1
|
Johansen S, Park H, Wang LP, Crabtree KN. Reactant Discovery with an Ab Initio Nanoreactor: Exploration of Astrophysical N-Heterocycle Precursors and Formation Pathways. ACS EARTH & SPACE CHEMISTRY 2024; 8:1771-1783. [PMID: 39318708 PMCID: PMC11418024 DOI: 10.1021/acsearthspacechem.4c00120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/09/2024] [Accepted: 07/30/2024] [Indexed: 09/26/2024]
Abstract
The incorporation of nitrogen atoms into cyclic compounds is essential for terrestrial life; nitrogen-containing (N-)heterocycles make up DNA and RNA nucleobases, several amino acids, B vitamins, porphyrins, and other components of biomolecules. The discovery of these molecules on meteorites with non-terrestrial isotopic abundances supports the hypothesis of exogenous delivery of prebiotic material to early Earth; however, there has been no detection of these species in interstellar environments, indicating that there is a need for greater knowledge of their astrochemical formation and destruction pathways. Here, we present results of simulations of gas-phase pyrrole and pyridine formation from an ab initio nanoreactor, a first-principles molecular dynamics simulation method that accelerates reaction discovery by applying non-equilibrium forces that are agnostic to individual reaction coordinates. Using the nanoreactor in a retrosynthetic mode, starting with the N-heterocycle of interest and a radical leaving group, then considering the discovered reaction pathways in reverse, a rich landscape of N-heterocycle-forming reactivity can be found. Several of these reaction pathways, when mapped to their corresponding minimum energy paths, correspond to novel barrierless formation pathways for pyridine and pyrrole, starting from both detected and hypothesized astrochemical precursors. This study demonstrates how first-principles reaction discovery can build mechanistic knowledge in astrochemical environments as well as in early Earth models such as Titan's atmosphere where N-heterocycles have been tentatively detected.
Collapse
Affiliation(s)
| | | | - Lee-Ping Wang
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Kyle N. Crabtree
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| |
Collapse
|
2
|
Zhang Y, Xu C, Lan Z. Automated Exploration of Reaction Networks and Mechanisms Based on Metadynamics Nanoreactor Simulations. J Chem Theory Comput 2023. [PMID: 38031422 DOI: 10.1021/acs.jctc.3c00752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
We developed an automated approach to construct a complex reaction network and explore the reaction mechanisms for numerous reactant molecules by integrating several theoretical approaches. Nanoreactor-type molecular dynamics was used to generate possible chemical reactions, in which the metadynamics was used to overcome the reaction barriers, and the semiempirical GFN2-xTB method was used to reduce the computational cost. Reaction events were identified from trajectories using the hidden Markov model based on the evolution of the molecular connectivity. This provided the starting points for further transition-state searches at the electronic structure levels of density functional theory to obtain the reaction mechanism. Finally, the entire reaction network containing multiple pathways was built. The feasibility and efficiency of the automated construction of the reaction network were investigated using the HCHO and NH3 biomolecular reaction and the reaction network for a multispecies system comprising dozens of HCN and H2O molecules. The results indicated that the proposed approach provides a valuable and effective tool for the automated exploration of the reaction networks.
Collapse
Affiliation(s)
- Yutai Zhang
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety and MOE Key Laboratory of Environmental Theoretical Chemistry, SCNU Environmental Research Institute, School of Environment, South China Normal University, Guangzhou 510006, P. R. China
| | - Chao Xu
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety and MOE Key Laboratory of Environmental Theoretical Chemistry, SCNU Environmental Research Institute, School of Environment, South China Normal University, Guangzhou 510006, P. R. China
| | - Zhenggang Lan
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety and MOE Key Laboratory of Environmental Theoretical Chemistry, SCNU Environmental Research Institute, School of Environment, South China Normal University, Guangzhou 510006, P. R. China
| |
Collapse
|
3
|
Li G, Li Z, Gao L, Chen S, Wang G, Li S. Combined molecular dynamics and coordinate driving method for automatically searching complicated reaction pathways. Phys Chem Chem Phys 2023; 25:23696-23707. [PMID: 37610711 DOI: 10.1039/d3cp02443a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The combined molecular dynamics and coordinate driving (MD/CD) method is updated and generalized in this work to broaden its applications in automatically searching reaction pathways for complicated reactions. In this updated version, MD simulations are performed with the GFN's family of methods to systematically sample conformers for almost any systems with atomic numbers Z ≤ 86. The improved CD procedure is greatly accelerated by applying a pre-screening stage at the semiempirical GFN2-xTB level. An automatic module based on the Marcus theory and its improved version (the Wolynes theory) is designed to include single electron transfer (SET) processes into reaction pathways. The capabilities of this method are demonstrated by exploring the most possible reaction pathways of three experimentally reported reactions: the organophosphine-catalyzed trans phosphinoboration, the Fe(II) complex-mediated C(sp2)-H borylation reaction, and the SET-triggered deaminative radical cross-coupling reaction. Comprehensive reaction networks are obtained for all three reactions with reasonable computational costs. Detailed mechanisms for these reactions can account for the reported experimental facts.
Collapse
Affiliation(s)
- Guoao Li
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, New Cornerstone Science Laboratory, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China.
| | - Zhenxing Li
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, New Cornerstone Science Laboratory, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China.
| | - Liuzhou Gao
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, New Cornerstone Science Laboratory, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China.
| | - Shengda Chen
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, New Cornerstone Science Laboratory, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China.
| | - Guoqiang Wang
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, New Cornerstone Science Laboratory, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China.
| | - Shuhua Li
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, New Cornerstone Science Laboratory, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China.
| |
Collapse
|
4
|
Wu H, Grinberg Dana A, Ranasinghe DS, Pickard FC, Wood GPF, Zelesky T, Sluggett GW, Mustakis J, Green WH. Kinetic Modeling of API Oxidation: (2) Imipramine Stress Testing. Mol Pharm 2022; 19:1526-1539. [DOI: 10.1021/acs.molpharmaceut.2c00043] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Haoyang Wu
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Alon Grinberg Dana
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Wolfson Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Duminda S. Ranasinghe
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Frank C. Pickard
- Pfizer Global Research and Development, Groton Laboratories, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Geoffrey P. F. Wood
- Pfizer Global Research and Development, Groton Laboratories, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Todd Zelesky
- Pfizer Global Research and Development, Groton Laboratories, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Gregory W. Sluggett
- Pfizer Global Research and Development, Groton Laboratories, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Jason Mustakis
- Pfizer Global Research and Development, Groton Laboratories, Eastern Point Road, Groton, Connecticut 06340, United States
| | - William H. Green
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
5
|
Raucci U, Rizzi V, Parrinello M. Discover, Sample, and Refine: Exploring Chemistry with Enhanced Sampling Techniques. J Phys Chem Lett 2022; 13:1424-1430. [PMID: 35119863 DOI: 10.1021/acs.jpclett.1c03993] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Over the last few decades, enhanced sampling methods have been continuously improved. Here, we exploit this progress and propose a modular workflow for blind reaction discovery and determination of reaction paths. In a three-step strategy, at first we use a collective variable derived from spectral graph theory in conjunction with the explore variant of the on-the-fly probability enhanced sampling method to drive reaction discovery runs. Once different chemical products are determined, we construct an ad-hoc neural network-based collective variable to improve sampling, and finally we refine the results using the free energy perturbation theory and a more accurate Hamiltonian. We apply this strategy to both intramolecular and intermolecular reactions. Our workflow requires minimal user input and extends the power of ab initio molecular dynamics to explore and characterize the reaction space.
Collapse
Affiliation(s)
- Umberto Raucci
- Italian Institute of Technology, Via E. Melen 83, 16152, Genova, Italy
| | - Valerio Rizzi
- Italian Institute of Technology, Via E. Melen 83, 16152, Genova, Italy
| | | |
Collapse
|