1
|
Ita K, Roshanaei S. Artificial intelligence for skin permeability prediction: deep learning. J Drug Target 2024; 32:334-346. [PMID: 38258521 DOI: 10.1080/1061186x.2024.2309574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/07/2024] [Indexed: 01/24/2024]
Abstract
BACKGROUND AND OBJECTIVE Researchers have put in significant laboratory time and effort in measuring the permeability coefficient (Kp) of xenobiotics. To develop alternative approaches to this labour-intensive procedure, predictive models have been employed by scientists to describe the transport of xenobiotics across the skin. Most quantitative structure-permeability relationship (QSPR) models are derived statistically from experimental data. Recently, artificial intelligence-based computational drug delivery has attracted tremendous interest. Deep learning is an umbrella term for machine-learning algorithms consisting of deep neural networks (DNNs). Distinct network architectures, like convolutional neural networks (CNNs), feedforward neural networks (FNNs), and recurrent neural networks (RNNs), can be employed for prediction. METHODS In this project, we used a convolutional neural network, feedforward neural network, and recurrent neural network to predict skin permeability coefficients from a publicly available database reported by Cheruvu et al. The dataset contains 476 records of 145 chemicals, xenobiotics, and pharmaceuticals, administered on the human epidermis in vitro from aqueous solutions of constant concentration either saturated in infinite dose quantities or diluted. All the computations were conducted with Python under Anaconda and Jupyterlab environment after importing the required Python, Keras, and Tensorflow modules. RESULTS We used a convolutional neural network, feedforward neural network, and recurrent neural network to predict log kp. CONCLUSION This research work shows that deep learning networks can be successfully used to digitally screen and predict the skin permeability of xenobiotics.
Collapse
Affiliation(s)
- Kevin Ita
- College of Pharmacy, Touro University, Vallejo, CA, USA
| | | |
Collapse
|
2
|
van den Brink NJM, Pardow F, Meesters LD, van Vlijmen-Willems I, Rodijk-Olthuis D, Niehues H, Jansen PAM, Roelofs SH, Brewer MG, van den Bogaard EH, Smits JPH. Electrical Impedance Spectroscopy Quantifies Skin Barrier Function in Organotypic In Vitro Epidermis Models. J Invest Dermatol 2024; 144:2488-2500.e4. [PMID: 38642800 DOI: 10.1016/j.jid.2024.03.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/16/2024] [Accepted: 03/02/2024] [Indexed: 04/22/2024]
Abstract
Three-dimensional human epidermal equivalents (HEEs) are a state-of-the-art organotypic culture model in preclinical investigative dermatology and regulatory toxicology. In this study, we investigated the utility of electrical impedance spectroscopy (EIS) for noninvasive measurement of HEE epidermal barrier function. Our setup comprised a custom-made lid fit with 12 electrode pairs aligned on the standard 24-transwell cell culture system. Serial EIS measurements for 7 consecutive days did not impact epidermal morphology, and readouts showed comparable trends with HEEs measured only once. We determined 2 frequency ranges in the resulting impedance spectra: a lower frequency range termed EISdiff correlated with keratinocyte terminal differentiation independent of epidermal thickness and a higher frequency range termed EISSC correlated with stratum corneum thickness. HEEs generated from CRISPR/Cas9-engineered keratinocytes that lack key differentiation genes FLG, TFAP2A, AHR, or CLDN1 confirmed that keratinocyte terminal differentiation is the major parameter defining EISdiff. Exposure to proinflammatory psoriasis- or atopic dermatitis-associated cytokine cocktails lowered the expression of keratinocyte differentiation markers and reduced EISdiff. This cytokine-associated decrease in EISdiff was normalized after stimulation with therapeutic molecules. In conclusion, EIS provides a noninvasive system to consecutively and quantitatively assess HEE barrier function and to sensitively and objectively measure barrier development, defects, and repair.
Collapse
Affiliation(s)
| | - Felicitas Pardow
- Department of Dermatology, Radboudumc, Nijmegen, The Netherlands; Department of Molecular Developmental Biology, Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | - Luca D Meesters
- Department of Dermatology, Radboudumc, Nijmegen, The Netherlands; Department of Molecular Developmental Biology, Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | | | | | - Hanna Niehues
- Department of Dermatology, Radboudumc, Nijmegen, The Netherlands
| | | | | | - Matthew G Brewer
- Department of Dermatology, University of Rochester Medical Center, Rochester, New York, USA
| | | | - Jos P H Smits
- Department of Dermatology, Radboudumc, Nijmegen, The Netherlands; Department of Dermatology, Heinrich Heine University, University Hospital Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
3
|
Hamidullah, Alam A, Elhenawy AA, Ali M, Latif A, Khan A, Al-Harrasi A, Ahmad M. Novel benzimidazole-based azine derivatives as potent urease inhibitors: synthesis, in vitro and in silico approach. Future Med Chem 2024; 16:2337-2350. [PMID: 39311079 PMCID: PMC11622760 DOI: 10.1080/17568919.2024.2401311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 09/02/2024] [Indexed: 12/08/2024] Open
Abstract
Aim: In light of various biological activities of benzimidazole and azines, this study focuses on reporting novel derivatives of benzimidazole nucleus.Methods: Twenty novel azines of benzimidazole were synthesized, characterized and tested for in vitro urease inhibitory activity.Results: All these derivatives showed excellent to good inhibition in the range of IC50 values 14.21 ± 1.87 to 76.11 ± 1.81 μM by comparing with standard thiourea 21.14 ± 0.42 μM. Docking studies were performed for the targeted benzimidazole derivatives to understand the binding mechanics. The results indicated higher binding efficacy compared with the reference inhibitor.Conclusion: This work identifies potential lead candidates for novel urease inhibitors, which with industrial support may be harnessed for the development of new drugs.
Collapse
Affiliation(s)
- Hamidullah
- Department of Chemistry, University of Malakand, P.O. Box 18800, Dir Lower, Khyber Pakhtunkhwa, Pakistan
| | - Aftab Alam
- Department of Chemistry, University of Malakand, P.O. Box 18800, Dir Lower, Khyber Pakhtunkhwa, Pakistan
| | - Ahmed A Elhenawy
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Mumtaz Ali
- Department of Chemistry, University of Malakand, P.O. Box 18800, Dir Lower, Khyber Pakhtunkhwa, Pakistan
| | - Abdul Latif
- Department of Chemistry, University of Malakand, P.O. Box 18800, Dir Lower, Khyber Pakhtunkhwa, Pakistan
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, P.O. Box 33, PC 616, Nizwa, Sultanate of Oman
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, P.O. Box 33, PC 616, Nizwa, Sultanate of Oman
| | - Manzoor Ahmad
- Department of Chemistry, University of Malakand, P.O. Box 18800, Dir Lower, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
4
|
Kostal J, Voutchkova-Kostal A, Bercu JP, Graham JC, Hillegass J, Masuda-Herrera M, Trejo-Martin A, Gould J. Quantum-Mechanics Calculations Elucidate Skin-Sensitizing Pharmaceutical Compounds. Chem Res Toxicol 2024; 37:1404-1414. [PMID: 39069667 DOI: 10.1021/acs.chemrestox.4c00185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Skin sensitization is a critical end point in occupational toxicology that necessitates the use of fast, accurate, and affordable models to aid in establishing handling guidance for worker protection. While many in silico models have been developed, the scarcity of reliable data for active pharmaceutical ingredients (APIs) and their intermediates (together regarded as pharmaceutical compounds) brings into question the reliability of these tools, which are largely constructed using publicly available nonspecialty chemicals. Here, we present the quantum-mechanical (QM) Computer-Aided Discovery and REdesign (CADRE) model, which was developed with the bioactive and structurally complex chemical space in mind by relying on the fundamentals of chemical interactions in key events (versus structural attributes of training-set data). Validated in this study on 345 APIs and intermediates, CADRE achieved 95% accuracy, sensitivity, and specificity and a combined 79% accuracy in assigning potency categories compared to the mouse local lymph node assay data. We show how historical outcomes from CADRE testing in the pharmaceutical space, generated over the past 10 years on ca. 2500 chemicals, can be used to probe the relationships between sensitization mechanisms (or the underlying chemical classes) and the probability of eliciting a sensitization response in mice of a given potency. We believe this information to be of value to both practitioners, who can use it to quickly screen and triage their data sets, as well as to model developers to fine-tune their structure-based tools. Lastly, we leverage our experimentally validated subset of APIs and intermediates to show the importance of dermal permeability on the sensitization potential and potency. We demonstrate that common physicochemical properties used to assess permeation, such as the octanol-water partition coefficient and molecular weight, are poor proxies for the more accurate energy-pair distributions that can be computed from mixed QM and classical simulations using model representations of the stratum corneum.
Collapse
Affiliation(s)
- Jakub Kostal
- Designing Out Toxicity (DOT) Consulting LLC, 2121 Eisenhower Avenue, Alexandria, Virginia 22314, United States
- The George Washington University, 800 22nd St. NW, Washington, District of Columbia 20052, United States
| | - Adelina Voutchkova-Kostal
- Designing Out Toxicity (DOT) Consulting LLC, 2121 Eisenhower Avenue, Alexandria, Virginia 22314, United States
| | - Joel P Bercu
- Gilead Sciences Inc. 333 Lakeside Drive, Foster City, California 94404, United States
| | - Jessica C Graham
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jedd Hillegass
- Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08901, United States
| | - Melisa Masuda-Herrera
- Gilead Sciences Inc. 333 Lakeside Drive, Foster City, California 94404, United States
| | | | - Janet Gould
- SafeBridge Regulatory & Life Sciences Group, 330 Seventh Ave #2001, New York, New York 10001, United States
| |
Collapse
|
5
|
Xu Y, Bei Z, Li M, Qiu K, Ren J, Chu B, Zhao Y, Qian Z. Biomaterials for non-invasive trans-tympanic drug delivery: requirements, recent advances and perspectives. J Mater Chem B 2024; 12:7787-7813. [PMID: 39044544 DOI: 10.1039/d4tb00676c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Various non-invasive delivery systems have recently been developed as an alternative to conventional injections. Local transdermal administration represents the most attractive method due to the low systemic side effects, excellent ease of administration, and persistent drug release. The tympanic membrane (TM), a major barrier between the outer and middle ear, has a similar structure of the stratum corneum compared to the surface of the skin. After several attempts, non-invasive trans-tympanic drug delivery has been regarded as a promising option in the treatment of middle and inner ear diseases. The round window membrane (RWM) was a possible non-invasive delivery approach from the middle to inner ear. The improved permeability of nanocarriers crossing the RWM is a current hotspot in therapeutics for inner ear diseases. In this review, we include the latest studies exploring non-invasive trans-tympanic delivery to treat middle and inner ear diseases. Both passive and active delivery systems are described. A summary of the benefits and disadvantages of various delivery systems in clinical practice and production procedures is introduced. Finally, future possible approaches for its effective application as a non-invasive middle and inner ear drug delivery system are characterised.
Collapse
Affiliation(s)
- Yang Xu
- Department of Otorhinolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Zhongwu Bei
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Mei Li
- Department of Otorhinolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ke Qiu
- Department of Otorhinolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jianjun Ren
- Department of Otorhinolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bingyang Chu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Yu Zhao
- Department of Otorhinolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhiyong Qian
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
6
|
Gul S, Alam A, Zainab, Assad M, Elhenawy AA, Islam MS, Shah SAA, Parveen Z, Shah TA, Ahmad M. Exploring the synthesis, molecular structure and biological activities of novel Bis-Schiff base derivatives: A combined theoretical and experimental approach. J Mol Struct 2024; 1306:137828. [DOI: 10.1016/j.molstruc.2024.137828] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
|
7
|
Alam A, Gul S, Zainab, Khan M, Elhenawy AA, Islam MS, Ali M, Ali Shah SA, Latif A, Ahmad M. Synthesis of 2,4-dihydroxyacetophenone derivatives as potent PDE-1 and -3 inhibitors: in vitro and in silico insights. Future Med Chem 2024; 16:1185-1203. [PMID: 38989989 PMCID: PMC11382721 DOI: 10.1080/17568919.2024.2342707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 04/08/2024] [Indexed: 07/12/2024] Open
Abstract
Aim: Synthesis of novel bis-Schiff bases having potent inhibitory activity against phosphodiesterase (PDE-1 and -3) enzymes, potentially offering therapeutic implications for various conditions. Methods: Bis-Schiff bases were synthesized by refluxing 2,4-dihydroxyacetophenone with hydrazine hydrate, followed by treatment of substituted aldehydes with the resulting hydrazone to obtain the product compounds. After structural confirmation, the compounds were screened for their in vitro PDE-1 and -3 inhibitory activities. Results: The prepared compounds exhibited noteworthy inhibitory efficacy against PDE-1 and -3 enzymes by comparing with suramin standard. To clarify the binding interactions between the drugs, PDE-1 and -3 active sites, molecular docking studies were carried out. Conclusion: The potent compounds discovered in this study may be good candidates for drug development.
Collapse
Affiliation(s)
- Aftab Alam
- Department of Chemistry, University of Malakand, P.O. Box 18800, Dir Lower, Pakistan
| | - Sana Gul
- Department of Chemistry, University of Malakand, P.O. Box 18800, Dir Lower, Pakistan
| | - Zainab
- College of Chemistry & Materials Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Majid Khan
- H.E.J. Research Institute of Chemistry, International Center for Chemical & Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Ahmed A Elhenawy
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, 11884, Cairo, Egypt
| | - Mohammad Shahidul Islam
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Mumtaz Ali
- Department of Chemistry, University of Malakand, P.O. Box 18800, Dir Lower, Pakistan
| | - Syed Adnan Ali Shah
- Faculty of Pharmacy, Universiti Teknologi MARA Puncak Alam Campus, 42300 Bandar Puncak Alam,Selangor D. E., Malaysia
| | - Abdul Latif
- Department of Chemistry, University of Malakand, P.O. Box 18800, Dir Lower, Pakistan
| | - Manzoor Ahmad
- Department of Chemistry, University of Malakand, P.O. Box 18800, Dir Lower, Pakistan
| |
Collapse
|
8
|
Alam A, Zainab, Elhenawy AA, Ur Rehman N, Shahidul Islam M, Dahlous KA, Talab F, Shah SAA, Ali M, Ahmad M. Synthesis of Flurbiprofen Based Amide Derivatives as Potential Leads for Diabetic Management: In Vitro α‐glucosidase Inhibition, Molecular Docking and DFT Simulation Approach. ChemistrySelect 2024; 9. [DOI: 10.1002/slct.202401296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 04/19/2024] [Indexed: 11/25/2024]
Abstract
AbstractThis research is based on the synthesis, characterization and in vitro α‐glucosidase inhibitory activity of fourteen amides (2 a–2 n) of flurbiprofen drug. Seven compounds in the series displayed potent inhibitory activity having IC50 values (IC50=5.67±0.89 μM) to (IC50=17.87±2.39 μM) in comparison with acarbose standard (IC50=875.75±1.24 μM). The FMO of 2 a–2 n molecules was quantified by the DFT assay. The promising value for energygap explained the higher poteny agannist α‐glucosidase. MEP provides the insights into the distribution of electrostatic potential on the molecular surface of 2 a–2 n, showing that C=O group has the highest negative potential. The AIM investigation revealed minimal hydrogen bond energy and non‐covalent interactions. This suggests that these molecules may have limited hydrogen bonding and non‐covalent interactions, which could be relevant to their chemical behavior. Molecular docking and (MEP) showed the C=O group, with its high negative potential, is a key in recognizing the catalytic non‐polar regions of enzymes, such as TYR72, GLU277, and ARG442. Similarly, the hydrophobic regions of investigated compounds play a significant role in identifying essential amino acids like ASP352 and ARG442, which are vital for the ligand's proper orientation and subsequent biological activity.
Collapse
Affiliation(s)
- Aftab Alam
- Department of Chemistry University of Malakand P.O. Box 18800 Dir Lower Pakistan
| | - Zainab
- College of Chemistry and Materials Science Hebei Normal University Shijiazhuang 050024 China
| | - Ahmed A. Elhenawy
- Department of Chemistry Al-Azhar University, Nasr City 11884 Cairo Egypt
| | - Najeeb Ur Rehman
- Natural & Medical Sciences Research Center University of Nizwa Nizwa 616 Oman
| | - Mohammad Shahidul Islam
- Department of Chemistry College of Science King Saud University P.O, Box 2455 Riyadh 11451 Saudi Arabia
| | - Kholood A. Dahlous
- Department of Chemistry College of Science King Saud University P.O, Box 2455 Riyadh 11451 Saudi Arabia
| | - Faiz Talab
- Department of Chemistry University of Malakand P.O. Box 18800 Dir Lower Pakistan
| | - Syed Adnan Ali Shah
- Faculty of Pharmacy Universiti Teknologi MARA Puncak Alam Campus 42300 Bandar Puncak Alam, Selangor D. E. Malaysia
| | - Mumtaz Ali
- Department of Chemistry University of Malakand P.O. Box 18800 Dir Lower Pakistan
| | - Manzoor Ahmad
- Department of Chemistry University of Malakand P.O. Box 18800 Dir Lower Pakistan
| |
Collapse
|
9
|
van den Brink NJM, Pardow F, Meesters LD, van Vlijmen-Willems I, Rodijk-Olthuis D, Niehues H, Jansen PAM, Roelofs SH, Brewer MG, van den Bogaard EH, Smits JPH. Electrical Impedance Spectroscopy Quantifies Skin Barrier Function in Organotypic In Vitro Epidermis Models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.18.585587. [PMID: 38562885 PMCID: PMC10983962 DOI: 10.1101/2024.03.18.585587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
3 D human epidermal equivalents (HEEs) are a state-of-the-art organotypic culture model in pre-clinical investigative dermatology and regulatory toxicology. Here, we investigated the utility of electrical impedance spectroscopy (EIS) for non-invasive measurement of HEE epidermal barrier function. Our setup comprised a custom-made lid fit with 12 electrode pairs aligned on the standard 24-transwell cell culture system. Serial EIS measurements for seven consecutive days did not impact epidermal morphology and readouts showed comparable trends to HEEs measured only once. We determined two frequency ranges in the resulting impedance spectra: a lower frequency range termed EISdiff correlated with keratinocyte terminal differentiation independent of epidermal thickness and a higher frequency range termed EISSC correlated with stratum corneum thickness. HEEs generated from CRISPR/Cas9 engineered keratinocytes that lack key differentiation genes FLG, TFAP2A, AHR or CLDN1 confirmed that keratinocyte terminal differentiation is the major parameter defining EISdiff. Exposure to pro-inflammatory psoriasis- or atopic dermatitis-associated cytokine cocktails lowered the expression of keratinocyte differentiation markers and reduced EISdiff. This cytokine-associated decrease in EISdiff was normalized after stimulation with therapeutic molecules. In conclusion, EIS provides a non-invasive system to consecutively and quantitatively assess HEE barrier function and to sensitively and objectively measure barrier development, defects and repair.
Collapse
Affiliation(s)
| | - F Pardow
- Department of Dermatology, Radboudumc, Nijmegen, The Netherlands
- Department of Molecular Developmental Biology, Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | - L D Meesters
- Department of Dermatology, Radboudumc, Nijmegen, The Netherlands
- Department of Molecular Developmental Biology, Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | | | - D Rodijk-Olthuis
- Department of Dermatology, Radboudumc, Nijmegen, The Netherlands
| | - H Niehues
- Department of Dermatology, Radboudumc, Nijmegen, The Netherlands
| | - P A M Jansen
- Department of Dermatology, Radboudumc, Nijmegen, The Netherlands
| | | | - M G Brewer
- Department of Dermatology, University of Rochester Medical Center, Rochester, New York, USA
| | | | - J P H Smits
- Department of Dermatology, Radboudumc, Nijmegen, The Netherlands
- Department of Dermatology, Heinrich Heine University, University Hospital Düsseldorf , Düsseldorf, Germany
| |
Collapse
|
10
|
Ullah N, Alam A, Zainab, Elhenawy AA, Naz S, Islam MS, Ahmad S, Shah SAA, Ahmad M. Investigating Novel Thiophene Carbaldehyde Based Thiazole Derivatives as Potential Hits for Diabetic Management: Synthesis, In Vitro and In Silico Approach. ChemistrySelect 2024; 9. [DOI: 10.1002/slct.202304601] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/31/2024] [Indexed: 11/25/2024]
Abstract
AbstractThis research work is based on synthesis of eleven novel thiazole derivatives (3 a‐k) of thiophene carbaldehyde. All the synthesized compounds were successfully synthesized, characterized by 1H‐NMR and EI‐MS spectroscopic techniques and finally subjected for their in vitro α‐glucosidase inhibitory activity. Seven derivatives 3 i (IC50=10.21±1.84 μM), 3 b (IC50=11.14±0.99 μM), 3 f (IC50=13.21±2.76 μM), 3 h (IC50=14.21±0.31 μM), 3 k (IC50=15.21±1.02 μM), 3 e (IC50=16.21±1.32 μM), and 3 c (IC50=18.21±1.89 μM), in the series displayed excellent inhibitory potential better than the standard acarbose. However, two compounds 3 g (IC50=33.21±1.99 μM) and 3 d (IC50=42.31±2.12 μM) showed significant activity while two compounds 3 j and 3 a were found less active with IC50 values of 82.31±0.31 and 88.36±1.21 μM respectively. Additional research revealed that the compounds are not exhibiting any cytotoxic effects. The molecular docking study of these derivatives showed their good binding potential for α‐glucosidase active site with excellent interactions and docking scores.
Collapse
Affiliation(s)
- Najeeb Ullah
- Department of Chemistry University of Malakand P.O. Box 18800 Dir Lower Pakistan
| | - Aftab Alam
- Department of Chemistry University of Malakand P.O. Box 18800 Dir Lower Pakistan
| | - Zainab
- College of Chemistry and Materials Science Hebei Normal University Shijiazhuang 050024 China
| | | | - Saira Naz
- Department of Chemistry Bacha Khan University Charsadda Pakistan
| | - Mohammad Shahidul Islam
- Department of Chemistry College of Science King Saud University P.O, Box 2455 Riyadh 11451 Saudi Arabia
| | - Shujaat Ahmad
- Department of Pharmacy Shaheed Benazir Bhutto University Sheringal, Dir (Upper) Khyber Pakhtunkhwa Pakistan
| | - Syed Adnan Ali Shah
- Faculty of Pharmacy Universiti Teknologi MARA Puncak Alam Campus 42300 Bandar Puncak Alam Selangor D. E. Malaysia
| | - Manzoor Ahmad
- Department of Chemistry University of Malakand P.O. Box 18800 Dir Lower Pakistan
| |
Collapse
|
11
|
Fisher HA, Evans MV, Bunge AL, Hubal EAC, Vallero DA. A compartment model to predict in vitro finite dose absorption of chemicals by human skin. CHEMOSPHERE 2024; 349:140689. [PMID: 37963497 PMCID: PMC10842870 DOI: 10.1016/j.chemosphere.2023.140689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 10/30/2023] [Accepted: 11/09/2023] [Indexed: 11/16/2023]
Abstract
Dermal uptake is an important and complex exposure route for a wide range of chemicals. Dermal exposure can occur due to occupational settings, pharmaceutical applications, environmental contamination, or consumer product use. The large range of both chemicals and scenarios of interest makes it difficult to perform generalizable experiments, creating a need for a generic model to simulate various scenarios. In this study, a model consisting of a series of four well-mixed compartments, representing the source solution (vehicle), stratum corneum, viable tissue, and receptor fluid, was developed for predicting dermal absorption. The model considers experimental conditions including small applied doses as well as evaporation of the vehicle and chemical. To evaluate the model assumptions, we compare model predictions for a set of 26 chemicals to finite dose in-vitro experiments from a single laboratory using steady-state permeability coefficient and equilibrium partition coefficient data derived from in-vitro experiments of infinite dose exposures to these same chemicals from a different laboratory. We find that the model accurately predicts, to within an order of magnitude, total absorption after 24 h for 19 of these chemicals. In combination with key information on experimental conditions, the model is generalizable and can advance efficient assessment of dermal exposure for chemical risk assessment.
Collapse
Affiliation(s)
- H A Fisher
- Oak Ridge Associated Universities, Assigned to U.S. Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Research Triangle Park, NC, USA
| | - M V Evans
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Research Triangle Park, NC, USA
| | - A L Bunge
- Chemical and Biological Engineering, Colorado School of Mines, Golden, CO, USA
| | - E A Cohen Hubal
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA
| | - D A Vallero
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Research Triangle Park, NC, USA.
| |
Collapse
|
12
|
Djuris J, Cvijic S, Djekic L. Model-Informed Drug Development: In Silico Assessment of Drug Bioperformance following Oral and Percutaneous Administration. Pharmaceuticals (Basel) 2024; 17:177. [PMID: 38399392 PMCID: PMC10892858 DOI: 10.3390/ph17020177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/23/2023] [Accepted: 12/29/2023] [Indexed: 02/25/2024] Open
Abstract
The pharmaceutical industry has faced significant changes in recent years, primarily influenced by regulatory standards, market competition, and the need to accelerate drug development. Model-informed drug development (MIDD) leverages quantitative computational models to facilitate decision-making processes. This approach sheds light on the complex interplay between the influence of a drug's performance and the resulting clinical outcomes. This comprehensive review aims to explain the mechanisms that control the dissolution and/or release of drugs and their subsequent permeation through biological membranes. Furthermore, the importance of simulating these processes through a variety of in silico models is emphasized. Advanced compartmental absorption models provide an analytical framework to understand the kinetics of transit, dissolution, and absorption associated with orally administered drugs. In contrast, for topical and transdermal drug delivery systems, the prediction of drug permeation is predominantly based on quantitative structure-permeation relationships and molecular dynamics simulations. This review describes a variety of modeling strategies, ranging from mechanistic to empirical equations, and highlights the growing importance of state-of-the-art tools such as artificial intelligence, as well as advanced imaging and spectroscopic techniques.
Collapse
Affiliation(s)
- Jelena Djuris
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (S.C.); (L.D.)
| | | | | |
Collapse
|
13
|
Kharb S, Yadav S, Singh A, Sarkar A, Tomar R. Molecular docking and physicochemical studies of 1,3-benzodioxole tagged Dacarbazine derivatives as an anticancer agent. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2023; 51:520-530. [PMID: 37698454 DOI: 10.1080/21691401.2023.2253470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/22/2023] [Accepted: 08/11/2023] [Indexed: 09/13/2023]
Abstract
Cancer, the biggest cause of death globally, remains a tough illness despite enormous advances in therapy. In the present study, 1,3-benzodioxole-tagged dacarbazine derivates were investigated as microtubule inhibitors in order to control cancer as microtubules are involved in cell proliferation. The tubulin protein was analyzed and its structure was validated by various protein validation tools. The binding potential of 1,3-benzodioxole-based dacarbazine-tagged derivatives with tubulin was checked using molecular docking software HEX 8.0 CUDA and AutoDock Vina. Swiss ADME online Web server and pkCSM are used for studying pharmacokinetic and pharmacological studies of compounds. The docking analysis ADME studies displayed that Compounds 1 and 2 bind effectively with the tubulin protein and showed potential properties to use as a potent anticancer drug.
Collapse
Affiliation(s)
- Sonaxi Kharb
- Department of Chemistry, Baba Mastnath University, Rohtak, India
| | - Sangeeta Yadav
- Department of Chemistry, Netaji Subhas University of Technology, Dwarka, India
| | - Anshul Singh
- Department of Chemistry, Baba Mastnath University, Rohtak, India
| | - Anjana Sarkar
- Department of Chemistry, Netaji Subhas University of Technology, Dwarka, India
| | - Ravi Tomar
- Department of Chemistry, Institute of Basic Sciences, Maharaja Surajmal Brij University, Bharatpur, Rajasthan-321201, India
| |
Collapse
|
14
|
Waters LJ, Cooke DJ, Quah XL. Fragment contribution models for predicting skin permeability using HuskinDB. Sci Data 2023; 10:821. [PMID: 37996523 PMCID: PMC10667307 DOI: 10.1038/s41597-023-02711-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 10/31/2023] [Indexed: 11/25/2023] Open
Abstract
Mathematical models to predict skin permeation tend to be based on animal derived experimental data as well as knowing physicochemical properties of the compound under investigation, such as molecular volume, polarity and lipophilicity. This paper presents a strikingly contrasting model to predict permeability, formed entirely from simple chemical fragment (functional group) data and a recently released, freely accessible human (i.e. non-animal) skin permeation database, known as the 'Human Skin Database - HuskinDB'. Data from within the database allowed development of several fragment-based models, each including a calculable effect for all of the most commonly encountered functional groups present in compounds within the database. The developed models can be applied to predict human skin permeability (logKp) for any compound containing one or more of the functional groups analysed from the dataset with no need to know any other physicochemical properties, solely the type and number of each functional group within the chemical structure itself. This approach simplifies mathematical prediction of permeability for compounds with similar properties to those used in this study.
Collapse
Affiliation(s)
- Laura J Waters
- School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK.
| | - David J Cooke
- School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
| | - Xin Ling Quah
- School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
| |
Collapse
|
15
|
Marini E, Sodano F, Rolando B, Chegaev K, Maresca DC, Ianaro A, Ercolano G, Lazzarato L. New lipophilic organic nitrates: candidates for chronic skin disease therapy. Biol Chem 2023; 404:601-606. [PMID: 36867068 DOI: 10.1515/hsz-2022-0324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/17/2023] [Indexed: 03/04/2023]
Abstract
Organic nitrates are widely used, but their chronic efficacy is blunted due to the development of tolerance. The properties of new tolerance free organic nitrates were studied. Their lipophilicity profile and passive diffusion across polydimethylsiloxane membrane and pig ear-skin, and their efficacy in tissue regeneration using HaCaT keratinocytes were evaluated. The permeation results show that these nitrates have a suitable profile for NO topical administration on the skin. Furthermore, the derivatives with higher NO release exerted a pro-healing effect on HaCaT cells. This new class of organic nitrates might be a promising strategy for the chronic treatment of skin pathologies.
Collapse
Affiliation(s)
- Elisabetta Marini
- Department of Drug Science and Technology, University of Turin, I-10125 Turin, Italy
| | - Federica Sodano
- Department of Pharmacy, University of Naples «Federico II», I-80131 Naples, Italy
| | - Barbara Rolando
- Department of Drug Science and Technology, University of Turin, I-10125 Turin, Italy
| | - Konstantin Chegaev
- Department of Drug Science and Technology, University of Turin, I-10125 Turin, Italy
| | | | - Angela Ianaro
- Department of Pharmacy, University of Naples «Federico II», I-80131 Naples, Italy
| | - Giuseppe Ercolano
- Department of Pharmacy, University of Naples «Federico II», I-80131 Naples, Italy
| | - Loretta Lazzarato
- Department of Drug Science and Technology, University of Turin, I-10125 Turin, Italy
| |
Collapse
|
16
|
Tripathi R, Kumar P. Preliminary study to identify CXCR4 inhibitors as potential therapeutic agents for Alzheimer's and Parkinson's diseases. Integr Biol (Camb) 2023; 15:zyad012. [PMID: 37635325 DOI: 10.1093/intbio/zyad012] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 07/10/2023] [Accepted: 08/08/2023] [Indexed: 08/29/2023]
Abstract
Neurodegenerative disorders (NDDs) are known to exhibit genetic overlap and shared pathophysiology. This study aims to find the shared genetic architecture of Alzheimer's disease (AD) and Parkinson's disease (PD), two major age-related progressive neurodegenerative disorders. The gene expression profiles of GSE67333 (containing samples from AD patients) and GSE114517 (containing samples from PD patients) were retrieved from the Gene Expression Omnibus (GEO) functional genomics database managed by the National Center for Biotechnology Information. The web application GREIN (GEO RNA-seq Experiments Interactive Navigator) was used to identify differentially expressed genes (DEGs). A total of 617 DEGs (239 upregulated and 379 downregulated) were identified from the GSE67333 dataset. Likewise, 723 DEGs (378 upregulated and 344 downregulated) were identified from the GSE114517 dataset. The protein-protein interaction networks of the DEGs were constructed, and the top 50 hub genes were identified from the network of the respective dataset. Of the four common hub genes between two datasets, C-X-C chemokine receptor type 4 (CXCR4) was selected due to its gene expression signature profile and the same direction of differential expression between the two datasets. Mavorixafor was chosen as the reference drug due to its known inhibitory activity against CXCR4 and its ability to cross the blood-brain barrier. Molecular docking and molecular dynamics simulation of 51 molecules having structural similarity with Mavorixafor was performed to find two novel molecules, ZINC49067615 and ZINC103242147. This preliminary study might help predict molecular targets and diagnostic markers for treating Alzheimer's and Parkinson's diseases. Insight Box Our research substantiates the therapeutic relevance of CXCR4 inhibitors for the treatment of Alzheimer's and Parkinson's diseases. We would like to disclose the following insights about this study. We found common signatures between Alzheimer's and Parkinson's diseases at transcriptional levels by analyzing mRNA sequencing data. These signatures were used to identify putative therapeutic agents for these diseases through computational analysis. Thus, we proposed two novel compounds, ZINC49067615 and ZINC103242147, that were stable, showed a strong affinity with CXCR4, and exhibited good pharmacokinetic properties. The interaction of these compounds with major residues of CXCR4 has also been described.
Collapse
Affiliation(s)
- Rahul Tripathi
- Department of Biotechnology, Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Delhi, India
| | - Pravir Kumar
- Department of Biotechnology, Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Delhi, India
| |
Collapse
|
17
|
Gupta KM, Das S, Wong ABH, Chow PS. Formulation and Skin Permeation of Active-Loaded Lipid Nanoparticles: Evaluation and Screening by Synergizing Molecular Dynamics Simulations and Experiments. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:308-319. [PMID: 36573314 DOI: 10.1021/acs.langmuir.2c02550] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Encapsulation into nanoparticles (NPs) is a potential method to deliver pharmaceutical/cosmetic actives deep into the skin. However, understanding the NP formulations and underlying mechanism of active delivery to skin has scarcely been studied. We report a simulation platform that screens, evaluates, formulates, and provides atomic-resolution interpretation of NP-based formulations, and reveals the active permeation mechanism from NPs to skin. First, three actives, namely, ferulic acid (FA), clotrimazole (CZE), and tretinoin (TTN), and five lipid excipients' (Compritol, Precirol, Geleol, Gelot, Gelucire) combinations were screened by MD simulations for the best pairs. For each suggested pair, the actual active and lipid compositions for the synthesis of stable NP formulations were then obtained by experiments. MD simulations demonstrate that in NP formulations, FA and CZE actives are present at the surface of the NPs, whereas TTN actives are present at both the surface and interior of the NP core. The NP shapes obtained by simulation perfectly match with experiments. For each NP, separate MD simulations illustrate that active-loaded NPs approach the skin surface quickly, and then actives translocate from NP surface to skin surface followed by penetration of NPs through skin. The driving force for the translocation which initiates during the penetration process, is the stronger active-skin interaction compared to active-NP interaction. Permeation free energy indicates spontaneous transfer of actives from solution phase to the surface of the skin bilayer. The free energy barriers are increased in the order of FA < TTN < CZE. Significantly lower diffusions of actives are obtained in the main barrier region compared to bulk, and the average diffusion coefficients of actives are in the same order of magnitude (∼10-6 cm2/s). The estimated permeability coefficients (log P) of actives are mainly governed by free energy barriers. The study would facilitate the development of novel lipid-based NP formulations for personal-care/pharmaceutical applications.
Collapse
Affiliation(s)
- Krishna M Gupta
- Institute of Sustainability for Chemicals, Energy and Environment, A*STAR (Agency for Science, Technology and Research), 1 Pesek Road, Jurong Island627833, Singapore
| | - Surajit Das
- Institute of Sustainability for Chemicals, Energy and Environment, A*STAR (Agency for Science, Technology and Research), 1 Pesek Road, Jurong Island627833, Singapore
| | - Annie B H Wong
- Institute of Sustainability for Chemicals, Energy and Environment, A*STAR (Agency for Science, Technology and Research), 1 Pesek Road, Jurong Island627833, Singapore
| | - Pui Shan Chow
- Institute of Sustainability for Chemicals, Energy and Environment, A*STAR (Agency for Science, Technology and Research), 1 Pesek Road, Jurong Island627833, Singapore
| |
Collapse
|
18
|
Vidović D, Milošević N, Pavlović N, Todorović N, Čanji Panić J, Kovačević S, Banjac MK, Podunavac-Kuzmanović S, Banjac N, Trišović N, Božić B, Lalić-Popović M. Predicting percutaneous permeation for new succinimide derivatives by in vitro and in silico models. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
19
|
Lundborg M, Wennberg C, Lidmar J, Hess B, Lindahl E, Norlén L. Skin permeability prediction with MD simulation sampling spatial and alchemical reaction coordinates. Biophys J 2022; 121:3837-3849. [PMID: 36104960 PMCID: PMC9674988 DOI: 10.1016/j.bpj.2022.09.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/22/2022] [Accepted: 09/08/2022] [Indexed: 11/02/2022] Open
Abstract
A molecular-level understanding of skin permeation may rationalize and streamline product development, and improve quality and control, of transdermal and topical drug delivery systems. It may also facilitate toxicity and safety assessment of cosmetics and skin care products. Here, we present new molecular dynamics simulation approaches that make it possible to efficiently sample the free energy and local diffusion coefficient across the skin's barrier structure to predict skin permeability and the effects of chemical penetration enhancers. In particular, we introduce a new approach to use two-dimensional reaction coordinates in the accelerated weight histogram method, where we combine sampling along spatial coordinates with an alchemical perturbation virtual coordinate. We present predicted properties for 20 permeants, and demonstrate how our approach improves correlation with ex vivo/in vitro skin permeation data. For the compounds included in this study, the obtained log KPexp-calc mean square difference was 0.9 cm2 h-2.
Collapse
Affiliation(s)
| | | | - Jack Lidmar
- Department of Physics, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Berk Hess
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Solna, Sweden
| | - Erik Lindahl
- Department of Biophysics and Biochemistry, Science for Life Laboratory, Stockholm University, Solna, Sweden; Department of Physics, Swedish e-Science Research Center, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Lars Norlén
- Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Stockholm, Sweden; Dermatology Clinic, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
20
|
Waters LJ, Quah XL. Predicting skin permeability using HuskinDB. Sci Data 2022; 9:584. [PMID: 36151144 PMCID: PMC9508232 DOI: 10.1038/s41597-022-01698-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
A freely accessible database has recently been released that provides measurements available in the literature on human skin permeation data, known as the ‘Human Skin Database – HuskinDB’. Although this database is extremely useful for sourcing permeation data to help with toxicity and efficacy determination, it cannot be beneficial when wishing to consider unlisted, or novel compounds. This study undertakes analysis of the data from within HuskinDB to create a model that predicts permeation for any compound (within the range of properties used to create the model). Using permeability coefficient (Kp) data from within this resource, several models were established for Kp values for compounds of interest by varying the experimental parameters chosen and using standard physicochemical data. Multiple regression analysis facilitated creation of one particularly successful model to predict Kp through human skin based only on three chemical properties. The model transforms the dataset from simply a resource of information to a more beneficial model that can be used to replace permeation testing for a wide range of compounds.
Collapse
Affiliation(s)
- Laura J Waters
- School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK.
| | - Xin Ling Quah
- School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
| |
Collapse
|
21
|
Wu YW, Ta GH, Lung YC, Weng CF, Leong MK. In Silico Prediction of Skin Permeability Using a Two-QSAR Approach. Pharmaceutics 2022; 14:961. [PMID: 35631545 PMCID: PMC9143389 DOI: 10.3390/pharmaceutics14050961] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/23/2022] [Accepted: 04/26/2022] [Indexed: 11/17/2022] Open
Abstract
Topical and transdermal drug delivery is an effective, safe, and preferred route of drug administration. As such, skin permeability is one of the critical parameters that should be taken into consideration in the process of drug discovery and development. The ex vivo human skin model is considered as the best surrogate to evaluate in vivo skin permeability. This investigation adopted a novel two-QSAR scheme by collectively incorporating machine learning-based hierarchical support vector regression (HSVR) and classical partial least square (PLS) to predict the skin permeability coefficient and to uncover the intrinsic permeation mechanism, respectively, based on ex vivo excised human skin permeability data compiled from the literature. The derived HSVR model functioned better than PLS as represented by the predictive performance in the training set, test set, and outlier set in addition to various statistical estimations. HSVR also delivered consistent performance upon the application of a mock test, which purposely mimicked the real challenges. PLS, contrarily, uncovered the interpretable relevance between selected descriptors and skin permeability. Thus, the synergy between interpretable PLS and predictive HSVR models can be of great use for facilitating drug discovery and development by predicting skin permeability.
Collapse
Affiliation(s)
- Yu-Wen Wu
- Department of Chemistry, National Dong Hwa University, Shoufeng, Hualien 974301, Taiwan; (Y.-W.W.); (G.H.T.); (Y.-C.L.)
| | - Giang Huong Ta
- Department of Chemistry, National Dong Hwa University, Shoufeng, Hualien 974301, Taiwan; (Y.-W.W.); (G.H.T.); (Y.-C.L.)
| | - Yi-Chieh Lung
- Department of Chemistry, National Dong Hwa University, Shoufeng, Hualien 974301, Taiwan; (Y.-W.W.); (G.H.T.); (Y.-C.L.)
| | - Ching-Feng Weng
- Institute of Respiratory Disease and Functional Physiology Section, Department of Basic Medical Science, Xiamen Medical College, Xiamen 361023, China;
| | - Max K. Leong
- Department of Chemistry, National Dong Hwa University, Shoufeng, Hualien 974301, Taiwan; (Y.-W.W.); (G.H.T.); (Y.-C.L.)
| |
Collapse
|
22
|
Murad HAS, Alqurashi TMA, Hussien MA. Interactions of selected cardiovascular active natural compounds with CXCR4 and CXCR7 receptors: a molecular docking, molecular dynamics, and pharmacokinetic/toxicity prediction study. BMC Complement Med Ther 2022; 22:35. [PMID: 35120520 PMCID: PMC8817505 DOI: 10.1186/s12906-021-03488-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 12/06/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The chemokine CXCL12 and its two receptors (CXCR4 and CXCR7) are involved in inflammation and hematopoietic cell trafficking. This study was designed to investigate molecular docking interactions of four popular cardiovascular-active natural compounds; curcumin, resveratrol, quercetin, and eucalyptol; with these receptors and to predict their drug-like properties. We hypothesize that these compounds can modify CXCL12/CXCR4/CXCR7 pathway offering benefits for coronary artery disease patients. METHODS Docking analyses were carried and characterized by Molecular Environment (MOE) software. Protein Data Bank ( http://www.rcsb.org/ ) has been retrieved from protein structure generation and crystal structures of CXCR4 and CXCR7 receptors (PDB code = 3ODU and 6K3F). The active sites of these receptors were evaluated and extracted from full protein and molecular docking protocol was done for compounds against them. The presented parameters included docking scores, ligand binding efficiency, and hydrogen bonding. The pharmacokinetic/toxic properties (ADME/T) were calculated using SwissADME, ProTox-II, and Pred-hERG softwares to predict drug-like properties of the compounds. The thermochemical and molecular orbital analysis, and molecular dynamics simulations were also done. RESULTS All compounds showed efficient interactions with the CXCR4 and CXCR7 receptors. The docking scores toward proteins 3ODU of CXCR4 and 6K3F of CXCR7 were - 7.71 and - 7.17 for curcumin, - 5.97 and - 6.03 for quercetin, - 5.68 and - 5.49 for trans-resveratrol, and - 4.88 and - 4.70 for (1 s,4 s)-eucalyptol respectively indicating that all compounds, except quercetin, have more interactions with CXCR4 than with CXCR7. The structurally and functionally important residues in the interactive sites of docked CXCR4-complex and CXCR7-complex were identified. The ADME analysis showed that the compounds have drug-like properties. Only (1 s,4 s)-Eucalyptol has potential weak cardiotoxicity. The results of thermochemical and molecular orbital analysis and molecular dynamics simulation validated outcomes of molecular docking study. CONCLUSIONS Curcumin showed the top binding interaction against active sites of CXCR4 and CXCR7 receptors, with the best safety profile, followed by quercetin, resveratrol, and eucalyptol. All compounds demonstrated drug-like properties. Eucalyptol has promising potential because it can be used by inhalation or skin massage. To our knowledge, this is the first attempt to find binding interactions of these natural agents with CXCR4 and CXCR7 receptors and to predict their druggability.
Collapse
Affiliation(s)
- Hussam Aly Sayed Murad
- Department of Pharmacology, Faculty of Medicine, Rabigh, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
| | | | - Mostafa Aly Hussien
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.,Department of Chemistry, Faculty of Science, Port-Said University, Port-Said, 42521, Egypt
| |
Collapse
|
23
|
Iyer A, Jyothi VGSS, Agrawal A, Khatri DK, Srivastava S, Singh SB, Madan J. Does skin permeation kinetics influence efficacy of topical dermal drug delivery system?: Assessment, prediction, utilization, and integration of chitosan biomacromolecule for augmenting topical dermal drug delivery in skin. J Adv Pharm Technol Res 2021; 12:345-355. [PMID: 34820308 PMCID: PMC8588922 DOI: 10.4103/japtr.japtr_82_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 06/28/2021] [Accepted: 07/19/2021] [Indexed: 11/04/2022] Open
Abstract
Skin permeation is an integral part of penetration of topical therapeutics. Zero order in addition to Higuchi permeation kinetic is usually preferred in topical drug delivery cargo. Penetration of therapeutic entities through epidermal barrier is a major challenge for scientific fraternity. Furthermore, penetration of therapeutic entities determines the transportation and ultimately therapeutic efficacy of topical dermal dosage forms. Apart from experimentation models, mathematical equations, in silico docking, molecular dynamics (MDs), and artificial neural network (Neural) techniques are being used to assess free energies and prediction of electrostatic attractions in order to predict the permeation phenomena of therapeutic entities. Therefore, in the present review, we have summarized the significance of kinetic equations, in silico docking, MDs, and ANN in assessing and predicting the penetration behavior of topical therapeutics through dermal dosage form. In addition, the role of chitosan biomacromolecule in modulating permeation of topical therapeutics in skin has also been illustrated using computational techniques.
Collapse
Affiliation(s)
- Akshaya Iyer
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Vaskuri G S Sainaga Jyothi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Aashruti Agrawal
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Dharmendra Kumar Khatri
- Department of Biological Science, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Shashi Bala Singh
- Department of Biological Science, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Jitender Madan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| |
Collapse
|
24
|
Kim T, You BH, Han S, Shin HC, Chung KC, Park H. Quantum Artificial Neural Network Approach to Derive a Highly Predictive 3D-QSAR Model for Blood-Brain Barrier Passage. Int J Mol Sci 2021; 22:ijms222010995. [PMID: 34681653 PMCID: PMC8537149 DOI: 10.3390/ijms222010995] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/07/2021] [Accepted: 10/10/2021] [Indexed: 01/07/2023] Open
Abstract
A successful passage of the blood–brain barrier (BBB) is an essential prerequisite for the drug molecules designed to act on the central nervous system. The logarithm of blood–brain partitioning (LogBB) has served as an effective index of molecular BBB permeability. Using the three-dimensional (3D) distribution of the molecular electrostatic potential (ESP) as the numerical descriptor, a quantitative structure-activity relationship (QSAR) model termed AlphaQ was derived to predict the molecular LogBB values. To obtain the optimal atomic coordinates of the molecules under investigation, the pairwise 3D structural alignments were conducted in such a way to maximize the quantum mechanical cross correlation between the template and a target molecule. This alignment method has the advantage over the conventional atom-by-atom matching protocol in that the structurally diverse molecules can be analyzed as rigorously as the chemical derivatives with the same scaffold. The inaccuracy problem in the 3D structural alignment was alleviated in a large part by categorizing the molecules into the eight subsets according to the molecular weight. By applying the artificial neural network algorithm to associate the fully quantum mechanical ESP descriptors with the extensive experimental LogBB data, a highly predictive 3D-QSAR model was derived for each molecular subset with a squared correlation coefficient larger than 0.8. Due to the simplicity in model building and the high predictability, AlphaQ is anticipated to serve as an effective computational screening tool for molecular BBB permeability.
Collapse
Affiliation(s)
- Taeho Kim
- Department of Bioscience and Biotechnology, Sejong University, Kwangjin-gu, Seoul 05006, Korea;
| | - Byoung Hoon You
- Whan In Pharmaceutical Co., Ltd., 11, Songpa-gu, Seoul 05855, Korea; (B.H.Y.); (S.H.); (H.C.S.)
| | - Songhee Han
- Whan In Pharmaceutical Co., Ltd., 11, Songpa-gu, Seoul 05855, Korea; (B.H.Y.); (S.H.); (H.C.S.)
| | - Ho Chul Shin
- Whan In Pharmaceutical Co., Ltd., 11, Songpa-gu, Seoul 05855, Korea; (B.H.Y.); (S.H.); (H.C.S.)
| | - Kee-Choo Chung
- Department of Bioscience and Biotechnology, Sejong University, Kwangjin-gu, Seoul 05006, Korea;
- Correspondence: (K.-C.C.); (H.P.); Tel.: +82-2-2963-1635 (K.-C.C.); +82-2-3408-3766 (H.P.); Fax: +82-2-3408-4334 (K.-C.C. & H.P.)
| | - Hwangseo Park
- Department of Bioscience and Biotechnology, Sejong University, Kwangjin-gu, Seoul 05006, Korea;
- Correspondence: (K.-C.C.); (H.P.); Tel.: +82-2-2963-1635 (K.-C.C.); +82-2-3408-3766 (H.P.); Fax: +82-2-3408-4334 (K.-C.C. & H.P.)
| |
Collapse
|
25
|
Roberts MS, Cheruvu HS, Mangion SE, Alinaghi A, Benson HA, Mohammed Y, Holmes A, van der Hoek J, Pastore M, Grice JE. Topical drug delivery: History, percutaneous absorption, and product development. Adv Drug Deliv Rev 2021; 177:113929. [PMID: 34403750 DOI: 10.1016/j.addr.2021.113929] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/05/2021] [Accepted: 08/11/2021] [Indexed: 02/07/2023]
Abstract
Topical products, widely used to manage skin conditions, have evolved from simple potions to sophisticated delivery systems. Their development has been facilitated by advances in percutaneous absorption and product design based on an increasingly mechanistic understanding of drug-product-skin interactions, associated experiments, and a quality-by-design framework. Topical drug delivery involves drug transport from a product on the skin to a local target site and then clearance by diffusion, metabolism, and the dermal circulation to the rest of the body and deeper tissues. Insights have been provided by Quantitative Structure Permeability Relationships (QSPR), molecular dynamics simulations, and dermal Physiologically Based PharmacoKinetics (PBPK). Currently, generic product equivalents of reference-listed products dominate the topical delivery market. There is an increasing regulatory interest in understanding topical product delivery behavior under 'in use' conditions and predicting in vivo response for population variations in skin barrier function and response using in silico and in vitro findings.
Collapse
|
26
|
Gupta KM, Das S, Chow PS. Molecular dynamics simulations to elucidate translocation and permeation of active from lipid nanoparticle to skin: complemented by experiments. NANOSCALE 2021; 13:12916-12928. [PMID: 34477775 DOI: 10.1039/d1nr02652f] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
One of the most realistic approaches for delivering actives (pharmaceuticals/cosmetics) deep into skin layers is encapsulation into nanoparticles (NPs). Nonetheless, molecular-level mechanisms related to active delivery from NPs to the skin have scarcely been studied despite the large number of synthesis and characterization studies. We herein report the underlying mechanism of active translocation and permeation through the outermost layer of skin, the stratum corneum (SC), via molecular dynamics (MD) simulations complemented by experimental studies. A SC molecular model is constructed using current state-of-the-art methodology via incorporating the three most abundant skin lipids: ceramides, free fatty acids, and cholesterol. As a potent antioxidant, ferulic acid (FA) is used as the model active, and it is loaded into Gelucire 50/13 NP. MD simulations elucidate that, first, FA-loaded NP approaches the skin surface quickly, followed by slight penetration and adsorption onto the upper skin surface; FA then translocates from the NP surface to the skin surface due to stronger NP-skin interactions compared to the FA-NP interactions; then, once FA is released onto the skin surface, it slowly permeates deep into the skin bilayer. Both the free energy and resistance to permeation not only indicate the spontaneous transfer of FA from the bulk to the skin surface, but they also reveal that the main barrier against permeation exists in the middle of the lipid hydrophobic tails. Significantly lower diffusion of FA is obtained in the main barrier region compared to the bulk. The estimated permeability coefficient (log P) values are found to be higher than the experimental values. Importantly, the permeation process evaluated via MD simulations perfectly matches with experiments. The study suggests a molecular simulation platform that provides various crucial insights relating to active delivery from loaded NP to skin, and it could facilitate the design and development of novel NP-based formulations for transdermal delivery and the topical application of drugs/cosmetics.
Collapse
Affiliation(s)
- Krishna M Gupta
- Institute of Chemical & Engineering Sciences, A*STAR (Agency for Science, Technology and Research), 1 Pesek Road, Jurong Island, Singapore 627833.
| | | | | |
Collapse
|
27
|
Machado N, Callegaro C, Christoffolete MA, Martinho H. Tuning the transdermal transport by application of external continuous electric field: a coarse-grained molecular dynamics study. Phys Chem Chem Phys 2021; 23:8273-8281. [PMID: 33656026 DOI: 10.1039/d1cp00354b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The control of skin permeability to specific substances (e.g., medications, vitamins, and nutrients) through stratum corneum is a challenge. Iontophoresis is an option in spite of the lack of a detailed understanding of the underlying molecular mechanism. In the present work, the simulations concerning application of an external continuous electric field to stratum corneum, in a range of low intensity (0-24 mV nm-1), were carried out using the coarse-grained molecular dynamics approach. Using a set of random seed replicas of the starting configuration, we observed that in the range of electric field intensity of 22-23 mV nm-1, water-rich lipid vesicles were formed in 20% of cases. Pores appeared in the remaining 80%. We argue that lipids undergo fast re-orientations under electric field inducing mechanical instability, which originates the pores. We presented a simple electrostatic model to interpret the results where the mismatch between electrical permittivities of the membrane and external media and the gradient of the local electric field in the membrane surface, govern the time scales and electric fields for vesicle formation. Our results indicate that just 10% difference between electrical permittivities of the membrane and external media decreases 1/6 the minimal time required for vesicle formation. The minimal electric field required decreases 10 times. The control and tunning of formation of biologically compatible vesicles, capable of transporting substances under low-intensity electric fields, has a promising application in fields such as drug therapy and dermo-cosmetics allowing the use of hydrophilic substances in dermal applications.
Collapse
Affiliation(s)
- Neila Machado
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Av. dos Estados 5001, Santo André, SP 09210-580, Brazil.
| | | | | | | |
Collapse
|
28
|
Khotimchenko M, Antontsev V, Chakravarty K, Hou H, Varshney J. In Silico Simulation of the Systemic Drug Exposure Following the Topical Application of Opioid Analgesics in Patients with Cutaneous Lesions. Pharmaceutics 2021; 13:284. [PMID: 33669957 PMCID: PMC7924840 DOI: 10.3390/pharmaceutics13020284] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/23/2021] [Accepted: 02/19/2021] [Indexed: 11/16/2022] Open
Abstract
The use of opioid analgesics in treating severe pain is frequently associated with putative adverse effects in humans. Topical agents that are shown to have high efficacy with a favorable safety profile in clinical settings are great alternatives for pain management of multimodal analgesia. However, the risk of side effects induced by transdermal absorption and systemic exposure is of great concern as they are challenging to predict. The present study aimed to use "BIOiSIM" an artificial intelligence-integrated biosimulation platform to predict the transdermal disposition of opioid analgesics. The model successfully predicted their exposure following the topical application of central opioid agonist buprenorphine and peripheral agonist oxycodone in healthy human subjects with simulation of intra-skin exposure in subjects with burns and pressure wounds. The predicted plasma levels of analgesics were used to evaluate the safety of the therapeutic pain control in patients with the dermal structural impairments caused by acute (burns) or chronic cutaneous lesions (pressure wounds) with topical opioid analgesics.
Collapse
Affiliation(s)
| | | | | | | | - Jyotika Varshney
- VeriSIM Life Inc., 1 Sansome St, Suite 3500, San Francisco, CA 94104, USA; (M.K.); (V.A.); (K.C.); (H.H.)
| |
Collapse
|
29
|
Mercuri M, Fernandez Rivas D. Challenges and opportunities for small volumes delivery into the skin. BIOMICROFLUIDICS 2021; 15:011301. [PMID: 33532017 PMCID: PMC7826167 DOI: 10.1063/5.0030163] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 01/09/2021] [Indexed: 05/04/2023]
Abstract
Each individual's skin has its own features, such as strength, elasticity, or permeability to drugs, which limits the effectiveness of one-size-fits-all approaches typically found in medical treatments. Therefore, understanding the transport mechanisms of substances across the skin is instrumental for the development of novel minimal invasive transdermal therapies. However, the large difference between transport timescales and length scales of disparate molecules needed for medical therapies makes it difficult to address fundamental questions. Thus, this lack of fundamental knowledge has limited the efficacy of bioengineering equipment and medical treatments. In this article, we provide an overview of the most important microfluidics-related transport phenomena through the skin and versatile tools to study them. Moreover, we provide a summary of challenges and opportunities faced by advanced transdermal delivery methods, such as needle-free jet injectors, microneedles, and tattooing, which could pave the way to the implementation of better therapies and new methods.
Collapse
Affiliation(s)
- Magalí Mercuri
- Instituto de Nanociencia y Nanotecnología (CNEA-CONICET), Av. Gral. Paz 1499, 1650 San Martín, Buenos Aires, Argentina
| | - David Fernandez Rivas
- Mesoscale Chemical Systems Group, MESA+ Institute, TechMed Centre and Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
30
|
Comprehensive two-dimensional liquid chromatography as a biomimetic screening platform for pharmacokinetic profiling of compound libraries in early drug development. Anal Chim Acta 2020; 1142:157-168. [PMID: 33280693 DOI: 10.1016/j.aca.2020.11.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 11/20/2022]
Abstract
A comprehensive two-dimensional liquid chromatography-based biomimetic platform (LCxLC) has been developed and validated for drug diffusion studies. Human serum albumin (HSA) and immobilized artificial membrane (IAM) were thereby used in the first (1D) and second (2D) separation dimension, respectively. While the former was meant to emulate the blood, the latter was instead intended to mimic the intestinal mucosa epithelium. Therefore, the experimental conditions, i.e. pH, temperature and buffer composition, were modulated to reflect faithfully in vivo conditions. 30 compounds, whose effective intestinal permeability (Peff) assayed in situ on humans by a validated technique was known from the literature, were used as model drugs. A good and orthogonal separation was achieved for the whole dataset, although for a better distribution of the most polar compounds in the elution window a segmented gradient elution program had to be employed. Interestingly, the passively uptaken compounds having the most favourable Peff populated a specific area of the 2D plots, implying that the affinity for HSA and IAM has to lie in specific ranges in order for a compound to be satisfactorily absorbed from the intestinal lumen. Although these results should be regarded as preliminary, this work paves an entirely new and unprecedented way to profile pharmaceutically relevant compounds for their in vivo absorption and distribution potential.
Collapse
|
31
|
Qiao K, Fu W, Jiang Y, Chen L, Li S, Ye Q, Gui W. QSAR models for the acute toxicity of 1,2,4-triazole fungicides to zebrafish (Danio rerio) embryos. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114837. [PMID: 32460121 DOI: 10.1016/j.envpol.2020.114837] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/27/2020] [Accepted: 05/16/2020] [Indexed: 06/11/2023]
Abstract
In recent decades, the 1,2,4-triazole fungicides are widely used for crop diseases control, and their toxicity to wild lives and pollution to ecosystem have attracted more and more attention. However, how to quickly and efficiently evaluate the toxicity of these compounds to environmental organisms is still a challenge. In silico method, such like Quantitative Structure-Activity Relationship (QSAR), provides a good alternative to evaluate the environmental toxicity of a large number of chemicals. At the present study, the acute toxicity of 23 1,2,4-triazole fungicides to zebrafish (Danio rerio) embryos was firstly tested, and the LC50 (median lethal concentration) values were used as the bio-activity endpoint to conduct QSAR modelling for these triazoles. After the comparative study of several QSAR models, the 2D-QSAR model was finally constructed using the stepwise multiple linear regression algorithm combining with two physicochemical parameters (logD and μ), an electronic parameter (QN1) and a topological parameter (XvPC4). The optimal model could be mathematically described as following: pLC50 = -7.24-0.30XvPC4 + 0.76logD - 26.15QN1 - 0.08μ. The internal validation by leave-one-out (LOO) cross-validation showed that the R2adj (adjusted noncross-validation squared correlation coefficient), Q2 (cross-validation correlation coefficient) and RMSD (root-mean-square error) was 0.88, 0.84 and 0.17, respectively. The external validation indicated the model had a robust predictability with the q2 (predictive squared correlation coefficient) of 0.90 when eliminated tricyclazole. The present study provided a potential tool for predicting the acute toxicity of new 1,2,4-triazole fungicides which contained an independent triazole ring group in their molecules to zebrafish embryos, and also provided a reference for the development of more environmentally-friendly 1,2,4-triazole pesticides in the future.
Collapse
Affiliation(s)
- Kun Qiao
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, PR China; Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Wenjie Fu
- Institute of Insect Science, Zhejiang University, Hangzhou, 310058, PR China
| | - Yao Jiang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, PR China
| | - Lili Chen
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, PR China
| | - Shuying Li
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, PR China
| | - Qingfu Ye
- Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Wenjun Gui
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, PR China.
| |
Collapse
|
32
|
Wahab HA, Amaro RE, Cournia Z. A Celebration of Women in Computational Chemistry. J Chem Inf Model 2019; 59:1683-1692. [DOI: 10.1021/acs.jcim.9b00368] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
| | - Rommie E. Amaro
- Department of Chemistry and Biochemistry, University of California, San Diego, 3234 Urey Hall, #0340, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Zoe Cournia
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| |
Collapse
|