wang Z, Wedebye EB, Williams AJ, Xie H, Zakharov AV, Zheng Z, Judson RS. CoMPARA: Collaborative Modeling Project for Androgen Receptor Activity. ENVIRONMENTAL HEALTH PERSPECTIVES 2020;128:27002. [PMID: 32074470 DOI: 10.23645/epacomptox.5176876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
15
Mansouri K, Kleinstreuer N, Abdelaziz AM, Alberga D, Alves VM, Andersson PL, Andrade CH, Bai F, Balabin I, Ballabio D, Benfenati E, Bhhatarai B, Boyer S, Chen J, Consonni V, Farag S, Fourches D, García-Sosa AT, Gramatica P, Grisoni F, Grulke CM, Hong H, Horvath D, Hu X, Huang R, Jeliazkova N, Li J, Li X, Liu H, Manganelli S, Mangiatordi GF, Maran U, Marcou G, Martin T, Muratov E, Nguyen DT, Nicolotti O, Nikolov NG, Norinder U, Papa E, Petitjean M, Piir G, Pogodin P, Poroikov V, Qiao X, Richard AM, Roncaglioni A, Ruiz P, Rupakheti C, Sakkiah S, Sangion A, Schramm KW, Selvaraj C, Shah I, Sild S, Sun L, Taboureau O, Tang Y, Tetko IV, Todeschini R, Tong W, Trisciuzzi D, Tropsha A, Van Den Driessche G, Varnek A, Wang Z, Wedebye EB, Williams AJ, Xie H, Zakharov AV, Zheng Z, Judson RS. CoMPARA: Collaborative Modeling Project for Androgen Receptor Activity. ENVIRONMENTAL HEALTH PERSPECTIVES 2020;128:27002. [PMID: 32074470 PMCID: PMC7064318 DOI: 10.1289/ehp5580] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 11/27/2019] [Accepted: 12/05/2019] [Indexed: 05/04/2023]
16
Cavalluzzi MM, Imbrici P, Gualdani R, Stefanachi A, Mangiatordi GF, Lentini G, Nicolotti O. Human ether-à-go-go-related potassium channel: exploring SAR to improve drug design. Drug Discov Today 2019;25:344-366. [PMID: 31756511 DOI: 10.1016/j.drudis.2019.11.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/22/2019] [Accepted: 11/12/2019] [Indexed: 12/12/2022]
17
Cotterill JV, Palazzolo L, Ridgway C, Price N, Rorije E, Moretto A, Peijnenburg A, Eberini I. Predicting estrogen receptor binding of chemicals using a suite of in silico methods - Complementary approaches of (Q)SAR, molecular docking and molecular dynamics. Toxicol Appl Pharmacol 2019;378:114630. [PMID: 31220507 DOI: 10.1016/j.taap.2019.114630] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/17/2019] [Accepted: 06/17/2019] [Indexed: 11/18/2022]
18
Grisoni F, Consonni V, Ballabio D. Machine Learning Consensus To Predict the Binding to the Androgen Receptor within the CoMPARA Project. J Chem Inf Model 2019;59:1839-1848. [PMID: 30668916 DOI: 10.1021/acs.jcim.8b00794] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
19
Li Y, Idakwo G, Thangapandian S, Chen M, Hong H, Zhang C, Gong P. Target-specific toxicity knowledgebase (TsTKb): a novel toolkit for in silico predictive toxicology. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2018;36:219-236. [PMID: 30426823 DOI: 10.1080/10590501.2018.1537148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
20
Mangiatordi GF, Trisciuzzi D, Iacobazzi R, Denora N, Pisani L, Catto M, Leonetti F, Alberga D, Nicolotti O. Automated identification of structurally heterogeneous and patentable antiproliferative hits as potential tubulin inhibitors. Chem Biol Drug Des 2018;92:1161-1170. [PMID: 29633572 DOI: 10.1111/cbdd.13200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 02/05/2018] [Accepted: 03/03/2018] [Indexed: 12/27/2022]
21
Molecular Docking for Predictive Toxicology. Methods Mol Biol 2018;1800:181-197. [PMID: 29934893 DOI: 10.1007/978-1-4939-7899-1_8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
PrevPage 1 of 1 1Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA