1
|
Limmer DT, Götz AW, Bertram TH, Nathanson GM. Molecular Insights into Chemical Reactions at Aqueous Aerosol Interfaces. Annu Rev Phys Chem 2024; 75:111-135. [PMID: 38360527 DOI: 10.1146/annurev-physchem-083122-121620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Atmospheric aerosols facilitate reactions between ambient gases and dissolved species. Here, we review our efforts to interrogate the uptake of these gases and the mechanisms of their reactions both theoretically and experimentally. We highlight the fascinating behavior of N2O5 in solutions ranging from pure water to complex mixtures, chosen because its aerosol-mediated reactions significantly impact global ozone, hydroxyl, and methane concentrations. As a hydrophobic, weakly soluble, and highly reactive species, N2O5 is a sensitive probe of the chemical and physical properties of aerosol interfaces. We employ contemporary theory to disentangle the fate of N2O5 as it approaches pure and salty water, starting with adsorption and ending with hydrolysis to HNO3, chlorination to ClNO2, or evaporation. Flow reactor and gas-liquid scattering experiments probe even greater complexity as added ions, organic molecules, and surfactants alter the interfacial composition and reaction rates. Together, we reveal a new perspective on multiphase chemistry in the atmosphere.
Collapse
Affiliation(s)
- David T Limmer
- Department of Chemistry, University of California, Berkeley, California, USA;
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Kavli Energy NanoScience Institute, Berkeley, California, USA
- Chemical Science Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Andreas W Götz
- San Diego Supercomputer Center, University of California San Diego, La Jolla, California, USA;
| | - Timothy H Bertram
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA; ,
| | - Gilbert M Nathanson
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA; ,
| |
Collapse
|
2
|
Albrechtsen SH, Schouder CA, Viñas Muñoz A, Christensen JK, Engelbrecht Petersen C, Pi M, Barranco M, Stapelfeldt H. Observing the primary steps of ion solvation in helium droplets. Nature 2023; 623:319-323. [PMID: 37938709 DOI: 10.1038/s41586-023-06593-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/31/2023] [Indexed: 11/09/2023]
Abstract
Solvation is a ubiquitous phenomenon in the natural sciences. At the macroscopic level, it is well understood through thermodynamics and chemical reaction kinetics1,2. At the atomic level, the primary steps of solvation are the attraction and binding of individual molecules or atoms of a solvent to molecules or ions of a solute1. These steps have, however, never been observed in real time. Here we instantly create a single sodium ion at the surface of a liquid helium nanodroplet3,4, and measure the number of solvent atoms that successively attach to the ion as a function of time. We found that the binding dynamics of the first five helium atoms is well described by a Poissonian process with a binding rate of 2.0 atoms per picosecond. This rate is consistent with time-dependent density-functional-theory simulations of the solvation process. Furthermore, our measurements enable an estimate of the energy removed from the region around the sodium ion as a function of time, revealing that half of the total solvation energy is dissipated after four picoseconds. Our experimental method opens possibilities for benchmarking theoretical models of ion solvation and for time-resolved measurements of cation-molecule complex formation.
Collapse
Affiliation(s)
| | - Constant A Schouder
- Department of Chemistry, Aarhus University, Aarhus, Denmark
- Université Paris-Saclay, CEA, CNRS, LIDYL, Gif-sur-Yvette, France
| | | | | | | | - Martí Pi
- Departament FQA, Facultat de Física, Universitat de Barcelona, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Barcelona, Spain
| | - Manuel Barranco
- Departament FQA, Facultat de Física, Universitat de Barcelona, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Barcelona, Spain
| | | |
Collapse
|
3
|
Riera M, Knight C, Bull-Vulpe EF, Zhu X, Agnew H, Smith DGA, Simmonett AC, Paesani F. MBX: A many-body energy and force calculator for data-driven many-body simulations. J Chem Phys 2023; 159:054802. [PMID: 37526156 PMCID: PMC10550339 DOI: 10.1063/5.0156036] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/11/2023] [Indexed: 08/02/2023] Open
Abstract
Many-Body eXpansion (MBX) is a C++ library that implements many-body potential energy functions (PEFs) within the "many-body energy" (MB-nrg) formalism. MB-nrg PEFs integrate an underlying polarizable model with explicit machine-learned representations of many-body interactions to achieve chemical accuracy from the gas to the condensed phases. MBX can be employed either as a stand-alone package or as an energy/force engine that can be integrated with generic software for molecular dynamics and Monte Carlo simulations. MBX is parallelized internally using Open Multi-Processing and can utilize Message Passing Interface when available in interfaced molecular simulation software. MBX enables classical and quantum molecular simulations with MB-nrg PEFs, as well as hybrid simulations that combine conventional force fields and MB-nrg PEFs, for diverse systems ranging from small gas-phase clusters to aqueous solutions and molecular fluids to biomolecular systems and metal-organic frameworks.
Collapse
Affiliation(s)
- Marc Riera
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| | - Christopher Knight
- Argonne National Laboratory, Computational Science Division, Lemont, Illinois 60439, USA
| | - Ethan F. Bull-Vulpe
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| | - Xuanyu Zhu
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| | - Henry Agnew
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| | | | - Andrew C. Simmonett
- Laboratory of Computational Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
4
|
Zhai Y, Caruso A, Bore SL, Luo Z, Paesani F. A "short blanket" dilemma for a state-of-the-art neural network potential for water: Reproducing experimental properties or the physics of the underlying many-body interactions? J Chem Phys 2023; 158:084111. [PMID: 36859071 DOI: 10.1063/5.0142843] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Deep neural network (DNN) potentials have recently gained popularity in computer simulations of a wide range of molecular systems, from liquids to materials. In this study, we explore the possibility of combining the computational efficiency of the DeePMD framework and the demonstrated accuracy of the MB-pol data-driven, many-body potential to train a DNN potential for large-scale simulations of water across its phase diagram. We find that the DNN potential is able to reliably reproduce the MB-pol results for liquid water, but provides a less accurate description of the vapor-liquid equilibrium properties. This shortcoming is traced back to the inability of the DNN potential to correctly represent many-body interactions. An attempt to explicitly include information about many-body effects results in a new DNN potential that exhibits the opposite performance, being able to correctly reproduce the MB-pol vapor-liquid equilibrium properties, but losing accuracy in the description of the liquid properties. These results suggest that DeePMD-based DNN potentials are not able to correctly "learn" and, consequently, represent many-body interactions, which implies that DNN potentials may have limited ability to predict the properties for state points that are not explicitly included in the training process. The computational efficiency of the DeePMD framework can still be exploited to train DNN potentials on data-driven many-body potentials, which can thus enable large-scale, "chemically accurate" simulations of various molecular systems, with the caveat that the target state points must have been adequately sampled by the reference data-driven many-body potential in order to guarantee a faithful representation of the associated properties.
Collapse
Affiliation(s)
- Yaoguang Zhai
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, California 92093, USA
| | - Alessandro Caruso
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| | - Sigbjørn Løland Bore
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| | - Zhishang Luo
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| | - Francesco Paesani
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
5
|
Zhuang D, Riera M, Zhou R, Deary A, Paesani F. Hydration Structure of Na + and K + Ions in Solution Predicted by Data-Driven Many-Body Potentials. J Phys Chem B 2022; 126:9349-9360. [PMID: 36326071 DOI: 10.1021/acs.jpcb.2c05674] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The hydration structure of Na+ and K+ ions in solution is systematically investigated using a hierarchy of molecular models that progressively include more accurate representations of many-body interactions. We found that a conventional empirical pairwise additive force field that is commonly used in biomolecular simulations is unable to reproduce the extended X-ray absorption fine structure (EXAFS) spectra for both ions. In contrast, progressive inclusion of many-body effects rigorously derived from the many-body expansion of the energy allows the MB-nrg potential energy functions (PEFs) to achieve nearly quantitative agreement with the experimental EXAFS spectra, thus enabling the development of a molecular-level picture of the hydration structure of both Na+ and K+ in solution. Since the MB-nrg PEFs have already been shown to accurately describe isomeric equilibria and vibrational spectra of small ion-water clusters in the gas phase, the present study demonstrates that the MB-nrg PEFs effectively represent the long-sought-after models able to correctly predict the properties of ionic aqueous systems from the gas to the liquid phase, which has so far remained elusive.
Collapse
Affiliation(s)
- Debbie Zhuang
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California92093, United States
| | - Marc Riera
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California92093, United States
| | - Ruihan Zhou
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California92093, United States
| | - Alexander Deary
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California92093, United States
| | - Francesco Paesani
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California92093, United States.,Materials Science and Engineering, University of California San Diego, La Jolla, California92093, United States.,San Diego Supercomputer Center, University of California San Diego, La Jolla, California92093, United States
| |
Collapse
|
6
|
Caruso A, Zhu X, Fulton JL, Paesani F. Accurate Modeling of Bromide and Iodide Hydration with Data-Driven Many-Body Potentials. J Phys Chem B 2022; 126:8266-8278. [PMID: 36214512 DOI: 10.1021/acs.jpcb.2c04698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Ion-water interactions play a central role in determining the properties of aqueous systems in a wide range of environments. However, a quantitative understanding of how the hydration properties of ions evolve from small aqueous clusters to bulk solutions and interfaces remains elusive. Here, we introduce the second generation of data-driven many-body energy (MB-nrg) potential energy functions (PEFs) representing bromide-water and iodide-water interactions. The MB-nrg PEFs use permutationally invariant polynomials to reproduce two-body and three-body energies calculated at the coupled cluster level of theory, and implicitly represent all higher-body energies using classical many-body polarization. A systematic analysis of the hydration structure of small Br-(H2O)n and I-(H2O)n clusters demonstrates that the MB-nrg PEFs predict interaction energies in quantitative agreement with "gold standard" coupled cluster reference values. Importantly, when used in molecular dynamics simulations carried out in the isothermal-isobaric ensemble for single bromide and iodide ions in liquid water, the MB-nrg PEFs predict extended X-ray absorption fine structure (EXAFS) spectra that accurately reproduce the experimental spectra, which thus allows for characterizing the hydration structure of the two ions with a high level of confidence.
Collapse
Affiliation(s)
- Alessandro Caruso
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California92093, United States
| | - Xuanyu Zhu
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California92093, United States
| | - John L Fulton
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington99352, United States
| | - Francesco Paesani
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California92093, United States.,Materials Science and Engineering, University of California San Diego, La Jolla, California92093, United States.,San Diego Supercomputer Center, University of California San Diego, La Jolla, California92093, United States
| |
Collapse
|
7
|
Hao H, Ruiz Pestana L, Qian J, Liu M, Xu Q, Head‐Gordon T. Chemical transformations and transport phenomena at interfaces. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hongxia Hao
- Kenneth S. Pitzer Theory Center and Department of Chemistry University of California Berkeley California USA
- Chemical Sciences Division Lawrence Berkeley National Laboratory Berkeley California USA
| | - Luis Ruiz Pestana
- Department of Civil and Architectural Engineering University of Miami Coral Gables Florida USA
| | - Jin Qian
- Chemical Sciences Division Lawrence Berkeley National Laboratory Berkeley California USA
| | - Meili Liu
- Department of Civil and Architectural Engineering University of Miami Coral Gables Florida USA
| | - Qiang Xu
- Chemical Sciences Division Lawrence Berkeley National Laboratory Berkeley California USA
| | - Teresa Head‐Gordon
- Kenneth S. Pitzer Theory Center and Department of Chemistry University of California Berkeley California USA
- Chemical Sciences Division Lawrence Berkeley National Laboratory Berkeley California USA
- Department of Bioengineering and Chemical and Biomolecular Engineering University of California Berkeley California USA
| |
Collapse
|
8
|
Bull-Vulpe EF, Riera M, Bore SL, Paesani F. Data-Driven Many-Body Potential Energy Functions for Generic Molecules: Linear Alkanes as a Proof-of-Concept Application. J Chem Theory Comput 2022. [PMID: 36113028 DOI: 10.1021/acs.jctc.2c00645] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present a generalization of the many-body energy (MB-nrg) theoretical/computational framework that enables the development of data-driven potential energy functions (PEFs) for generic covalently bonded molecules, with arbitrary quantum mechanical accuracy. The "nearsightedness of electronic matter" is exploited to define monomers as "natural building blocks" on the basis of their distinct chemical identity. The energy of generic molecules is then expressed as a sum of individual many-body energies of incrementally larger subsystems. The MB-nrg PEFs represent the low-order n-body energies, with n = 1-4, using permutationally invariant polynomials derived from electronic structure data carried out at an arbitrary quantum mechanical level of theory, while all higher-order n-body terms (n > 4) are represented by a classical many-body polarization term. As a proof-of-concept application of the general MB-nrg framework, we present MB-nrg PEFs for linear alkanes. The MB-nrg PEFs are shown to accurately reproduce reference energies, harmonic frequencies, and potential energy scans of alkanes, independently of their length. Since, by construction, the MB-nrg framework introduced here can be applied to generic covalently bonded molecules, we envision future computer simulations of complex molecular systems using data-driven MB-nrg PEFs, with arbitrary quantum mechanical accuracy.
Collapse
Affiliation(s)
- Ethan F. Bull-Vulpe
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Marc Riera
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Sigbjørn L. Bore
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Francesco Paesani
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
- Materials Science and Engineering, University of California San Diego, La Jolla, California 92093, United States
- San Diego Supercomputer Center, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
9
|
Chen Z, Bononi FC, Sievers CA, Kong WY, Donadio D. UV-Visible Absorption Spectra of Solvated Molecules by Quantum Chemical Machine Learning. J Chem Theory Comput 2022; 18:4891-4902. [PMID: 35913220 DOI: 10.1021/acs.jctc.1c01181] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Predicting UV-visible absorption spectra is essential to understand photochemical processes and design energy materials. Quantum chemical methods can deliver accurate calculations of UV-visible absorption spectra, but they are computationally expensive, especially for large systems or when one computes line shapes from thermal averages. Here, we present an approach to predict UV-visible absorption spectra of solvated aromatic molecules by quantum chemistry (QC) and machine learning (ML). We show that a ML model, trained on the high-level QC calculation of the excitation energy of a set of aromatic molecules, can accurately predict the line shape of the lowest-energy UV-visible absorption band of several related molecules with less than 0.1 eV deviation with respect to reference experimental spectra. Applying linear decomposition analysis on the excitation energies, we unveil that our ML models probe vertical excitations of these aromatic molecules primarily by learning the atomic environment of their phenyl rings, which align with the physical origin of the π →π* electronic transition. Our study provides an effective workflow that combines ML with quantum chemical methods to accelerate the calculations of UV-visible absorption spectra for various molecular systems.
Collapse
Affiliation(s)
- Zekun Chen
- Department of Chemistry, University of California Davis 95616, California, United States
| | - Fernanda C Bononi
- Department of Chemistry, University of California Davis 95616, California, United States
| | - Charles A Sievers
- Department of Chemistry, University of California Davis 95616, California, United States
| | - Wang-Yeuk Kong
- Department of Chemistry, University of California Davis 95616, California, United States
| | - Davide Donadio
- Department of Chemistry, University of California Davis 95616, California, United States
| |
Collapse
|
10
|
Liu J, Lan J, He X. Toward High-level Machine Learning Potential for Water Based on Quantum Fragmentation and Neural Networks. J Phys Chem A 2022; 126:3926-3936. [PMID: 35679610 DOI: 10.1021/acs.jpca.2c00601] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Accurate and efficient simulation of liquids, such as water and salt solutions, using high-level wave function theories is still a formidable task for computational chemists owing to the high computational costs. In this study, we develop a deep machine learning potential based on fragment-based second-order Møller-Plesset perturbation theory (DP-MP2) for water through neural networks. We show that the DP-MP2 potential predicts the structural, dynamical, and thermodynamic properties of liquid water in better agreement with the experimental data than previous studies based on density functional theory (DFT). The nuclear quantum effects (NQEs) on the properties of liquid water are also examined, which are noticeable in affecting the structural and dynamical properties of liquid water under ambient conditions. This work provides a general framework for quantitative predictions of the properties of condensed-phase systems with the accuracy of high-level wave function theory while achieving significant computational savings compared to ab initio simulations.
Collapse
Affiliation(s)
- Jinfeng Liu
- Department of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China.,Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Jinggang Lan
- Chaire de Simulation à l'Echelle Atomique (CSEA), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Xiao He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.,New York University-East China Normal University Center for Computational Chemistry, NYU Shanghai, Shanghai 200062, China
| |
Collapse
|
11
|
Cruzeiro VWD, Galib M, Limmer DT, Götz AW. Uptake of N 2O 5 by aqueous aerosol unveiled using chemically accurate many-body potentials. Nat Commun 2022; 13:1266. [PMID: 35273144 PMCID: PMC8913772 DOI: 10.1038/s41467-022-28697-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/28/2022] [Indexed: 11/24/2022] Open
Abstract
The reactive uptake of N2O5 to aqueous aerosol is a major loss channel for nitrogen oxides in the troposphere. Despite its importance, a quantitative picture of the uptake mechanism is missing. Here we use molecular dynamics simulations with a data-driven many-body model of coupled-cluster accuracy to quantify thermodynamics and kinetics of solvation and adsorption of N2O5 in water. The free energy profile highlights that N2O5 is selectively adsorbed to the liquid-vapor interface and weakly solvated. Accommodation into bulk water occurs slowly, competing with evaporation upon adsorption from gas phase. Leveraging the quantitative accuracy of the model, we parameterize and solve a reaction-diffusion equation to determine hydrolysis rates consistent with experimental observations. We find a short reaction-diffusion length, indicating that the uptake is dominated by interfacial features. The parameters deduced here, including solubility, accommodation coefficient, and hydrolysis rate, afford a foundation for which to consider the reactive loss of N2O5 in more complex solutions.
Collapse
Affiliation(s)
- Vinícius Wilian D Cruzeiro
- San Diego Supercomputer Center, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Mirza Galib
- Department of Chemistry, University of California, Berkeley, CA, USA
| | - David T Limmer
- Department of Chemistry, University of California, Berkeley, CA, USA.
- Kavli Energy NanoScience Institute, Berkeley, CA, USA.
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Chemical Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Andreas W Götz
- San Diego Supercomputer Center, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
12
|
Bull-Vulpe EF, Riera M, Götz AW, Paesani F. MB-Fit: Software infrastructure for data-driven many-body potential energy functions. J Chem Phys 2021; 155:124801. [PMID: 34598567 DOI: 10.1063/5.0063198] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Many-body potential energy functions (MB-PEFs), which integrate data-driven representations of many-body short-range quantum mechanical interactions with physics-based representations of many-body polarization and long-range interactions, have recently been shown to provide high accuracy in the description of molecular interactions from the gas to the condensed phase. Here, we present MB-Fit, a software infrastructure for the automated development of MB-PEFs for generic molecules within the TTM-nrg (Thole-type model energy) and MB-nrg (many-body energy) theoretical frameworks. Besides providing all the necessary computational tools for generating TTM-nrg and MB-nrg PEFs, MB-Fit provides a seamless interface with the MBX software, a many-body energy and force calculator for computer simulations. Given the demonstrated accuracy of the MB-PEFs, particularly within the MB-nrg framework, we believe that MB-Fit will enable routine predictive computer simulations of generic (small) molecules in the gas, liquid, and solid phases, including, but not limited to, the modeling of quantum isomeric equilibria in molecular clusters, solvation processes, molecular crystals, and phase diagrams.
Collapse
Affiliation(s)
- Ethan F Bull-Vulpe
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| | - Marc Riera
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| | - Andreas W Götz
- San Diego Supercomputer Center, University of California San Diego, La Jolla, California 92093, USA
| | - Francesco Paesani
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
13
|
Caruso A, Paesani F. Data-driven many-body models enable a quantitative description of chloride hydration from clusters to bulk. J Chem Phys 2021; 155:064502. [PMID: 34391363 DOI: 10.1063/5.0059445] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
We present a new data-driven potential energy function (PEF) describing chloride-water interactions, which is developed within the many-body-energy (MB-nrg) theoretical framework. Besides quantitatively reproducing low-order many-body energy contributions, the new MB-nrg PEF is able to correctly predict the interaction energies of small chloride-water clusters calculated at the coupled cluster level of theory. Importantly, classical and quantum molecular dynamics simulations of a single chloride ion in water demonstrate that the new MB-nrg PEF predicts x-ray spectra in close agreement with the experimental results. Comparisons with an popular empirical model and a polarizable PEF emphasize the importance of an accurate representation of short-range many-body effect while demonstrating that pairwise additive representations of chloride-water and water-water interactions are inadequate for correctly representing the hydration structure of chloride in both gas-phase clusters and solution. We believe that the analyses presented in this study provide additional evidence for the accuracy and predictive ability of the MB-nrg PEFs, which can then enable more realistic simulations of ionic aqueous systems in different environments.
Collapse
Affiliation(s)
- Alessandro Caruso
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| | - Francesco Paesani
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|