1
|
Zhen J, Zhang C, Huang T, Xie L, Yan Y, Yan S, Zhang J, Huang H, Xie J. Drug repurposing: An antidiabetic drug Ipragliflozin as Mycobacterium tuberculosis sirtuin-like protein inhibitor that synergizes with anti-tuberculosis drug isoniazid. Int J Biol Macromol 2024:137003. [PMID: 39481722 DOI: 10.1016/j.ijbiomac.2024.137003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 10/26/2024] [Accepted: 10/26/2024] [Indexed: 11/02/2024]
Abstract
The surge of drug-resistant Mycobacterium tuberculosis (DR-TB) impedes the World Health Organization's efforts in ending TB and calls for new therapeutic formulations. M. tuberculosis sirtuin-like protein Rv1151c is a bifunctional enzyme with both deacetylation and desuccinylation activities, which plays an important role in M. tuberculosis drug resistance and stress responses. Thus, it appears to be a promising target for the development of new TB therapeutics. In this study, we screened 31,057 ligand compounds from seven compound libraries in silico to identify inhibitors of Rv1151c. Ipragliflozin can bind to Rv1151c and interact stably. Ipragliflozin can change the acylation level of M. tuberculosis by inhibiting Rv1151c and effectively inhibit the growth of M. tuberculosis H37Rv and M. smegmatis. It can potentiate the first-front anti-TB drug isoniazid. As an antidiabetic drug, Ipragliflozin can be potentially included in the regimen to treat diabetes-tuberculosis comorbidity.
Collapse
Affiliation(s)
- Junfeng Zhen
- Institute of Modern Biopharmaceuticals, School of Life Sciences, Southwest University, Chongqing, China
| | - Chao Zhang
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory on Drug-Resistant Tuberculosis, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Tingting Huang
- Institute of Modern Biopharmaceuticals, School of Life Sciences, Southwest University, Chongqing, China
| | - Longxiang Xie
- Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Huaihe Hospital, Henan University, Kaifeng, China
| | - Yaru Yan
- Institute of Modern Biopharmaceuticals, School of Life Sciences, Southwest University, Chongqing, China
| | - Shuangquan Yan
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jinghan Zhang
- Institute of Modern Biopharmaceuticals, School of Life Sciences, Southwest University, Chongqing, China
| | - Hairong Huang
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory on Drug-Resistant Tuberculosis, Beijing Chest Hospital, Capital Medical University, Beijing, China.
| | - Jianping Xie
- Institute of Modern Biopharmaceuticals, School of Life Sciences, Southwest University, Chongqing, China.
| |
Collapse
|
2
|
Shekhar, Roquet-Banères F, Anand A, Kremer L, Kumar V. Rational design and microwave-promoted synthesis of triclosan-based dimers: targeting InhA for anti-mycobacterial profiling. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240676. [PMID: 39392739 PMCID: PMC11461061 DOI: 10.1098/rsos.240676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/02/2024] [Accepted: 08/06/2024] [Indexed: 10/13/2024]
Abstract
A set of alkyl-/1H-1,2,3-triazole-based dimers was strategically designed and synthesized to evaluate their in vitro anti-mycobacterial activities against Mycobacterium tuberculosis and the non-tuberculous Mycobacterium abscessus strains. Systematic variations in the nature (alkyl/1H-1,2,3-triazole) and positioning of the linker were implemented based on the docking scores observed in the binding sites identified in the crystal structures of InhA from M. tuberculosis and M. abscessus. However, the in vitro evaluation results revealed that the synthesized compounds did not exhibit inhibitory effects on the growth of mycobacteria, even at the highest tested concentrations. The elevated lipophilicity values determined through ADMET studies for these synthesized dimers might be a contributing factor to their poor activity profiles.
Collapse
Affiliation(s)
- Shekhar
- Department of Chemistry, Guru Nanak Dev University, Amritsar, Punjab143005, India
| | - Francoise Roquet-Banères
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 route de Mende, 34293 Montpellier, France
| | - Amit Anand
- Department of Chemistry, Khalsa College, Amritsar, Punjab143005, India
| | - Laurent Kremer
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 route de Mende, 34293 Montpellier, France
- INSERM, IRIM, 34293 Montpellier, France
| | - Vipan Kumar
- Department of Chemistry, Guru Nanak Dev University, Amritsar, Punjab143005, India
| |
Collapse
|
3
|
Chauhan M, Barot R, Yadav R, Joshi K, Mirza S, Chikhale R, Srivastava VK, Yadav MR, Murumkar PR. The Mycobacterium tuberculosis Cell Wall: An Alluring Drug Target for Developing Newer Anti-TB Drugs-A Perspective. Chem Biol Drug Des 2024; 104:e14612. [PMID: 39237482 DOI: 10.1111/cbdd.14612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 06/26/2024] [Accepted: 08/05/2024] [Indexed: 09/07/2024]
Abstract
The Mycobacterium cell wall is a capsule-like structure comprising of various layers of biomolecules such as mycolic acid, peptidoglycans, and arabinogalactans, which provide the Mycobacteria a sort of cellular shield. Drugs like isoniazid, ethambutol, cycloserine, delamanid, and pretomanid inhibit cell wall synthesis by inhibiting one or the other enzymes involved in cell wall synthesis. Many enzymes present across these layers serve as potential targets for the design and development of newer anti-TB drugs. Some of these targets are currently being exploited as the most druggable targets like DprE1, InhA, and MmpL3. Many of the anti-TB agents present in clinical trials inhibit cell wall synthesis. The present article covers a systematic perspective of developing cell wall inhibitors targeting various enzymes involved in cell wall biosynthesis as potential drug candidates for treating Mtb infection.
Collapse
Affiliation(s)
- Monica Chauhan
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Rahul Barot
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Rasana Yadav
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Karan Joshi
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Sadaf Mirza
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Rupesh Chikhale
- The Cambridge Crystallography Data Center, Cambridge, UK
- School of Pharmacy, University College London, London, UK
| | | | - Mange Ram Yadav
- Centre of Research for Development, Parul University, Vadodara, Gujarat, India
| | - Prashant R Murumkar
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| |
Collapse
|
4
|
Patel RR, Arun PP, Singh SK, Singh M. Mycobacterial biofilms: Understanding the genetic factors playing significant role in pathogenesis, resistance and diagnosis. Life Sci 2024; 351:122778. [PMID: 38879157 DOI: 10.1016/j.lfs.2024.122778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 05/25/2024] [Accepted: 06/04/2024] [Indexed: 07/03/2024]
Abstract
Even though the genus Mycobacterium is a diverse group consisting of a majority of environmental bacteria known as non-tuberculous mycobacteria (NTM), it also contains some of the deadliest pathogens (Mycobacterium tuberculosis) in history associated with chronic disease called tuberculosis (TB). Formation of biofilm is one of the unique strategies employed by mycobacteria to enhance their ability to survive in hostile conditions. Biofilm formation by Mycobacterium species is an emerging area of research with significant implications for understanding its pathogenesis and treatment of related infections, specifically TB. This review provides an overview of the biofilm-forming abilities of different species of Mycobacterium and the genetic factors influencing biofilm formation with a detailed focus on M. tuberculosis. Biofilm-mediated resistance is a significant challenge as it can limit antibiotic penetration and promote the survival of dormant mycobacterial cells. Key genetic factors promoting biofilm formation have been explored such as the mmpL genes involved in lipid transport and cell wall integrity as well as the groEL gene essential for mature biofilm formation. Additionally, biofilm-mediated antibiotic resistance and pathogenesis highlighting the specific niches, sites of infection along with the possible mechanisms of biofilm dissemination have been discussed. Furthermore, drug targets within mycobacterial biofilm and their role as potential biomarkers in the development of rapid diagnostic tools have been highlighted. The review summarises the current understanding of the complex nature of Mycobacterium biofilm and its clinical implications, paving the way for advancements in the field of disease diagnosis, management and treatment against its multi-drug resistant species.
Collapse
Affiliation(s)
- Ritu Raj Patel
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Pandey Priya Arun
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Sudhir Kumar Singh
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Meenakshi Singh
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
5
|
Venugopala KN, Chandrashekharappa S, Deb PK, Al-Shar'i NA, Pillay M, Tiwari P, Chopra D, Borah P, Tamhaev R, Mourey L, Lherbet C, Aldhubiab BE, Tratrat C, Attimarad M, Nair AB, Sreeharsha N, Mailavaram RP, Venugopala R, Mohanlall V, Morsy MA. Identification of potent indolizine derivatives against Mycobacterial tuberculosis: In vitro anti-TB properties, in silico target validation, molecular docking and dynamics studies. Int J Biol Macromol 2024; 274:133285. [PMID: 38925196 DOI: 10.1016/j.ijbiomac.2024.133285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024]
Abstract
In the current study, two sets of compounds: (E)-1-(2-(4-substitutedphenyl)-2-oxoethyl)-4-((hydroxyimino)methyl)pyridinium derivatives (3a-3e); and (E)-3-(substitutedbenzoyl)-7-((hydroxyimino)methyl)-2-substitutedindolizine-1-carboxylate derivatives (5a-5j), were synthesized and biologically evaluated against two strains of Mycobacterial tuberculosis (ATCC 25177) and multi-drug resistant (MDR) strains. Further, they were also tested in vitro against the mycobacterial InhA enzyme. The in vitro results showed excellent inhibitory activities against both MTB strains and compounds 5a-5j were found to be more potent, and their MIC values ranged from 5 to 16 μg/mL and 16-64 μg/mL against the M. tuberculosis (ATCC 25177) and MDR-TB strains, respectively. Compound 5h with phenyl and 4-fluorobenzoyl groups attached to the 2- and 3-position of the indolizine core was found to be the most active against both strains with MIC values of 5 μg/mL and 16 μg/mL, respectively. On the other hand, the two sets of compounds showed weak to moderate inhibition of InhA enzyme activity that ranged from 5 to 17 % and 10-52 %, respectively, with compound 5f containing 4-fluoro benzoyl group attached to the 3-position of the indolizine core being the most active (52 % inhibition of InhA). Unfortunately, there was no clear correlation between the InhA inhibitory activity and MIC values of the tested compounds, indicating the probability that they might have different modes of action other than InhA inhibition. Therefore, a computational investigation was conducted by employing molecular docking to identify their putative drug target(s) and, consequently, understand their mechanism of action. A panel of 20 essential mycobacterial enzymes was investigated, of which β-ketoacyl acyl carrier protein synthase I (KasA) and pyridoxal-5'-phosphate (PLP)-dependent aminotransferase (BioA) enzymes were revealed as putative targets for compounds 3a-3e and 5a-5j, respectively. Moreover, in silico ADMET predictions showed adequate properties for these compounds, making them promising leads worthy of further optimization.
Collapse
Affiliation(s)
- Katharigatta N Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban 4000, South Africa.
| | - Sandeep Chandrashekharappa
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER-R), Raebareli, Lucknow, UP 226002, India.
| | - Pran Kishore Deb
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology (BIT), Mesra, Ranchi 835215, Jharkhand, India.
| | - Nizar A Al-Shar'i
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan; Department of Pharmaceutical Sciences, College of Pharmacy, Qatar University, P.O. Box: 2713, Doha, Qatar
| | - Melendhran Pillay
- Department of Microbiology, National Health Laboratory Services, KZN Academic Complex, Inkosi Albert Luthuli Central Hospital, Durban 4001, South Africa
| | - Priya Tiwari
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER-R), Raebareli, Lucknow, UP 226002, India
| | - Deepak Chopra
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal By-pass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - Pobitra Borah
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology (IIT), Kanpur, 208016, Uttar Pradesh, India
| | - Rasoul Tamhaev
- Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique (LSPCMIB), UMR 5068, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France; Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Lionel Mourey
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Christian Lherbet
- Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique (LSPCMIB), UMR 5068, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Bandar E Aldhubiab
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Christophe Tratrat
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Mahesh Attimarad
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Anroop B Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Nagaraja Sreeharsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; Department of Pharmaceutics, Vidya Siri College of Pharmacy, Off Sarjapura Road, Bangalore 560035, India
| | - Raghu Prasad Mailavaram
- Department of Pharmaceutical Chemistry, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Samtanagar, Dhule 424 001, Maharashtra, India
| | - Rashmi Venugopala
- Department of Public Health Medicine, Howard College Campus, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Viresh Mohanlall
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban 4000, South Africa
| | - Mohamed A Morsy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt
| |
Collapse
|
6
|
Wahan SK, Bhargava G, Chawla V, Chawla PA. Unlocking InhA: Novel approaches to inhibit Mycobacterium tuberculosis. Bioorg Chem 2024; 146:107250. [PMID: 38460337 DOI: 10.1016/j.bioorg.2024.107250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/29/2024] [Accepted: 02/28/2024] [Indexed: 03/11/2024]
Abstract
Multidrug-resistant tuberculosis continues to pose a health security risk and remains a public health emergency. Antimicrobial resistance result from treatment regimens that are both insufficient and incomplete leading to the emergence of multidrug-resistant tuberculosis, extensively drug-resistant tuberculosis and totally drug-resistant tuberculosis. The impact of tuberculosis on the people suffering from HIV (Human immunodeficiency virus infection) have resulted in the increased research efforts in designing and discovery of novel antitubercular drugs that may result in decreasing treatment duration, minimising the need for multiple drug intake, minimising cytotoxicity and enhancing the mechanism of action of drug. While many drugs are available to treat tuberculosis, a precise and timely cure is still absent. Consequently, further investigation is needed to identify more recent molecular equivalents that have the potential to swiftly remove this disease. Isoniazid (INH), a treatment for tuberculosis (TB), targets the enzyme InhA (mycobacterium enoyl acyl carrier protein reductase), the Mycobacterium tuberculosis enoyl-acyl carrier protein (ACP) reductase, most common INH resistance is circumvented by InhA inhibitors that do not require KatG (catalase-peroxidase) activation, as a result, researchers are trying to work in the area of development of InhA inhibitors which could help in eradicating the era of tuberculosis from the world.
Collapse
Affiliation(s)
- Simranpreet K Wahan
- Department of Chemical Sciences, I.K. Gujral Punjab Technical University, Kapurthala, India
| | - Gaurav Bhargava
- Department of Chemical Sciences, I.K. Gujral Punjab Technical University, Kapurthala, India
| | - Viney Chawla
- University Institute of Pharmaceutical Sciences and Research, Baba Farid University of Health Sciences, Faridkot, Punjab 151203, India
| | - Pooja A Chawla
- University Institute of Pharmaceutical Sciences and Research, Baba Farid University of Health Sciences, Faridkot, Punjab 151203, India.
| |
Collapse
|
7
|
Shaaban MM, Teleb M, Ragab HM, Singh M, Elwakil BH, A Heikal L, Sriram D, Mahran MA. The first-in-class pyrazole-based dual InhA-VEGFR inhibitors towards integrated antitubercular host-directed therapy. Bioorg Chem 2024; 145:107179. [PMID: 38367430 DOI: 10.1016/j.bioorg.2024.107179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/22/2024] [Accepted: 02/02/2024] [Indexed: 02/19/2024]
Abstract
Several facets of the host response to tuberculosis have been tapped for clinical investigation, especially targeting angiogenesis mediated by VEGF signaling from infected macrophages. Herein, we rationalized combining the antiangiogenic effects of VEGFR-2 blockade with direct antitubercular InhA inhibition in single hybrid dual inhibitors as advantageous alternatives to the multidrug regimens. Inspired by expanded triclosans, the ether ligation of triclosan was replaced by rationalized linkers to assemble the VEGFR-2 inhibitors thematic scaffold. Accordingly, new series of 3-(p-chlorophenyl)-1-phenylpyrazole derivatives tethered to substituted ureas and their isosteres were synthesized, evaluated against Mycobacterium tuberculosis virulent cell line H37Rv, and assessed for their InhA inhibitory activities. The urea derivatives 8d and 8g exhibited the most promising antitubercular activity (MIC = 6.25 µg/mL) surpassing triclosan (MIC = 20 µg/mL) with potential InhA inhibition, thus identified as the study hits. Interestingly, both compounds inhibited VEGFR-2 at nanomolar IC50 (15.27 and 24.12 nM, respectively). Docking and molecular dynamics simulations presumed that 8d and 8g could bind to their molecular targets InhA and VEGFR-2 posing essential stable interactions shared by the reference inhibitors triclosan and sorafenib. Finally, practical LogP, Lipinski's parameters and in silico ADMET calculations highlighted their drug-likeness as novel leads in the arsenal against TB.
Collapse
Affiliation(s)
- Marwa M Shaaban
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Mohamed Teleb
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt.
| | - Hanan M Ragab
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Monica Singh
- Tuberculosis Drug Discovery Laboratory, Pharmacy Group, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad 500 0078, India
| | - Bassma H Elwakil
- Department of Medical Laboratory Technology, Faculty of Applied Health Sciences Technology, Pharos University in Alexandria, Alexandria, Egypt
| | - Lamia A Heikal
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - D Sriram
- Tuberculosis Drug Discovery Laboratory, Pharmacy Group, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad 500 0078, India
| | - Mona A Mahran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| |
Collapse
|
8
|
Zhang Q, Han J, Zhu Y, Yu F, Hu X, Tong HHY, Liu H. Discovery of novel and potent InhA direct inhibitors by ensemble docking-based virtual screening and biological assays. J Comput Aided Mol Des 2023; 37:695-706. [PMID: 37642861 DOI: 10.1007/s10822-023-00530-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/15/2023] [Indexed: 08/31/2023]
Abstract
Multidrug-resistant tuberculosis (MDR-TB) continues to spread worldwide and remains one of the leading causes of death among infectious diseases. The enoyl-acyl carrier protein reductase (InhA) belongs to FAS-II family and is essential for the formation of the Mycobacterium tuberculosis cell wall. Recent years, InhA direct inhibitors have been extensively studied to overcome MDR-TB. However, there are still no inhibitors that have entered clinical research. Here, the ensemble docking-based virtual screening along with biological assay were used to identify potent InhA direct inhibitors from Chembridge, Chemdiv, and Specs. Ultimately, 34 compounds were purchased and first assayed for the binding affinity, of which four compounds can bind InhA well with KD values ranging from 48.4 to 56.2 µM. Among them, compound 9,222,034 has the best inhibitory activity against InhA enzyme with an IC50 value of 18.05 µM. In addition, the molecular dynamic simulation and binding free energy calculation indicate that the identified compounds bind to InhA with "extended" conformation. Residue energy decomposition shows that residues such as Tyr158, Met161, and Met191 have higher energy contributions in the binding of compounds. By analyzing the binding modes, we found that these compounds can bind to a hydrophobic sub-pocket formed by residues Tyr158, Phe149, Ile215, Leu218, etc., resulting in extensive van der Waals interactions. In summary, this study proposed an efficient strategy for discovering InhA direct inhibitors through ensemble docking-based virtual screening, and finally identified four active compounds with new skeletons, which can provide valuable information for the discovery and optimization of InhA direct inhibitors.
Collapse
Affiliation(s)
- Qianqian Zhang
- Faculty of Applied Sciences, Macao Polytechnic University, Macao, SAR, China
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Jianting Han
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Yongchang Zhu
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Fansen Yu
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Xiaopeng Hu
- Faculty of Applied Sciences, Macao Polytechnic University, Macao, SAR, China
| | - Henry H Y Tong
- Faculty of Applied Sciences, Macao Polytechnic University, Macao, SAR, China
| | - Huanxiang Liu
- Faculty of Applied Sciences, Macao Polytechnic University, Macao, SAR, China.
| |
Collapse
|
9
|
Chebaiki M, Delfourne E, Tamhaev R, Danoun S, Rodriguez F, Hoffmann P, Grosjean E, Goncalves F, Azéma-Despeyroux J, Pál A, Korduláková J, Preuilh N, Britton S, Constant P, Marrakchi H, Maveyraud L, Mourey L, Lherbet C. Discovery of new diaryl ether inhibitors against Mycobacterium tuberculosis targeting the minor portal of InhA. Eur J Med Chem 2023; 259:115646. [PMID: 37482022 DOI: 10.1016/j.ejmech.2023.115646] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/25/2023]
Abstract
Tuberculosis (TB) caused by Mycobacterium tuberculosis (Mtb) affects 10 million people each year and the emergence of resistant TB augurs for a growing incidence. In the last 60 years, only three new drugs were approved for TB treatment, for which resistances are already emerging. Therefore, there is a crucial need for new chemotherapeutic agents capable of eradicating TB. Enzymes belonging to the type II fatty acid synthase system (FAS-II) are involved in the biosynthesis of mycolic acids, cell envelope components essential for mycobacterial survival. Among them, InhA is the primary target of isoniazid (INH), one of the most effective compounds to treat TB. INH acts as a prodrug requiring activation by the catalase-peroxidase KatG, whose mutations are the major cause for INH resistance. Herein, a new series of direct InhA inhibitors were designed based on a molecular hybridization approach. They exhibit potent inhibitory activities of InhA and, for some of them, good antitubercular activities. Moreover, they display a low toxicity on human cells. A study of the mechanism of action of the most effective molecules shows that they inhibit the biosynthesis of mycolic acids. The X-ray structures of two InhA/NAD+/inhibitor complexes have been obtained showing a binding mode of a part of the molecule in the minor portal, rarely seen in the InhA structures reported so far.
Collapse
Affiliation(s)
- Mélina Chebaiki
- Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique (LSPCMIB), UMR 5068, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France; Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Evelyne Delfourne
- Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique (LSPCMIB), UMR 5068, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Rasoul Tamhaev
- Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique (LSPCMIB), UMR 5068, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France; Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Saïda Danoun
- Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique (LSPCMIB), UMR 5068, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Frédéric Rodriguez
- Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique (LSPCMIB), UMR 5068, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Pascal Hoffmann
- Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique (LSPCMIB), UMR 5068, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Emeline Grosjean
- Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique (LSPCMIB), UMR 5068, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Fernanda Goncalves
- Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique (LSPCMIB), UMR 5068, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Joëlle Azéma-Despeyroux
- Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique (LSPCMIB), UMR 5068, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Adrián Pál
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 84215, Bratislava, Slovakia
| | - Jana Korduláková
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 84215, Bratislava, Slovakia
| | - Nadège Preuilh
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Sébastien Britton
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Patricia Constant
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Hedia Marrakchi
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Laurent Maveyraud
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France.
| | - Lionel Mourey
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France.
| | - Christian Lherbet
- Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique (LSPCMIB), UMR 5068, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France.
| |
Collapse
|
10
|
Yang J, Zhang L, Qiao W, Luo Y. Mycobacterium tuberculosis: Pathogenesis and therapeutic targets. MedComm (Beijing) 2023; 4:e353. [PMID: 37674971 PMCID: PMC10477518 DOI: 10.1002/mco2.353] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 09/08/2023] Open
Abstract
Tuberculosis (TB) remains a significant public health concern in the 21st century, especially due to drug resistance, coinfection with diseases like immunodeficiency syndrome (AIDS) and coronavirus disease 2019, and the lengthy and costly treatment protocols. In this review, we summarize the pathogenesis of TB infection, therapeutic targets, and corresponding modulators, including first-line medications, current clinical trial drugs and molecules in preclinical assessment. Understanding the mechanisms of Mycobacterium tuberculosis (Mtb) infection and important biological targets can lead to innovative treatments. While most antitubercular agents target pathogen-related processes, host-directed therapy (HDT) modalities addressing immune defense, survival mechanisms, and immunopathology also hold promise. Mtb's adaptation to the human host involves manipulating host cellular mechanisms, and HDT aims to disrupt this manipulation to enhance treatment effectiveness. Our review provides valuable insights for future anti-TB drug development efforts.
Collapse
Affiliation(s)
- Jiaxing Yang
- Center of Infectious Diseases and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Laiying Zhang
- Center of Infectious Diseases and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Wenliang Qiao
- Department of Thoracic Surgery, West China HospitalSichuan UniversityChengduSichuanChina
- Lung Cancer Center, West China HospitalSichuan UniversityChengduSichuanChina
| | - Youfu Luo
- Center of Infectious Diseases and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
11
|
Teneva Y, Simeonova R, Valcheva V, Angelova VT. Recent Advances in Anti-Tuberculosis Drug Discovery Based on Hydrazide-Hydrazone and Thiadiazole Derivatives Targeting InhA. Pharmaceuticals (Basel) 2023; 16:ph16040484. [PMID: 37111241 PMCID: PMC10140854 DOI: 10.3390/ph16040484] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/15/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
Tuberculosis is an extremely serious problem of global public health. Its incidence is worsened by the presence of multidrug-resistant (MDR) strains of Mycobacterium tuberculosis. More serious forms of drug resistance have been observed in recent years. Therefore, the discovery and/or synthesis of new potent and less toxic anti-tubercular compounds is very critical, especially having in mind the consequences and the delays in treatment caused by the COVID-19 pandemic. Enoyl-acyl carrier protein reductase (InhA) is an important enzyme involved in the biosynthesis of mycolic acid, a major component of the M. tuberculosis cell wall. At the same time, it is a key enzyme in the development of drug resistance, making it an important target for the discovery of new antimycobacterial agents. Many different chemical scaffolds, including hydrazide hydrazones and thiadiazoles, have been evaluated for their InhA inhibitory activity. The aim of this review is to evaluate recently described hydrazide-hydrazone- and thiadiazole-containing derivatives that inhibit InhA activity, resulting in antimycobacterial effects. In addition, a brief review of the mechanisms of action of currently available anti-tuberculosis drugs is provided, including recently approved agents and molecules in clinical trials.
Collapse
Affiliation(s)
- Yoanna Teneva
- Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| | - Rumyana Simeonova
- Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| | - Violeta Valcheva
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | | |
Collapse
|
12
|
Alzain AA, Makki AA, Ibraheem W. Insights into the Inhibition of Mycolic Acid Synthesis by Cytosporone E Derivatives for Tuberculosis Treatment Via an In Silico Multi-target Approach. CHEMISTRY AFRICA 2023. [DOI: 10.1007/s42250-023-00605-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
13
|
Thongdee P, Hanwarinroj C, Pakamwong B, Kamsri P, Punkvang A, Leanpolchareanchai J, Ketrat S, Saparpakorn P, Hannongbua S, Ariyachaokun K, Suttisintong K, Sureram S, Kittakoop P, Hongmanee P, Santanirand P, Mukamolova GV, Blood RA, Takebayashi Y, Spencer J, Mulholland AJ, Pungpo P. Virtual Screening Identifies Novel and Potent Inhibitors of Mycobacterium tuberculosis PknB with Antibacterial Activity. J Chem Inf Model 2022; 62:6508-6518. [PMID: 35994014 DOI: 10.1021/acs.jcim.2c00531] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Mycobacterium tuberculosis protein kinase B (PknB) is essential to mycobacterial growth and has received considerable attention as an attractive target for novel anti-tuberculosis drug development. Here, virtual screening, validated by biological assays, was applied to select candidate inhibitors of M. tuberculosis PknB from the Specs compound library (www.specs.net). Fifteen compounds were identified as hits and selected for in vitro biological assays, of which three indoles (2, AE-848/42799159; 4, AH-262/34335013; 10, AP-124/40904362) inhibited growth of M. tuberculosis H37Rv with minimal inhibitory concentrations of 6.2, 12.5, and 6.2 μg/mL, respectively. Two compounds, 2 and 10, inhibited M. tuberculosis PknB activity in vitro, with IC50 values of 14.4 and 12.1 μM, respectively, suggesting this to be the likely basis of their anti-tubercular activity. In contrast, compound 4 displayed anti-tuberculosis activity against M. tuberculosis H37Rv but showed no inhibition of PknB activity (IC50 > 128 μM). We hypothesize that hydrolysis of its ethyl ester to a carboxylate moiety generates an active species that inhibits other M. tuberculosis enzymes. Molecular dynamics simulations of modeled complexes of compounds 2, 4, and 10 bound to M. tuberculosis PknB indicated that compound 4 has a lower affinity for M. tuberculosis PknB than compounds 2 and 10, as evidenced by higher calculated binding free energies, consistent with experiment. Compounds 2 and 10 therefore represent candidate inhibitors of M. tuberculosis PknB that provide attractive starting templates for optimization as anti-tubercular agents.
Collapse
Affiliation(s)
- Paptawan Thongdee
- Department of Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - Chayanin Hanwarinroj
- Department of Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - Bongkochawan Pakamwong
- Department of Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - Pharit Kamsri
- Division of Chemistry, Faculty of Science, Nakhon Phanom University, Nakhon Phanom, 48000, Thailand
| | - Auradee Punkvang
- Division of Chemistry, Faculty of Science, Nakhon Phanom University, Nakhon Phanom, 48000, Thailand
| | | | - Sombat Ketrat
- School of Information Science and Technology, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand
| | | | - Supa Hannongbua
- Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Kanchiyaphat Ariyachaokun
- Department of Biological Science, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - Khomson Suttisintong
- National Nanotechnology Center, NSTDA, 111 Thailand Science Park, Klong Luang, Pathum Thani, 12120, Thailand
| | - Sanya Sureram
- Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Prasat Kittakoop
- Chulabhorn Research Institute, Bangkok, 10210, Thailand
- Chulabhorn Graduate Institute, Chemical Biology Program, Chulabhorn Royal Academy, Bangkok, 10210, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, Ministry of Higher Education, Science, Research and Innovation, Bangkok, 10210, Thailand
| | - Poonpilas Hongmanee
- Division of Microbiology, Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Pitak Santanirand
- Division of Microbiology, Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Galina V Mukamolova
- Leicester Tuberculosis Research Group, Department of Respiratory Sciences, University of Leicester, Maurice Shock Medical Sciences Building, University Road, Leicester, LE1 9HN, United Kingdom
| | - Rosemary A Blood
- School of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, United Kingdom
| | - Yuiko Takebayashi
- School of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, United Kingdom
| | - James Spencer
- School of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, United Kingdom
| | - Adrian J Mulholland
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol, BS8 1TS, United Kingdom
| | - Pornpan Pungpo
- Department of Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| |
Collapse
|
14
|
Dutta A, Trivedi P, Gehlot PS, Gogoi D, Hazarika R, Chetia P, Kumar A, Chaliha AK, Chaturvedi V, Sarma D. Design and Synthesis of Quinazolinone-Triazole Hybrids as Potent Anti-Tubercular Agents. ACS APPLIED BIO MATERIALS 2022; 5:4413-4424. [PMID: 36053225 DOI: 10.1021/acsabm.2c00562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A straightforward and convenient methodology has been developed for the reaction of 2-aminobenzamide and carbonyls affording 2,3-dihydroquinazolin-4(1H)-ones using aqueous solution of [C12Py][FeCl3Br]. The developed methodology was applied for the synthesis of 25 quinazolinone-triazole hybrids followed by evaluation of their in vitro anti-tubercular (TB) activity. The results revealed that 8 quinazolinone-triazole hybrids displayed promising activity having MIC values of 0.78-12.5 μg/mL. The compound 3if with MIC 0.78 μg/mL was found to be the lead nominee among the series, better than Ethambutol, a first line anti-TB drug and comparable with Rifampicin. The active compounds with MIC values ≤ 6.25 μg/mL were subjected to in vitro cytotoxicity and found nontoxic. In drug-drug interaction, compounds 3ia and 3ii interacted synergistically with all the three anti-TB drugs, INH, RFM, and EMB. Other 3 compounds interacted either in synergistic or additive manners. Important information on the binding interaction of the target compounds with the active sites of 1DQY Antigen 85C from Mycobacterium tuberculosis and Enoyl acyl carrier protein reductase (InhA) enzymes was obtained from molecular docking studies. Screening of the drug-likeness properties and bioactivity score indicates that synthesized molecules could be projected as potential drug candidates. Based on the current study, quinazolinone-triazole hybrids framework can be useful in drug development for TB.
Collapse
Affiliation(s)
- Apurba Dutta
- Department of Chemistry, Dibrugarh University, Dibrugarh, Assam 786004, India
| | - Priyanka Trivedi
- Biochemistry Division, Central Drug Research Institute, CSIR, Lucknow 226001, India
| | - Praveen Singh Gehlot
- AcSIR, Salt and Marine Chemicals Division, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, India
| | - Dipshikha Gogoi
- Centre for Biotechnology and Bioinformatics, Dibrugarh University, Dibrugarh, Assam 786004, India
| | - Roktopol Hazarika
- Department of Chemistry, Dibrugarh University, Dibrugarh, Assam 786004, India
| | - Pankaj Chetia
- Department of Life Sciences, Dibrugarh University, Dibrugarh, Assam 786004, India
| | - Arvind Kumar
- AcSIR, Salt and Marine Chemicals Division, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, India
| | - Amrita Kashyap Chaliha
- Centre for Biotechnology and Bioinformatics, Dibrugarh University, Dibrugarh, Assam 786004, India
| | - Vinita Chaturvedi
- Biochemistry Division, Central Drug Research Institute, CSIR, Lucknow 226001, India
| | - Diganta Sarma
- Department of Chemistry, Dibrugarh University, Dibrugarh, Assam 786004, India
| |
Collapse
|
15
|
Prem Kumar S, Shaikh IA, Mahnashi MH, Alshahrani MA, Dixit SR, Kulkarni VH, Lherbet C, Gadad AK, Aminabhavi TM, Joshi SD. Design, synthesis and computational approach to study novel pyrrole scaffolds as active inhibitors of enoyl ACP reductase (InhA) and Mycobacterium tuberculosis antagonists. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
16
|
Albelwi FF, Abdu Mansour HM, Elshatanofy MM, El Kilany Y, Kandeel K, Elwakil BH, Hagar M, Aouad MR, El Ashry ESH, Rezki N, El Sawy MA. Design, Synthesis and Molecular Docking of Novel Acetophenone-1,2,3-Triazoles Containing Compounds as Potent Enoyl-Acyl Carrier Protein Reductase (InhA) Inhibitors. Pharmaceuticals (Basel) 2022; 15:ph15070799. [PMID: 35890098 PMCID: PMC9316523 DOI: 10.3390/ph15070799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/03/2022] [Accepted: 06/05/2022] [Indexed: 11/25/2022] Open
Abstract
New medications are desperately needed to combat rising drug resistance among tuberculosis (TB) patients. New agents should ideally work through unique targets to avoid being hampered by preexisting clinical resistance to existing treatments. The enoyl-acyl carrier protein reductase InhA of M. tuberculosis is one of the most crucial targets since it is a promising target that has undergone extensive research for anti-tuberculosis drug development. A well-known scaffold for a variety of biological activities, including antitubercular activity, is the molecular linkage of a1,2,3-triazole with an acetamide group. As a result, in the current study, which was aided by ligand-based molecular modeling investigations, 1,2,3-triazolesweredesigned and synthesized adopting the CuAAC aided cycloaddition of 1-(4-(prop-2-yn-1-yloxy)phenyl)ethanone with appropriate acetamide azides. Standard spectroscopic methods were used to characterize the newly synthesized compounds. In vitro testing of the proposed compounds against the InhA enzyme was performed. All the synthesized inhibitors completely inhibited the InhA enzyme at a concentration of 10 µM that exceeded Rifampicin in terms of activity. Compounds 9, 10, and 14 were the most promising InhA inhibitors, with IC50 values of 0.005, 0.008, and 0.002 µM, respectively. To promote antitubercular action and investigate the binding manner of the screened compounds with the target InhA enzyme’s binding site, a molecular docking study was conducted.
Collapse
Affiliation(s)
- Fawzia Faleh Albelwi
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 30002, Saudi Arabia; (F.F.A.); (H.M.A.M.); (M.R.A.)
| | - Hanaa M. Abdu Mansour
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 30002, Saudi Arabia; (F.F.A.); (H.M.A.M.); (M.R.A.)
| | - Maram M. Elshatanofy
- Department of Chemistry, Faculty of Science, Alexandria University, Alexandria 21321, Egypt; (M.M.E.); (Y.E.K.); (M.H.); (E.S.H.E.A.)
| | - Yeldez El Kilany
- Department of Chemistry, Faculty of Science, Alexandria University, Alexandria 21321, Egypt; (M.M.E.); (Y.E.K.); (M.H.); (E.S.H.E.A.)
| | - Kamal Kandeel
- Department of Biochemistry, Faculty of Science, Alexandria University, Moharam Beik, Alexandria 21547, Egypt;
| | - Bassma H. Elwakil
- Department of Medical Laboratory Technology, Faculty of Applied Health Sciences Technology, Pharos University in Alexandria, Alexandria 21311, Egypt;
| | - Mohamed Hagar
- Department of Chemistry, Faculty of Science, Alexandria University, Alexandria 21321, Egypt; (M.M.E.); (Y.E.K.); (M.H.); (E.S.H.E.A.)
| | - Mohamed Reda Aouad
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 30002, Saudi Arabia; (F.F.A.); (H.M.A.M.); (M.R.A.)
| | - El Sayed H. El Ashry
- Department of Chemistry, Faculty of Science, Alexandria University, Alexandria 21321, Egypt; (M.M.E.); (Y.E.K.); (M.H.); (E.S.H.E.A.)
| | - Nadjet Rezki
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 30002, Saudi Arabia; (F.F.A.); (H.M.A.M.); (M.R.A.)
- Correspondence:
| | - Maged A. El Sawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Pharos University, Alexandria 21311, Egypt;
| |
Collapse
|
17
|
Antitubercular, Cytotoxicity, and Computational Target Validation of Dihydroquinazolinone Derivatives. Antibiotics (Basel) 2022; 11:antibiotics11070831. [PMID: 35884084 PMCID: PMC9311641 DOI: 10.3390/antibiotics11070831] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 02/04/2023] Open
Abstract
A series of 2,3-dihydroquinazolin-4(1H)-one derivatives (3a–3m) was screened for in vitro whole-cell antitubercular activity against the tubercular strain H37Rv and multidrug-resistant (MDR) Mycobacterium tuberculosis (MTB) strains. Compounds 3l and 3m with di-substituted aryl moiety (halogens) attached to the 2-position of the scaffold showed a minimum inhibitory concentration (MIC) of 2 µg/mL against the MTB strain H37Rv. Compound 3k with an imidazole ring at the 2-position of the dihydroquinazolin-4(1H)-one also showed significant inhibitory action against both the susceptible strain H37Rv and MDR strains with MIC values of 4 and 16 µg/mL, respectively. The computational results revealed the mycobacterial pyridoxal-5′-phosphate (PLP)-dependent aminotransferase (BioA) enzyme as the potential target for the tested compounds. In vitro, ADMET calculations and cytotoxicity studies against the normal human dermal fibroblast cells indicated the safety and tolerability of the test compounds 3k–3m. Thus, compounds 3k–3m warrant further optimization to develop novel BioA inhibitors for the treatment of drug-sensitive H37Rv and drug-resistant MTB.
Collapse
|
18
|
Hanwarinroj C, Phusi N, Kamsri B, Kamsri P, Punkvang A, Ketrat S, Saparpakorn P, Hannongbua S, Suttisintong K, Kittakoop P, Spencer J, Mulholland AJ, Pungpo P. Discovery of novel and potent InhA inhibitors by an in silico screening and pharmacokinetic prediction. Future Med Chem 2022; 14:717-729. [PMID: 35485258 DOI: 10.4155/fmc-2021-0348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim: In silico screening approaches were performed to discover novel InhA inhibitors. Methods: Candidate InhA inhibitors were obtained from the combination of virtual screening and pharmacokinetic prediction. In addition, molecular mechanics Poisson-Boltzmann surface area, molecular mechanics Generalized Born surface area and WaterSwap methods were performed to investigate the binding interactions and binding energy of candidate compounds. Results: Four candidate compounds with suitable physicochemical, pharmacokinetic and antibacterial properties are proposed. The crucial interactions of the candidate compounds were H-bond, pi-pi and sigma-pi interactions observed in the InhA binding site. The binding affinity of these compounds was improved by hydrophobic interactions with hydrophobic side chains in the InhA pocket. Conclusion: The four newly identified InhA inhibitors reported in this study could serve as promising hit compounds against Mycobacterium tuberculosis and may be considered for further experimental studies.
Collapse
Affiliation(s)
- Chayanin Hanwarinroj
- Department of Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - Nareudon Phusi
- Department of Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - Bundit Kamsri
- Department of Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - Pharit Kamsri
- Division of Chemistry, Faculty of Science, Nakhon Phanom University, Nakhon Phanom, 48000, Thailand
| | - Auradee Punkvang
- Division of Chemistry, Faculty of Science, Nakhon Phanom University, Nakhon Phanom, 48000, Thailand
| | - Sombat Ketrat
- School of Information Science & Technology, Vidyasirimedhi Institute of Science & Technology, Rayong, 21210, Thailand
| | | | - Supa Hannongbua
- Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | | | - Prasat Kittakoop
- Chulabhorn Research Institute, Bangkok, 10210, Thailand
- Chulabhorn Graduate Institute, Chemical Biology Program, Chulabhorn Royal Academy, Bangkok, 10210, Thailand
- Center of Excellence on Environmental Health & Toxicology (EHT), CHE, Ministry of Education, Bangkok, 10300, Thailand
| | - James Spencer
- School of Cellular & Molecular Medicine, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, United Kingdom
| | - Adrian J Mulholland
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol, BS8 1TS, United Kingdom
| | - Pornpan Pungpo
- Department of Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| |
Collapse
|
19
|
Angelova VT, Pencheva T, Vassilev N, K-Yovkova E, Mihaylova R, Petrov B, Valcheva V. Development of New Antimycobacterial Sulfonyl Hydrazones and 4-Methyl-1,2,3-thiadiazole-Based Hydrazone Derivatives. Antibiotics (Basel) 2022; 11:antibiotics11050562. [PMID: 35625207 PMCID: PMC9137698 DOI: 10.3390/antibiotics11050562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/19/2022] [Accepted: 04/19/2022] [Indexed: 12/03/2022] Open
Abstract
Fifteen 4-methyl-1,2,3-thiadiazole-based hydrazone derivatives 3a–d and sulfonyl hydrazones 5a–k were synthesized. They were characterized by 1H-NMR, 13C NMR, and HRMS. Mycobacterium tuberculosis strain H37Rv was used to assess their antimycobacterial activity. All compounds demonstrated significant minimum inhibitory concentrations (MIC) from 0.07 to 0.32 µM, comparable to those of isoniazid. The cytotoxicity was evaluated using the standard MTT-dye reduction test against human embryonic kidney cells HEK-293T and mouse fibroblast cell line CCL-1. 4-Hydroxy-3-methoxyphenyl substituted 1,2,3-thiadiazole-based hydrazone derivative 3d demonstrated the highest antimycobacterial activity (MIC = 0.0730 µM) and minimal associated cytotoxicity against two normal cell lines (selectivity index SI = 3516, HEK-293, and SI = 2979, CCL-1). The next in order were sulfonyl hydrazones 5g and 5k with MIC 0.0763 and 0.0716 µM, respectively, which demonstrated comparable minimal cytotoxicity. All compounds were subjected to ADME/Tox computational predictions, which showed that all compounds corresponded to Lipinski’s Ro5, and none were at risk of toxicity. The suitable scores of molecular docking performed on two crystallographic structures of enoyl-ACP reductase (InhA) provide promising insight into possible interaction with the InhA receptor. The 4-methyl-1,2,3-thiadiazole-based hydrazone derivatives and sulfonyl hydrazones proved to be new classes of lead compounds having the potential of novel candidate antituberculosis drugs.
Collapse
Affiliation(s)
- Violina T. Angelova
- Department of Chemistry, Faculty of Pharmacy, Medical University, 1431 Sofia, Bulgaria;
- Correspondence: or (V.T.A.); (V.V.)
| | - Tania Pencheva
- Department of QSAR and Molecular Modeling, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Nikolay Vassilev
- Laboratory “Nuclear Magnetic Resonance”, Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Elena K-Yovkova
- Faculty of Computer Systems and Technologies, Technical University, 1756 Sofia, Bulgaria;
| | - Rositsa Mihaylova
- Laboratory “Drug Metabolism and Drug Toxicity”, Department “Pharmacology, Pharmacotherapy and Toxicology”, Faculty of Pharmacy, Medical University, 1431 Sofia, Bulgaria;
| | - Boris Petrov
- Department of Chemistry, Faculty of Pharmacy, Medical University, 1431 Sofia, Bulgaria;
| | - Violeta Valcheva
- Laboratory of Molecular Biology of Mycobacteria, Department of Infectious Microbiology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
- Correspondence: or (V.T.A.); (V.V.)
| |
Collapse
|
20
|
Pakamwong B, Thongdee P, Kamsri B, Phusi N, Kamsri P, Punkvang A, Ketrat S, Saparpakorn P, Hannongbua S, Ariyachaokun K, Suttisintong K, Sureram S, Kittakoop P, Hongmanee P, Santanirand P, Spencer J, Mulholland AJ, Pungpo P. Identification of Potent DNA Gyrase Inhibitors Active against Mycobacterium tuberculosis. J Chem Inf Model 2022; 62:1680-1690. [PMID: 35347987 DOI: 10.1021/acs.jcim.1c01390] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mycobacterium tuberculosis DNA gyrase manipulates the DNA topology using controlled breakage and religation of DNA driven by ATP hydrolysis. DNA gyrase has been validated as the enzyme target of fluoroquinolones (FQs), second-line antibiotics used for the treatment of multidrug-resistant tuberculosis. Mutations around the DNA gyrase DNA-binding site result in the emergence of FQ resistance in M. tuberculosis; inhibition of DNA gyrase ATPase activity is one strategy to overcome this. Here, virtual screening, subsequently validated by biological assays, was applied to select candidate inhibitors of the M. tuberculosis DNA gyrase ATPase activity from the Specs compound library (www.specs.net). Thirty compounds were identified and selected as hits for in vitro biological assays, of which two compounds, G24 and G26, inhibited the growth of M. tuberculosis H37Rv with a minimal inhibitory concentration of 12.5 μg/mL. The two compounds inhibited DNA gyrase ATPase activity with IC50 values of 2.69 and 2.46 μM, respectively, suggesting this to be the likely basis of their antitubercular activity. Models of complexes of compounds G24 and G26 bound to the M. tuberculosis DNA gyrase ATP-binding site, generated by molecular dynamics simulations followed by pharmacophore mapping analysis, showed hydrophobic interactions of inhibitor hydrophobic headgroups and electrostatic and hydrogen bond interactions of the polar tails, which are likely to be important for their inhibition. Decreasing compound lipophilicity by increasing the polarity of these tails then presents a likely route to improving the solubility and activity. Thus, compounds G24 and G26 provide attractive starting templates for the optimization of antitubercular agents that act by targeting DNA gyrase.
Collapse
Affiliation(s)
- Bongkochawan Pakamwong
- Department of Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Paptawan Thongdee
- Department of Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Bundit Kamsri
- Department of Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Naruedon Phusi
- Department of Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Pharit Kamsri
- Division of Chemistry, Faculty of Science, Nakhon Phanom University, Nakhon Phanom 48000, Thailand
| | - Auradee Punkvang
- Division of Chemistry, Faculty of Science, Nakhon Phanom University, Nakhon Phanom 48000, Thailand
| | - Sombat Ketrat
- School of Information Science and Technology, Vidyasirimedhi Institute of Science and Technology, Rayong 21210, Thailand
| | | | - Supa Hannongbua
- Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Kanchiyaphat Ariyachaokun
- Department of Biological Science, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Khomson Suttisintong
- National Nanotechnology Center, NSTDA, 111 Thailand Science Park, Klong Luang, Pathum Thani 12120, Thailand
| | - Sanya Sureram
- Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Prasat Kittakoop
- Chulabhorn Research Institute, Bangkok 10210, Thailand
- Chulabhorn Graduate Institute, Chemical Biology Program, Chulabhorn Royal Academy, Bangkok 10210, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), CHE, Ministry of Education, Bangkok 10300, Thailand
| | - Poonpilas Hongmanee
- Division of Microbiology, Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Pitak Santanirand
- Division of Microbiology, Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - James Spencer
- School of Cellular and Molecular Medicine, University of Bristol, Biomedical Sciences Building, Bristol BS8 1TD, U.K
| | - Adrian J Mulholland
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K
| | - Pornpan Pungpo
- Department of Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| |
Collapse
|
21
|
Othman DI, Hamdi A, Abdel-Aziz MM, Elfeky SM. Novel 2-arylthiazolidin-4-one-thiazole hybrids with potent activity against Mycobacterium tuberculosis. Bioorg Chem 2022; 124:105809. [DOI: 10.1016/j.bioorg.2022.105809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 12/31/2022]
|
22
|
Perveen S, Sharma R. Screening approaches and therapeutic targets: The two driving wheels of tuberculosis drug discovery. Biochem Pharmacol 2022; 197:114906. [PMID: 34990594 DOI: 10.1016/j.bcp.2021.114906] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/28/2021] [Accepted: 12/28/2021] [Indexed: 12/21/2022]
Abstract
Tuberculosis (TB) is an infectious disease, infecting a quarter of world's population. Drug resistant TB further exacerbates the grim scenario of the drying TB drug discovery pipeline. The limited arsenal to fight TB presses the need for thorough efforts for identifying promising hits to combat the disease. The review highlights the efforts in the field of tuberculosis drug discovery, with an emphasis on massive drug screening campaigns for identifying novel hits against Mtb in both industry and academia. As an intracellular pathogen, mycobacteria reside in a complicated intracellular environment with multiple factors at play. Here, we outline various strategies employed in an effort to mimic the intracellular milieu for bringing the screening models closer to the actual settings. The review also focuses on the novel targets and pathways that could aid in target-based drug discovery in TB. The recent high throughput screening efforts resulting in the identification of potent hits against Mtb has been summarized in this article. There is a pressing need for effective screening strategies and approaches employing innovative tools and recent technologies; including nanotechnology, gene-editing tools such as CRISPR-cas system, host-directed bacterial killing and high content screening to augment the TB drug discovery pipeline with safer and shorter drug regimens.
Collapse
Affiliation(s)
- Summaya Perveen
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rashmi Sharma
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
23
|
An Outline of the Latest Crystallographic Studies on Inhibitor-Enzyme Complexes for the Design and Development of New Therapeutics against Tuberculosis. Molecules 2021; 26:molecules26237082. [PMID: 34885662 PMCID: PMC8659263 DOI: 10.3390/molecules26237082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 12/04/2022] Open
Abstract
The elucidation of the structure of enzymes and their complexes with ligands continues to provide invaluable insights for the development of drugs against many diseases, including bacterial infections. After nearly three decades since the World Health Organization’s (WHO) declaration of tuberculosis (TB) as a global health emergency, Mycobacterium tuberculosis (Mtb) continues to claim millions of lives, remaining among the leading causes of death worldwide. In the last years, several efforts have been devoted to shortening and improving treatment outcomes, and to overcoming the increasing resistance phenomenon. The structural elucidation of enzyme-ligand complexes is fundamental to identify hot-spots, define possible interaction sites, and elaborate strategies to develop optimized molecules with high affinity. This review offers a critical and comprehensive overview of the most recent structural information on traditional and emerging mycobacterial enzymatic targets. A selection of more than twenty enzymes is here discussed, with a special emphasis on the analysis of their binding sites, the definition of the structure–activity relationships (SARs) of their inhibitors, and the study of their main intermolecular interactions. This work corroborates the potential of structural studies, substantiating their relevance in future anti-mycobacterial drug discovery and development efforts.
Collapse
|
24
|
Songsiriritthigul C, Hanwarinroj C, Pakamwong B, Srimanote P, Suttipanta N, Sureram S, Suttisintong K, Kamsri P, Punkvang A, Spencer J, Kittakoop P, Pungpo P. Inhibition of Mycobacterium tuberculosis InhA by 3-nitropropanoic acid. Proteins 2021; 90:898-904. [PMID: 34677871 DOI: 10.1002/prot.26268] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 10/05/2021] [Accepted: 10/12/2021] [Indexed: 11/06/2022]
Abstract
3-Nitropropanoic acid (3NP), a bioactive fungal natural product, was previously demonstrated to inhibit growth of Mycobacterium tuberculosis. Here we demonstrate that 3NP inhibits the 2-trans-enoyl-acyl carrier protein reductase (InhA) from Mycobacterium tuberculosis with an IC50 value of 71 μM, and present the crystal structure of the ternary InhA-NAD+ -3NP complex. The complex contains the InhA substrate-binding loop in an ordered, open conformation with Tyr158, a catalytically important residue whose orientation defines different InhA substrate/inhibitor complex conformations, in the "out" position. 3NP occupies a hydrophobic binding site adjacent to the NAD+ cofactor and close to that utilized by the diphenyl ether triclosan, but binds predominantly via electrostatic and water-mediated hydrogen-bonding interactions with the protein backbone and NAD+ cofactor. The identified mode of 3NP binding provides opportunities to improve inhibitory activity toward InhA.
Collapse
Affiliation(s)
- Chomphunuch Songsiriritthigul
- Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima, Thailand.,Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Chayanin Hanwarinroj
- Department of Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, Thailand
| | - Bongkochawan Pakamwong
- Department of Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, Thailand
| | - Potjanee Srimanote
- Faculty of Allied Health Sciences, Thammasat University, Khlong Nueng, Pathumthani, Thailand
| | - Nitima Suttipanta
- Faculty of Pharmaceutical Sciences, Ubon Ratchathani University, Ubon Ratchathani, Thailand
| | | | - Khomson Suttisintong
- National Nanotechnology Center, National Science and Technology Development Agency, Pathumthani, Thailand
| | - Pharit Kamsri
- Division of Chemistry, Faculty of Science, Nakhon Phanom University, Nakhon Phanom, Thailand
| | - Auradee Punkvang
- Division of Chemistry, Faculty of Science, Nakhon Phanom University, Nakhon Phanom, Thailand
| | - James Spencer
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Prasat Kittakoop
- Chulabhorn Research Institute, Bangkok, Thailand.,Chulabhorn Graduate Institute, Chemical Biology Program, Chulabhorn Royal Academy, Bangkok, Thailand.,Center of Excellence on Environmental Health and Toxicology (EHT), CHE, Ministry of Education, Bangkok, Thailand
| | - Pornpan Pungpo
- Department of Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, Thailand
| |
Collapse
|
25
|
Phanumartwiwath A, Kesornpun C, Sureram S, Hongmanee P, Pungpo P, Kamsri P, Punkvang A, Eurtivong C, Kittakoop P, Ruchirawat S. Antitubercular and antibacterial activities of isoxazolines derived from natural products: Isoxazolines as inhibitors of Mycobacterium tuberculosis InhA. JOURNAL OF CHEMICAL RESEARCH 2021. [DOI: 10.1177/17475198211047801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Isoxazoline derivatives of the natural products eugenol, 1’- S-acetoxychavicol acetate and sclareol are prepared through 1,3-dipolar cycloaddition reactions in an aqueous buffered system. The compounds are evaluated for their antitubercular and antibacterial activities. Compounds 2, 2a and 3f display strong antitubercular activity with minimum inhibitory concentration values of 26.68, 17.89 and 14.58 µM, respectively. Furthermore, derivative 3f exhibits antibacterial activity against Bacillus cereus (minimum inhibitory concentration value of 29.16 µM). Isoxazoline derivatives of 1’- S-acetoxychavicol acetate demonstrate improvements in cytotoxicity, and derivative 3f of sclareol demonstrates improved antitubercular and antibacterial activities. Isoxazolines derived from natural products exhibit Mycobacterium tuberculosis enoyl-acyl carrier protein reductase (InhA) inhibitory activity, and molecular modelling predicts that they form hydrogen bonding and hydrophobic interactions with NADH and with the key residues of the InhA binding site.
Collapse
Affiliation(s)
- Anuchit Phanumartwiwath
- Chemical Biology Program, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), CHE, Ministry of Education, Bangkok, Thailand
- College of Public Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | | | | | - Poonpilas Hongmanee
- Division of Microbiology, Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Pornpan Pungpo
- Department of Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, Thailand
| | - Pharit Kamsri
- Division of Chemistry, Faculty of Science, Nakhon Phanom University, Nakhon Phanom, Thailand
| | - Auradee Punkvang
- Division of Chemistry, Faculty of Science, Nakhon Phanom University, Nakhon Phanom, Thailand
| | - Chatchakorn Eurtivong
- Chemical Biology Program, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), CHE, Ministry of Education, Bangkok, Thailand
| | - Prasat Kittakoop
- Chemical Biology Program, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), CHE, Ministry of Education, Bangkok, Thailand
| | - Somsak Ruchirawat
- Chemical Biology Program, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), CHE, Ministry of Education, Bangkok, Thailand
- Chulabhorn Research Institute, Bangkok, Thailand
| |
Collapse
|
26
|
Prasad MS, Bhole RP, Khedekar PB, Chikhale RV. Mycobacterium enoyl acyl carrier protein reductase (InhA): A key target for antitubercular drug discovery. Bioorg Chem 2021; 115:105242. [PMID: 34392175 DOI: 10.1016/j.bioorg.2021.105242] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/16/2021] [Accepted: 08/02/2021] [Indexed: 10/20/2022]
Abstract
Enoyl acyl carrier protein reductase (InhA) is a key enzyme involved in fatty acid synthesis mainly mycolic acid biosynthesis that is a part of NADH dependent acyl carrier protein reductase family. The aim of the present literature is to underline the different scaffolds or enzyme inhibitors that inhibit mycolic acid biosynthesis mainly cell wall synthesis by inhibiting enzyme InhA. Various scaffolds were identified based on the screening technologies like high throughput screening, encoded library technology, fragment-based screening. The compounds studied include indirect inhibitors (Isoniazid, Ethionamide, Prothionamide) and direct inhibitors (Triclosan/Diphenyl ethers, Pyrrolidine Carboxamides, Pyrroles, Acetamides, Thiadiazoles, Triazoles) with better efficacy against drug resistance. Out of the several scaffolds studied, pyrrolidine carboxamides were found to be the best molecules targeting InhA having good bioavailability properties and better MIC. This review provides with a detailed information, analysis, structure activity relationship and useful insight on various scaffolds as InhA inhibitors.
Collapse
Affiliation(s)
- Mayuri S Prasad
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440033, MS, India
| | - Ritesh P Bhole
- Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune 411018, Maharashtra, India
| | - Pramod B Khedekar
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440033, MS, India.
| | - Rupesh V Chikhale
- UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom.
| |
Collapse
|
27
|
Jayaraman M, Loganathan L, Muthusamy K, Ramadas K. Virtual screening assisted discovery of novel natural products to inhibit the catalytic mechanism of Mycobacterium tuberculosis InhA. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
28
|
Venugopala KN, Chandrashekharappa S, Deb PK, Tratrat C, Pillay M, Chopra D, Al-Shar'i NA, Hourani W, Dahabiyeh LA, Borah P, Nagdeve RD, Nayak SK, Padmashali B, Morsy MA, Aldhubiab BE, Attimarad M, Nair AB, Sreeharsha N, Haroun M, Shashikanth S, Mohanlall V, Mailavaram R. Anti-tubercular activity and molecular docking studies of indolizine derivatives targeting mycobacterial InhA enzyme. J Enzyme Inhib Med Chem 2021; 36:1472-1487. [PMID: 34210233 PMCID: PMC8259857 DOI: 10.1080/14756366.2021.1919889] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
A series of 1,2,3-trisubstituted indolizines (2a-2f, 3a-3d, and 4a-4c) were screened for in vitro whole-cell anti-tubercular activity against the susceptible H37Rv and multidrug-resistant (MDR) Mycobacterium tuberculosis (MTB) strains. Compounds 2b-2d, 3a-3d, and 4a-4c were active against the H37Rv-MTB strain with minimum inhibitory concentration (MIC) ranging from 4 to 32 µg/mL, whereas the indolizines 4a-4c, with ethyl ester group at the 4-position of the benzoyl ring also exhibited anti-MDR-MTB activity (MIC = 16-64 µg/mL). In silico docking study revealed the enoyl-acyl carrier protein reductase (InhA) and anthranilate phosphoribosyltransferase as potential molecular targets for the indolizines. The X-ray diffraction analysis of the compound 4b was also carried out. Further, a safety study (in silico and in vitro) demonstrated no toxicity for these compounds. Thus, the indolizines warrant further development and may represent a novel promising class of InhA inhibitors and multi-targeting agents to combat drug-sensitive and drug-resistant MTB strains.
Collapse
Affiliation(s)
- Katharigatta N Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia.,Department of Biotechnology and Food Technology, Durban University of Technology, Durban, South Africa
| | | | - Pran Kishore Deb
- Faculty of Pharmacy, Department of Pharmaceutical Sciences, Philadelphia University, Amman, Jordan
| | - Christophe Tratrat
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Melendhran Pillay
- Department of Microbiology, National Health Laboratory Services, KZN Academic Complex, Inkosi Albert Luthuli Central Hospital, Durban, South Africa
| | - Deepak Chopra
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Nizar A Al-Shar'i
- Faculty of Pharmacy, Department of Medicinal Chemistry and Pharmacognosy, Jordan University of Science and Technology, Irbid, Jordan
| | - Wafa Hourani
- Faculty of Pharmacy, Department of Pharmaceutical Sciences, Philadelphia University, Amman, Jordan
| | - Lina A Dahabiyeh
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Jordan, Amman, Jordan
| | - Pobitra Borah
- Pratiksha Institute of Pharmaceutical Sciences, Guwahati, India
| | - Rahul D Nagdeve
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur, India
| | - Susanta K Nayak
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur, India
| | - Basavaraj Padmashali
- Department of Chemistry, School of Basic Science, Rani Channamma University, Belagavi, India
| | - Mohamed A Morsy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia.,Faculty of Medicine, Department of Pharmacology, Minia University, El-Minia, Egypt
| | - Bandar E Aldhubiab
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Mahesh Attimarad
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Anroop B Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Nagaraja Sreeharsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia.,Department of Pharmaceutics, Vidya Siri College of Pharmacy, Bangalore, India
| | - Michelyne Haroun
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Sheena Shashikanth
- Department of Studies in Organic Chemistry, University of Mysore, Mysore, India
| | - Viresh Mohanlall
- Department of Biotechnology and Food Technology, Durban University of Technology, Durban, South Africa
| | | |
Collapse
|
29
|
Chemical Classes Presenting Novel Antituberculosis Agents Currently in Different Phases of Drug Development: A 2010-2020 Review. PHARMACEUTICALS (BASEL, SWITZERLAND) 2021; 14:ph14050461. [PMID: 34068171 PMCID: PMC8152995 DOI: 10.3390/ph14050461] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/08/2021] [Accepted: 05/10/2021] [Indexed: 01/18/2023]
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), is a curable airborne disease currently treated using a drug regimen consisting of four drugs. Global TB control has been a persistent challenge for many decades due to the emergence of drug-resistant Mtb strains. The duration and complexity of TB treatment are the main issues leading to treatment failures. Other challenges faced by currently deployed TB regimens include drug-drug interactions, miss-matched pharmacokinetics parameters of drugs in a regimen, and lack of activity against slow replicating sub-population. These challenges underpin the continuous search for novel TB drugs and treatment regimens. This review summarizes new TB drugs/drug candidates under development with emphasis on their chemical classes, biological targets, mode of resistance generation, and pharmacokinetic properties. As effective TB treatment requires a combination of drugs, the issue of drug-drug interaction is, therefore, of great concern; herein, we have compiled drug-drug interaction reports, as well as efficacy reports for drug combinations studies involving antitubercular agents in clinical development.
Collapse
|