1
|
Li X, Wang C, Chai X, Liu X, Qiao K, Fu Y, Jin Y, Jia Q, Zhu F, Zhang Y. Discovery of Potent Selective HDAC6 Inhibitors with 5-Phenyl-1 H-indole Fragment: Virtual Screening, Rational Design, and Biological Evaluation. J Chem Inf Model 2024; 64:6147-6161. [PMID: 39042494 DOI: 10.1021/acs.jcim.4c01052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Among the HDACs family, histone deacetylase 6 (HDAC6) has attracted extensive attention due to its unique structure and biological functions. Numerous studies have shown that compared with broad-spectrum HDACs inhibitors, selective HDAC6 inhibitors exert ideal efficacy in tumor treatment with insignificant toxic and side effects, demonstrating promising clinical application prospect. Herein, we carried out rational drug design by integrating a deep learning model, molecular docking, and molecular dynamics simulation technology to construct a virtual screening process. The designed derivatives with 5-phenyl-1H-indole fragment as Cap showed desirable cytotoxicity to the various tumor cell lines, all of which were within 15 μM (ranging from 0.35 to 14.87 μM), among which compound 5i had the best antiproliferative activities against HL-60 (IC50 = 0.35 ± 0.07 μM) and arrested HL-60 cells in the G0/G1 phase. In addition, 5i exhibited better isotype selective inhibitory activities due to the potent potency against HDAC6 (IC50 = 5.16 ± 0.25 nM) and the reduced inhibitory activities against HDAC1 (selective index ≈ 124), which was further verified by immunoblotting results. Moreover, the representative binding conformation of 5i on HDAC6 was revealed and the key residues contributing 5i's binding were also identified via decomposition free-energy analysis. The discovery of lead compound 5i also indicates that virtual screening is still a beneficial tool in drug discovery and can provide more molecular skeletons with research potential for drug design, which is worthy of widespread application.
Collapse
Affiliation(s)
- Xuedong Li
- School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Chengzhao Wang
- College of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Xu Chai
- School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Xingang Liu
- School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Kening Qiao
- School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Yan Fu
- School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Yanzhao Jin
- Shijiazhuang Xianyu Digital Biotechnology Co., Ltd, Shijiazhuang 050024, PR China
| | - Qingzhong Jia
- School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Feng Zhu
- School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, PR China
- College of Pharmaceutical Sciences, National Key Laboratory of Advanced Drug Delivery and Release Systems, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, PR China
| | - Yang Zhang
- School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, PR China
| |
Collapse
|
2
|
Duvail M, Moreno Martinez D, Žiberna L, Guillam E, Dufrêche JF, Guilbaud P. Modeling Lanthanide Ions in Solution: A Versatile Force Field in Aqueous and Organic Solvents. J Chem Theory Comput 2024. [PMID: 38221754 DOI: 10.1021/acs.jctc.3c01162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
In this paper, we propose a new nonpolarizable force field for describing the Ln3+ (Ln = lanthanide) series based on a 12-6-4 Lennard-Jones potential. The development of the force field was performed in pure water by adjusting both the ion-oxygen distance and the hydration free energy. This force field accurately reproduces the Ln3+ hydration properties through the series, especially the coordination number that is hardly accessible using a nonpolarizable force field. Then, the validity and the transferability of the current force field were evaluated for two different systems containing Ln3+ in various solvents, namely, 0.1 mol L-1 La(NO3)3 salts in methanol and Eu(NO3)3 salts in solvent organic phases composed of DMDOHEMA molecules in n-heptane. The good agreement between our simulations and the data available in the literature confirms the accuracy of the force field for describing the lanthanide cations in both aqueous and nonaqueous media.
Collapse
Affiliation(s)
- Magali Duvail
- ICSM, University of Montpellier, CEA, CNRS, ENSCM, 30207 Bagnols-sur-Cèze, France
| | - Diego Moreno Martinez
- CEA, DES, ISEC, DMRC, LILA, University of Montpellier, Marcoule, 30207 Bagnols-sur-Cèze, France
| | - Lara Žiberna
- ICSM, University of Montpellier, CEA, CNRS, ENSCM, 30207 Bagnols-sur-Cèze, France
| | - Erwann Guillam
- ICSM, University of Montpellier, CEA, CNRS, ENSCM, 30207 Bagnols-sur-Cèze, France
| | | | - Philippe Guilbaud
- CEA, DES, ISEC, DMRC, University of Montpellier, Marcoule, 30207 Bagnols-sur-Cèze, France
| |
Collapse
|
3
|
Scrima S, Tiberti M, Ryde U, Lambrughi M, Papaleo E. Comparison of force fields to study the zinc-finger containing protein NPL4, a target for disulfiram in cancer therapy. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2023; 1871:140921. [PMID: 37230374 DOI: 10.1016/j.bbapap.2023.140921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 05/27/2023]
Abstract
Molecular dynamics (MD) simulations are a powerful approach to studying the structure and dynamics of proteins related to health and disease. Advances in the MD field allow modeling proteins with high accuracy. However, modeling metal ions and their interactions with proteins is still challenging. NPL4 is a zinc-binding protein and works as a cofactor for p97 to regulate protein homeostasis. NPL4 is of biomedical importance and has been proposed as the target of disulfiram, a drug recently repurposed for cancer treatment. Experimental studies proposed that the disulfiram metabolites, bis-(diethyldithiocarbamate)‑copper and cupric ions, induce NPL4 misfolding and aggregation. However, the molecular details of their interactions with NPL4 and consequent structural effects are still elusive. Here, biomolecular simulations can help to shed light on the related structural details. To apply MD simulations to NPL4 and its interaction with copper the first important step is identifying a suitable force field to describe the protein in its zinc-bound states. We examined different sets of non-bonded parameters because we want to study the misfolding mechanism and cannot rule out that the zinc may detach from the protein during the process and copper replaces it. We investigated the force-field ability to model the coordination geometry of the metal ions by comparing the results from MD simulations with optimized geometries from quantum mechanics (QM) calculations using model systems of NPL4. Furthermore, we investigated the performance of a force field including bonded parameters to treat copper ions in NPL4 that we obtained based on QM calculations.
Collapse
Affiliation(s)
- Simone Scrima
- Cancer Structural Biology, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark; Cancer Systems Biology, Section for Bioinformatics, Department of Health and Technology, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Matteo Tiberti
- Cancer Structural Biology, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark
| | - Ulf Ryde
- Division of Theoretical Chemistry, Lund University, Chemical Centre, P. O. Box 124, SE-221 00 Lund, Sweden
| | - Matteo Lambrughi
- Cancer Structural Biology, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark
| | - Elena Papaleo
- Cancer Structural Biology, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark; Cancer Systems Biology, Section for Bioinformatics, Department of Health and Technology, Technical University of Denmark, 2800 Lyngby, Denmark.
| |
Collapse
|
4
|
Gutenthaler SM, Tsushima S, Steudtner R, Gailer M, Hoffmann-Röder A, Drobot B, Daumann LJ. Lanmodulin peptides – unravelling the binding of the EF-Hand loop sequences stripped from the structural corset. Inorg Chem Front 2022; 9:4009-4021. [PMID: 36091973 PMCID: PMC9362731 DOI: 10.1039/d2qi00933a] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/23/2022] [Indexed: 12/25/2022]
Abstract
Lanmodulin (LanM), a naturally lanthanide (Ln)-binding protein with a remarkable selectivity for Lns over Ca(ii) and affinities in the picomolar range, is an attractive target to address challenges in Ln separation. Why LanM has such a high selectivity is currently not entirely understood; both specific amino acid sequences of the EF-Hand loops and cooperativity effects have been suggested. Here, we removed the effect of cooperativity and synthesised all four 12-amino acid EF-Hand loop peptides, and investigated their affinity for two Lns (Eu(iii) and Tb(iii)), the actinide Cm(iii) and Ca(ii). Using isothermal titration calorimetry and time-resolved laser fluorescence spectroscopy (TRLFS) combined with parallel factor analysis, we show that the four short peptides behave very similarly, having affinities in the micromolar range for Eu(iii) and Tb(iii). Ca(ii) was shown not to bind to the peptides, which was verified with circular dichroism spectroscopy. This technique also revealed an increase in structural organisation upon Eu(iii) addition, which was supported by molecular dynamics simulations. Lastly, we put Eu(iii) and Cm(iii) in direct competition using TRLFS. Remarkably, a slightly higher affinity for Cm(iii) was found. Our results demonstrate that the picomolar affinities in LanM are largely an effect of pre-structuring and therefore a reduction of flexibility in combination with cooperative effects, and that all EF-Hand loops possess similar affinities when detached from the protein backbone, albeit still retaining the high selectivity for lanthanides and actinides over calcium. Taking a closer look at Lanmodulin’s remarkable selectivity for lanthanides (Ln) over Ca(ii) and high Ln/actinide affinities on the amino acid level by investigating the four binding-loops as peptides with Ca(ii), Eu(iii), Tb(iii) and Cm(iii).![]()
Collapse
Affiliation(s)
- Sophie M. Gutenthaler
- Department of Chemistry Ludwig-Maximilians-University Munich Butenandtstraße 5-13, 81377 München, Germany
| | - Satoru Tsushima
- Institute of Resource Ecology Helmholtz-Zentrum Dresden-Rossendorf e.V. Bautzner Landstraße 400, 01328 Dresden, Germany
- International Research Frontiers Initiative, Institute of Innovative Research, Tokyo Institute of Technology, Meguro 152-8550, Tokyo, Japan
| | - Robin Steudtner
- Institute of Resource Ecology Helmholtz-Zentrum Dresden-Rossendorf e.V. Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Manuel Gailer
- Department of Chemistry Ludwig-Maximilians-University Munich Butenandtstraße 5-13, 81377 München, Germany
| | - Anja Hoffmann-Röder
- Department of Chemistry Ludwig-Maximilians-University Munich Butenandtstraße 5-13, 81377 München, Germany
| | - Björn Drobot
- Institute of Resource Ecology Helmholtz-Zentrum Dresden-Rossendorf e.V. Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Lena J. Daumann
- Department of Chemistry Ludwig-Maximilians-University Munich Butenandtstraße 5-13, 81377 München, Germany
| |
Collapse
|