1
|
Balogh G, Bereczky Z. Molecular Mechanisms of the Impaired Heparin Pentasaccharide Interactions in 10 Antithrombin Heparin Binding Site Mutants Revealed by Enhanced Sampling Molecular Dynamics. Biomolecules 2024; 14:657. [PMID: 38927061 PMCID: PMC11201378 DOI: 10.3390/biom14060657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/27/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Antithrombin (AT) is a critical regulator of the coagulation cascade by inhibiting multiple coagulation factors including thrombin and FXa. Binding of heparinoids to this serpin enhances the inhibition considerably. Mutations located in the heparin binding site of AT result in thrombophilia in affected individuals. Our aim was to study 10 antithrombin mutations known to affect their heparin binding in a heparin pentasaccharide bound state using two molecular dynamics (MD) based methods providing enhanced sampling, GaMD and LiGaMD2. The latter provides an additional boost to the ligand and the most important binding site residues. From our GaMD simulations we were able to identify four variants (three affecting amino acid Arg47 and one affecting Lys114) that have a particularly large effect on binding. The additional acceleration provided by LiGaMD2 allowed us to study the consequences of several other mutants including those affecting Arg13 and Arg129. We were able to identify several conformational types by cluster analysis. Analysis of the simulation trajectories revealed the causes of the impaired pentasaccharide binding including pentasaccharide subunit conformational changes and altered allosteric pathways in the AT protein. Our results provide insights into the effects of AT mutations interfering with heparin binding at an atomic level and can facilitate the design or interpretation of in vitro experiments.
Collapse
Affiliation(s)
- Gábor Balogh
- Division of Clinical Laboratory Science, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Zsuzsanna Bereczky
- Division of Clinical Laboratory Science, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
2
|
Holmes SG, Desai UR. Assessing Genetic Algorithm-Based Docking Protocols for Prediction of Heparin Oligosaccharide Binding Geometries onto Proteins. Biomolecules 2023; 13:1633. [PMID: 38002315 PMCID: PMC10669598 DOI: 10.3390/biom13111633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Although molecular docking has evolved dramatically over the years, its application to glycosaminoglycans (GAGs) has remained challenging because of their intrinsic flexibility, highly anionic character and rather ill-defined site of binding on proteins. GAGs have been treated as either fully "rigid" or fully "flexible" in molecular docking. We reasoned that an intermediate semi-rigid docking (SRD) protocol may be better for the recapitulation of native heparin/heparan sulfate (Hp/HS) topologies. Herein, we study 18 Hp/HS-protein co-complexes containing chains from disaccharide to decasaccharide using genetic algorithm-based docking with rigid, semi-rigid, and flexible docking protocols. Our work reveals that rigid and semi-rigid protocols recapitulate native poses for longer chains (5→10 mers) significantly better than the flexible protocol, while 2→4-mer poses are better predicted using the semi-rigid approach. More importantly, the semi-rigid docking protocol is likely to perform better when no crystal structure information is available. We also present a new parameter for parsing selective versus non-selective GAG-protein systems, which relies on two computational parameters including consistency of binding (i.e., RMSD) and docking score (i.e., GOLD Score). The new semi-rigid protocol in combination with the new computational parameter is expected to be particularly useful in high-throughput screening of GAG sequences for identifying promising druggable targets as well as drug-like Hp/HS sequences.
Collapse
Affiliation(s)
- Samuel G. Holmes
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA;
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, 800 E. Leigh Street, Suite 212, Richmond, VA 23219, USA
| | - Umesh R. Desai
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA;
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, 800 E. Leigh Street, Suite 212, Richmond, VA 23219, USA
| |
Collapse
|
3
|
Holmes SG, Nagarajan B, Desai UR. 3- O-Sulfation induces sequence-specific compact topologies in heparan sulfate that encode a dynamic sulfation code. Comput Struct Biotechnol J 2022; 20:3884-3898. [PMID: 35891779 PMCID: PMC9309406 DOI: 10.1016/j.csbj.2022.07.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/05/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022] Open
Abstract
Heparan sulfate (HS) is arguably the most diverse linear biopolymer that is known to modulate hundreds of proteins. Whereas the configurational and conformational diversity of HS is well established in terms of varying sulfation patterns and iduronic acid (IdoA) puckers, a linear helical topology resembling a cylindrical rod is the only topology thought to be occupied by the biopolymer. We reasoned that 3-O-sulfation, a rare modification in natural HS, may induce novel topologies that contribute to selective recognition of proteins. In this work, we studied a library of 24 distinct HS hexasaccharides using molecular dynamics (MD). We discovered novel compact (C) topologies that are populated significantly by a unique group of 3-O-sulfated sequences containing IdoA residues. 3-O-sulfated sequences containing glucuronic acid (GlcA) residue and sequences devoid of 3-O-sulfate groups did not exhibit high levels of the C topology and primarily exhibited only the canonical linear (L) form. The C topology arises under dynamical conditions due to rotation around an IdoA → GlcN glycosidic linkage, especially in psi (Ψ) torsion. At an atomistic level, the L → C transformation is a multi-factorial phenomenon engineered to reduce like-charge repulsion, release one or more HS-bound water molecules, and organize a bi-dentate "IdoA-cation-IdoA" interaction. These forces also drive an L → C transformation in a 3-O-sulfated octasaccharide, which has shown evidence of the unique C topology in the co-crystallized state. The 3-O-sulfate-based generation of unique, sequence-specific, compact topologies indicate that natural HS encodes a dynamic sulfation code that could be exploited for selective recognition of target proteins.
Collapse
Affiliation(s)
- Samuel G. Holmes
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219, USA
| | - Balaji Nagarajan
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219, USA
| | - Umesh R. Desai
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219, USA
- Corresponding author at: Institute for Structural Biology, Drug Discovery, and Development, 800 E. Leigh Street, Suite 212, Richmond, VA 23219, USA.
| |
Collapse
|
4
|
Kogut MM, Danielsson A, Ricard-Blum S, Samsonov SA. Impact of calcium ions on the structural and dynamic properties of heparin oligosaccharides by computational analysis. Comput Biol Chem 2022; 99:107727. [PMID: 35841830 DOI: 10.1016/j.compbiolchem.2022.107727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/24/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022]
Abstract
Heparin (HP) belongs to glycosaminoglycans (GAGs), anionic linear polysaccharides composed of repetitive disaccharide units. They are key players in many biological processes occurring in the extracellular matrix and at the cell surface. GAGs are challenging molecules for computational research due to their high chemical heterogeneity, flexibility, periodicity, pseudosymmetry, predominantly electrostatics-driven nature of interactions with their protein partners and potential multipose binding. The molecular mechanisms underlying GAG interactions mediated by divalent ions, which are important for GAG binding to several proteins, are not well understood. The goal of this study was to characterize the binding of Ca2+ to two HP oligosaccharides of different lengths (dp10 and dp18, dp: degree of polymerization) and their impact on HP conformational space and their dynamic behavior with the use of molecular dynamics (MD)-based approaches with two Ca2+ parameter sets. MD data suggested that the flexibility of the monosaccharides, the glycosidic linkages and ring puckering were not affected by the presence of Ca2+, in contrast to H-bond propensities and the calculated Rg for a fraction of the oligosaccharide populations in both dp10 and dp18. Moreover, the essential differences in the data obtained by using two Ca2+ parameter sets were reported.
Collapse
Affiliation(s)
- Małgorzata M Kogut
- Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, Gdańsk 80-308, Poland
| | - Annemarie Danielsson
- Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, Gdańsk 80-308, Poland
| | - Sylvie Ricard-Blum
- Univ Lyon, University Claude Bernard Lyon 1, CNRS, Institute of Molecular and Supramolecular Chemistry and Biochemistry, UMR 5246, Villeurbanne CEDEX F-69622, France
| | - Sergey A Samsonov
- Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, Gdańsk 80-308, Poland.
| |
Collapse
|