1
|
Troup N, Kroonblawd MP, Donadio D, Goldman N. Quantum Simulations of Radiation Damage in a Molecular Polyethylene Analog. Macromol Rapid Commun 2024:e2400669. [PMID: 39437200 DOI: 10.1002/marc.202400669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/10/2024] [Indexed: 10/25/2024]
Abstract
An atomic-level understanding of radiation-induced damage in simple polymers like polyethylene is essential for determining how these chemical changes can alter the physical and mechanical properties of important technological materials such as plastics. Ensembles of quantum simulations of radiation damage in a polyethylene analog are performed using the Density Functional Tight Binding method to help bind its radiolysis and subsequent degradation as a function of radiation dose. Chemical degradation products are categorized with a graph theory approach, and occurrence rates of unsaturated carbon bond formation, crosslinking, cycle formation, chain scission reactions, and out-gassing products are computed. Statistical correlations between product pairs show significant correlations between chain scission reactions, unsaturated carbon bond formation, and out-gassing products, though these correlations decrease with increasing atom recoil energy. The results present relatively simple chemical descriptors as possible indications of network rearrangements in the middle range of excitation energies. Ultimately, the work provides a computational framework for determining the coupling between nonequilibrium chemistry in polymers and potential changes to macro-scale properties that can aid in the interpretation of future radiation damage experiments on plastic materials.
Collapse
Affiliation(s)
- Nathaniel Troup
- Department of Chemical Engineering, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Matthew P Kroonblawd
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Davide Donadio
- Department of Chemistry, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Nir Goldman
- Department of Chemical Engineering, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| |
Collapse
|
2
|
Vong D, Nematiaram T, Dettmann MA, Murrey TL, Cavalcante LSR, Gurses SM, Radhakrishnan D, Daemen LL, Anthony JE, Koski KJ, Kronawitter CX, Troisi A, Moulé AJ. Quantitative Hole Mobility Simulation and Validation in Substituted Acenes. J Phys Chem Lett 2022; 13:5530-5537. [PMID: 35695809 DOI: 10.1021/acs.jpclett.2c00898] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Knowledge of the full phonon spectrum is essential to accurately calculate the dynamic disorder (σ) and hole mobility (μh) in organic semiconductors (OSCs). However, most vibrational spectroscopy techniques under-measure the phonons, thus limiting the phonon validation. Here, we measure and model the full phonon spectrum using multiple spectroscopic techniques and predict μh using σ from only the Γ-point and the full Brillouin zone (FBZ). We find that only inelastic neutron scattering (INS) provides validation of all phonon modes, and that σ in a set of small molecule semiconductors can be miscalculated by up to 28% when comparing Γ-point against FBZ calculations. A subsequent mode analysis shows that many modes contribute to σ and that no single mode dominates. Our results demonstrate the importance of a thoroughly validated phonon calculation, and a need to develop design rules considering the full spectrum of phonon modes.
Collapse
Affiliation(s)
- Daniel Vong
- Department of Materials Science and Engineering, University of California Davis, Davis, California 95616-5270, United States
| | - Tahereh Nematiaram
- Department of Chemistry, University of Liverpool, L69 7ZD Liverpool, U.K
| | - Makena A Dettmann
- Department of Materials Science and Engineering, University of California Davis, Davis, California 95616-5270, United States
| | - Tucker L Murrey
- Department of Materials Science and Engineering, University of California Davis, Davis, California 95616-5270, United States
| | - Lucas S R Cavalcante
- Department of Chemical Engineering, University of California Davis, Davis, California 95616-5294, United States
| | - Sadi M Gurses
- Department of Chemical Engineering, University of California Davis, Davis, California 95616-5294, United States
| | - Dhanya Radhakrishnan
- Department of Chemistry, University of California Davis, Davis, California 95616, United States
| | - Luke L Daemen
- Oak Ridge National Lab, Oak Ridge, Tennessee 37831, United States
| | - John E Anthony
- University of Kentucky, Lexington, Kentucky 40506-0055, United States
| | - Kristie J Koski
- Department of Chemistry, University of California Davis, Davis, California 95616, United States
| | - Coleman X Kronawitter
- Department of Chemical Engineering, University of California Davis, Davis, California 95616-5294, United States
| | - Alessandro Troisi
- Department of Chemistry, University of Liverpool, L69 7ZD Liverpool, U.K
| | - Adam J Moulé
- Department of Chemical Engineering, University of California Davis, Davis, California 95616-5294, United States
| |
Collapse
|
3
|
Nematiaram T, Troisi A. Feasibility of p-Doped Molecular Crystals as Transparent Conductive Electrodes via Virtual Screening. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2022; 34:4050-4061. [PMID: 35573107 PMCID: PMC9097283 DOI: 10.1021/acs.chemmater.2c00281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/14/2022] [Indexed: 06/15/2023]
Abstract
Transparent conducting materials are an essential component of optoelectronic devices. It is proven difficult, however, to develop high-performance materials that combine the often-incompatible properties of transparency and conductivity, especially for p-type-doped materials. In this work, we have employed a large set of molecular semiconductors extracted from the Cambridge Structural Database to evaluate the likelihood of transparent conducting material technology based on p-type-doped molecular crystals. Candidates are identified imposing the condition of high highest occupied molecular orbital (HOMO) energy level (for the material to be easily dopable), high charge carrier mobility (for the material to display large conductivity when doped), and a high threshold for energy absorption (for the material to absorb radiation only in the ultraviolet). The latest condition is found to be the most stringent criterion in a virtual screening protocol on a database composed of structures with sufficiently wide two-dimensional (2D) electronic bands. Calculation of excited-state energy is shown to be essential as the HOMO-lowest unoccupied molecular orbital (LUMO) gap cannot be reliably used to predict the transparency of this material class. Molecular semiconductors with desirable mobility are transparent because they display either forbidden electronic transition(s) to the lower excited states or small exchange energy between the frontier orbitals. Both features are difficult to design but can be found in a good number of compounds through virtual screening.
Collapse
|
4
|
Dettmann MA, Cavalcante LSR, Magdaleno C, Masalkovaitė K, Vong D, Dull JT, Rand BP, Daemen LL, Goldman N, Faller R, Moulé AJ. Comparing the Expense and Accuracy of Methods to Simulate Atomic Vibrations in Rubrene. J Chem Theory Comput 2021; 17:7313-7320. [PMID: 34818006 DOI: 10.1021/acs.jctc.1c00747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Atomic vibrations can inform about materials properties from hole transport in organic semiconductors to correlated disorder in metal-organic frameworks. Currently, there are several methods for predicting these vibrations using simulations, but the accuracy-efficiency tradeoffs have not been examined in depth. In this study, rubrene is used as a model system to predict atomic vibrational properties using six different simulation methods: density functional theory, density functional tight binding, density functional tight binding with a Chebyshev polynomial-based correction, a trained machine learning model, a pretrained machine learning model called ANI-1, and a classical forcefield model. The accuracy of each method is evaluated by comparison to the experimental inelastic neutron scattering spectrum. All methods discussed here show some accuracy across a wide energy region, though the Chebyshev-corrected tight-binding method showed the optimal combination of high accuracy with low expense. We then offer broad simulation guidelines to yield efficient, accurate results for inelastic neutron scattering spectrum prediction.
Collapse
Affiliation(s)
- Makena A Dettmann
- University of California Davis, Davis, California 95616, United States
| | | | - Corina Magdaleno
- University of California Davis, Davis, California 95616, United States
| | | | - Daniel Vong
- University of California Davis, Davis, California 95616, United States
| | - Jordan T Dull
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Barry P Rand
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Luke L Daemen
- Oak Ridge National Lab, Oak Ridge, Tennessee 37831, United States
| | - Nir Goldman
- University of California Davis, Davis, California 95616, United States.,Lawrence Livermore National Lab, Livermore, California 94550, United States
| | - Roland Faller
- University of California Davis, Davis, California 95616, United States
| | - Adam J Moulé
- University of California Davis, Davis, California 95616, United States
| |
Collapse
|
5
|
Omar ÖH, Del Cueto M, Nematiaram T, Troisi A. High-throughput virtual screening for organic electronics: a comparative study of alternative strategies. JOURNAL OF MATERIALS CHEMISTRY. C 2021; 9:13557-13583. [PMID: 34745630 PMCID: PMC8515942 DOI: 10.1039/d1tc03256a] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/13/2021] [Indexed: 06/01/2023]
Abstract
We present a review of the field of high-throughput virtual screening for organic electronics materials focusing on the sequence of methodological choices that determine each virtual screening protocol. These choices are present in all high-throughput virtual screenings and addressing them systematically will lead to optimised workflows and improve their applicability. We consider the range of properties that can be computed and illustrate how their accuracy can be determined depending on the quality and size of the experimental datasets. The approaches to generate candidates for virtual screening are also extremely varied and their relative strengths and weaknesses are discussed. The analysis of high-throughput virtual screening is almost never limited to the identification of top candidates and often new patterns and structure-property relations are the most interesting findings of such searches. The review reveals a very dynamic field constantly adapting to match an evolving landscape of applications, methodologies and datasets.
Collapse
Affiliation(s)
- Ömer H Omar
- Department of Chemistry, University of Liverpool Liverpool L69 3BX UK
| | - Marcos Del Cueto
- Department of Chemistry, University of Liverpool Liverpool L69 3BX UK
| | | | - Alessandro Troisi
- Department of Chemistry, University of Liverpool Liverpool L69 3BX UK
| |
Collapse
|
6
|
Cavalcante LSR, Daemen LL, Goldman N, Moulé AJ. Davis Computational Spectroscopy Workflow-From Structure to Spectra. J Chem Inf Model 2021; 61:4486-4496. [PMID: 34449225 DOI: 10.1021/acs.jcim.1c00688] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We describe an automated workflow that connects a series of atomic simulation tools to investigate the relationship between atomic structure, lattice dynamics, materials properties, and inelastic neutron scattering (INS) spectra. Starting from the atomic simulation environment (ASE) as an interface, we demonstrate the use of a selection of calculators, including density functional theory (DFT) and density functional tight binding (DFTB), to optimize the structures and calculate interatomic force constants. We present the use of our workflow to compute the phonon frequencies and eigenvectors, which are required to accurately simulate the INS spectra in crystalline solids like diamond and graphite as well as molecular solids like rubrene. We have also implemented a machine-learning force field based on Chebyshev polynomials called the Chebyshev interaction model for efficient simulation (ChIMES) to improve the accuracy of the DFTB simulations. We then explore the transferability of our DFTB/ChIMES models by comparing simulations derived from different training sets. We show that DFTB/ChIMES demonstrates ∼100× reduction in computational expense while retaining most of the accuracy of DFT as well as yielding high accuracy for different materials outside of our training sets. The DFTB/ChIMES method within the workflow expands the possibilities to use simulations to accurately predict materials properties of increasingly complex structures that would be unfeasible with ab initio methods.
Collapse
Affiliation(s)
- L S R Cavalcante
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Luke L Daemen
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Nir Goldman
- Department of Chemical Engineering, University of California, Davis, California 95616, United States.,Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Adam J Moulé
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| |
Collapse
|
7
|
Gupta VK, Aradi B, Kweon K, Keilbart N, Goldman N, Frauenheim T, Kullgren J. Using DFTB to Model Photocatalytic Anatase-Rutile TiO 2 Nanocrystalline Interfaces and Their Band Alignment. J Chem Theory Comput 2021; 17:5239-5247. [PMID: 34231365 PMCID: PMC8389536 DOI: 10.1021/acs.jctc.1c00399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
![]()
Band alignment effects
of anatase and rutile nanocrystals in TiO2 powders lead
to electron–hole separation, increasing
the photocatalytic efficiency of these powders. While size effects
and types of possible alignments have been extensively studied, the
effect of interface geometries of bonded nanocrystal structures on
the alignment is poorly understood. To allow conclusive studies of
a vast variety of bonded systems in different orientations, we have
developed a new density functional tight-binding parameter set to
properly describe quantum confinement in nanocrystals. By applying
this set, we found a quantitative influence of the interface structure
on the band alignment.
Collapse
Affiliation(s)
- Verena Kristin Gupta
- Bremen Center for Computational Materials Science, University of Bremen, P.O. Box 330440, D-28334 Bremen, Germany
| | - Bálint Aradi
- Bremen Center for Computational Materials Science, University of Bremen, P.O. Box 330440, D-28334 Bremen, Germany
| | - Kyoung Kweon
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Nathan Keilbart
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Nir Goldman
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States.,Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Thomas Frauenheim
- Bremen Center for Computational Materials Science, University of Bremen, P.O. Box 330440, D-28334 Bremen, Germany.,Computational Science Research Center, No. 10 East Xibeiwang Road, Beijing 100193, China.,Computational Science and Applied Research Institute, Shenzhen 75120, China
| | - Jolla Kullgren
- Department of Chemistry, Structural Chemistry, Angström Laboratory, Uppsala University, Box 538, 752 21 Uppsala, Sweden
| |
Collapse
|
8
|
Goldman N, Kweon KE, Sadigh B, Heo TW, Lindsey RK, Pham CH, Fried LE, Aradi B, Holliday K, Jeffries JR, Wood BC. Semi-Automated Creation of Density Functional Tight Binding Models through Leveraging Chebyshev Polynomial-Based Force Fields. J Chem Theory Comput 2021; 17:4435-4448. [PMID: 34128678 DOI: 10.1021/acs.jctc.1c00172] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Density functional tight binding (DFTB) is an attractive method for accelerated quantum simulations of condensed matter due to its enhanced computational efficiency over standard density functional theory (DFT) approaches. However, DFTB models can be challenging to determine for individual systems of interest, especially for metallic and interfacial systems where different bonding arrangements can lead to significant changes in electronic states. In this regard, we have created a rapid-screening approach for determining systematically improvable DFTB interaction potentials that can yield transferable models for a variety of conditions. Our method leverages a recent reactive molecular dynamics force field where many-body interactions are represented by linear combinations of Chebyshev polynomials. This allows for the efficient creation of multi-center representations with relative ease, requiring only a small investment in initial DFT calculations. We have focused our workflow on TiH2 as a model system and show that a relatively small training set based on unit-cell-sized calculations yields a model accurate for both bulk and surface properties. Our approach is easy to implement and can yield reliable DFTB models over a broad range of thermodynamic conditions, where physical and chemical properties can be difficult to interrogate directly and there is historically a significant reliance on theoretical approaches for interpretation and validation of experimental results.
Collapse
Affiliation(s)
- Nir Goldman
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States.,Department of Chemical Engineering, University of California, Davis, Davis, California 95616, United States
| | - Kyoung E Kweon
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Babak Sadigh
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Tae Wook Heo
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Rebecca K Lindsey
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - C Huy Pham
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Laurence E Fried
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Bálint Aradi
- Bremen Center for Computational Materials Science, Universität Bremen, P.O.B. 330440, Bremen D-28334, Germany
| | - Kiel Holliday
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Jason R Jeffries
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Brandon C Wood
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| |
Collapse
|
9
|
Liu A, Gao M, Ma Y, Ren X, Gao L, Li Y, Ma T. Theoretical study of the influence of doped oxygen group elements on the properties of organic semiconductors. NANOSCALE ADVANCES 2021; 3:3100-3106. [PMID: 36133661 PMCID: PMC9419607 DOI: 10.1039/d0na01026j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 04/06/2021] [Indexed: 06/16/2023]
Abstract
Organic semiconductor materials are widely used in the field of organic electronic devices due to their wide variety, low price, and light weight. However, their developments are still restrained by their low stability and carrier mobility. Density functional theory (DFT) was used to study the influence of doped oxygen group elements (O, S, Se, and Te) on the properties of organic semiconductor materials (seven-membered benzothiophene, o-pentacene, thiophene derivatives, and pentacene) in this paper. Based on the calculation of E HOMO, E LUMO, ΔE, and total energy, the performances of organic semiconductor materials without and with doped elements were compared, and it was found that the doping of multi-element Te makes the material have high stability and potential high mobility. For these studied organic semiconductor materials, when the atoms of the doped site change in the order of O, S, Se, and Te, the carrier mobility gradually increases, and the molecules show a tendency of stability. In this paper, promising doping elements and doping methods for these studied molecules are determined through calculations and screening out suitable materials more efficiently and economically without a large amount of repetitive experimental work, which may provide a theoretical basis and guidance for preparing high-performance organic semiconductor materials.
Collapse
Affiliation(s)
- Anmin Liu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology China
| | - Mengfan Gao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology China
| | - Yan Ma
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology China
- School of Economics and Finance, Xi'an Jiaotong University China
| | - Xuefeng Ren
- School of Ocean Science and Technology, Dalian University of Technology Panjin 124221 China
| | - Liguo Gao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology China
| | - Yanqiang Li
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology China
| | - Tingli Ma
- Department of Materials Science and Engineering, China Jiliang University Hangzhou 310018 China
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology 2-4 Hibikino, Wakamatsu Kitakyushu Fukuoka 808-0196 Japan
| |
Collapse
|